首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenosine A2A, cannabinoid CB1 and metabotropic glutamate 5 (mGlu5) receptors are all highly expressed in the striatum. The aim of the present work was to investigate whether, and by which mechanisms, the above receptors interact in the regulation of striatal synaptic transmission. By extracellular field potentials (FPs) recordings in corticostriatal slices, we demonstrated that the ability of the selective type 1 cannabinoid receptor (CB1R) agonist WIN55,212-2 to depress synaptic transmission was prevented by the pharmacological blockade or the genetic inactivation of A2ARs. Such a permissive effect of A2ARs towards CB1Rs does not seem to occur pre-synaptically as the ability of WIN55,212-2 to increase the R2/R1 ratio under a protocol of paired-pulse stimulation was not modified by ZM241385. Furthermore, the effects of WIN55,212-2 were reduced in slices from mice lacking post-synaptic striatal A2ARs. The selective mGlu5R agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) potentiated the synaptic effects of WIN55,212-2, and such a potentiation was abolished by A2AR blockade. Unlike the synaptic effects, the ability of WIN55,212-2 to prevent NMDA-induced toxicity was not influenced by ZM241385. Altogether, these results show that the state of activation of A2ARs regulates the synaptic effects of CB1Rs and that A2ARs may control CB1 effects also indirectly, namely through mGlu5Rs.  相似文献   

2.
Abstract: We have assessed the ability of the serotonergic antagonist mianserin to modulate the number and functional activity of human 5-hydroxytryptamine2A (5-HT2A) and 5-HT2C receptors stably expressed in the human neuroblastoma cell line SH-SY5Y. Incubation of cells expressing the 5-HT2A receptor with mianserin (100 n M ) for 24 h caused a significant decrease (48%) in the binding capacity of [3H]ketanserin. This receptor down-regulation was associated with a corresponding decrease in the maximal production of inositol phosphates induced by 5-HT but not by carbachol. Exposure of cells expressing the 5-HT2C receptor to mianserin (100 n M ) for 72 h but not for 24 h similarly resulted in a significant reduction (44%) in [3H]mesulergine binding. Corresponding analysis of inositol phosphate production by 5-HT at the 5-HT2C receptor after incubation with mianserin showed no change in maximal response after 24 h. No change in the binding capacity of either radioligand was seen after incubation with mianserin for 1 h. A decrease in the binding affinity of both radioligands was also observed after mianserin treatment, but this decrease was similar after 1 h of incubation to that seen after 24 or 72 h, and was probably due to the retention of mianserin within the tissue. We conclude that antagonist down-regulation is evident at human 5-HT2A and 5-HT2C receptors stably expressed in a human neuroblastoma cell line and is probably mediated by a direct action of mianserin at the receptor.  相似文献   

3.
Abstract: The K+-evoked overflow of endogenous glutamate from cerebellar synaptosomes was inhibited by serotonin [5-hydroxytryptamine (5-HT); pD2 = 8.95], 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT; pD2 = 7.35), and sumatriptan (pD2 = 8.43). These inhibitions were prevented by the selective 5-HT1D receptor antagonist N -[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)(1,1-biphenyl)-4-carboxamide (GR-127935). The three agonists tested also inhibited the cyclic GMP (cGMP) response provoked in slices by K+ depolarization; pD2 values were 9.37 (5-HT), 9.00 (8-OH-DPAT), and 8.39 (sumatriptan). When cGMP formation was elevated by directly activating glutamate receptors with NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), the inhibition of the cGMP responses displayed the following pattern: 5-HT (pD2 values of 8.68 and 8.72 against NMDA and AMPA, respectively); 8-OH-DPAT (respective pD2 values of 9.15 and 9.00); sumatriptan (0.1 µ M ) was ineffective. The 5-HT1A receptor antagonist ( S )-(+) N-tert -butyl-3-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylpropionamide dihydrochloride [(+)-WAY 100135] did not prevent the inhibition of glutamate release by 5-HT but blocked the inhibition by 8-OH-DPAT of the NMDA/AMPA-evoked cGMP responses. It is suggested that presynaptic 5-HT1D receptors mediate inhibition directly of glutamate release and indirectly of the cGMP responses to the released glutamate; on the other hand, activation of (postsynaptic) 5-HT1A receptors causes inhibition of the cGMP responses linked to stimulation of NMDA/AMPA receptors.  相似文献   

4.
Abstract: 5-Hydroxytryptamine elicits its physiological effects by interacting with a diverse group of receptors. Two of these receptors, the 5-HT1Dβ and the 5-HT1E receptors, are ∼60% identical in the transmembrane domains that presumably form the ligand binding site yet have very different pharmacological properties. Analysis of the pharmacological properties of a series of chimeric 5-HT1Dβ/5-HT1E receptors indicates that sequences in the sixth and seventh transmembrane domains are responsible for the differential affinity of 5-carboxamidotryptamine for these two receptors. More detailed analysis shows that two amino acid differences in the sixth transmembrane domain (Ile333 and Ser334 in the 5-HT1Dβ receptor, corresponding to Lys310 and Glu311 in the 5-HT1E receptor) are largely responsible for the differential affinities of some, but not all, ligands for the 5-HT1Dβ and 5-HT1E receptors. It is likely that these two amino acids subtly determine the overall three-dimensional structure of the receptor rather than interact directly with individual ligands.  相似文献   

5.
[3H]Spiroxatrine: A 5-HT1A Radioligand with Agonist Binding Properties   总被引:1,自引:0,他引:1  
Spiroxatrine has been reported to be a 5-HT1A serotonin receptor antagonist. Therefore [3H]spiroxatrine was synthesized and its 5-HT1A receptor binding properties in homogenates of rat hippocampal membranes were characterized with the expectation that it would be the first 5-HT1A antagonist radioligand. [3H]8-Hydroxydipropylaminotetralin [( 3H]8-OH-DPAT), a well-characterized 5-HT1A agonist radioligand, was studied in parallel for comparative purposes. Scatchard analyses of saturation studies of [3H]spiroxatrine and [3H]8-OH-DPAT binding produced KD values of 0.9 nM and 1.8 nM, with Bmax values of 424 and 360 fmol/mg protein, respectively. A highly significant correlation (r = 0.98; p less than 0.001) exists between Ki values obtained for a series of drugs in competing for [3H]-spiroxatrine and [3H]8-OH-DPAT binding. Of special interest was the observation that 5-HT1A agonists such as serotonin, 8-OH-DPAT, and ipsapirone competed with equal high affinities for [3H]spiroxatrine or [3H]8-OH-DPAT-labelled 5-HT1A receptors. [3H]Spiroxatrine and [3H]8-OH-DPAT binding to 5-HT1A receptors was inhibited by guanosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of GTP) in a concentration-dependent manner whereas adenosine 5'-(beta,gamma-imido)triphosphate (a nonhydrolyzable analog of ATP) had no effect. The similarities in the 5-HT1A receptor radiolabelling properties of [3H]spiroxatrine and [3H]8-OH-DPAT, i.e., the high affinities of agonists and the guanyl nucleotide sensitivity, indicate that [3H]spiroxatrine has "agonist-like" binding properties in its interaction with the 5-HT1A receptor.  相似文献   

6.
Abstract: We investigated changes in the extracellular levels of acetylcholine (ACh) following local application of serotonergic agents to the dorsal hippocampus of freely moving rats by means of perfusion using a microdialysis technique. Perfusion of serotonin (5-HT; 10 μM, for 30 min at a rate of 3 μl/min), dissolved in Ringer's solution containing 10 μM eserine, showed no marked effect on the extracellular levels of ACh. 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 20 μM), a 5-HT1A agonist, increased ACh levels, whereas 7-trifluoromethyl-4-(4-methyl-1 -piperazinyl)-pymoto[1,2-a]quinoxaline (CGS-12066B; 100 μM), a 5-HT1B agonist, decreased it. Clomipramine (2 μM), an uptake inhibitor of 5-HT, had no effect on ACh levels. Following perfusion of 1-(2-methoxyphenyl)-4-[4- (2-phthalimido)butyl]piperazine (NAN-190; 10 μM), which is a selective 5-HT1A antagonist, the effect of 8-OH-DPAT was totally abolished, whereas CGS-12066B decreased extracellular ACh levels. 5-HT, as well as Clomipramine, had a decreasing effect on ACh levels after pretreatment with NAN-190. These results indicate that the 5-HT1A receptor, which exists in the dorsal hippocampus, enhances the spontaneous ACh release, and that the mechanism of serotonergic modulation of ACh release partly depends on both the stimulatory control via the 5-HT1A receptor and the suppressive one via the 5-HT1B receptor in the dorsal hippocampus of rats.  相似文献   

7.
Cannabinoid CB1 receptors are highly expressed in the striatum where they are known to be co‐localized with dopamine D2 receptors. There is now strong evidence that cannabinoids modulate dopamine release in the brain. Using fast cyclic voltammetry, single pulse stimulation (0.1 ms; 10 V) was applied every 5 min and peak dopamine release was measured with a carbon fibre microelectrode. Application of the D2 receptor agonist, quinpirole, inhibited single pulse dopamine overflow in a concentration‐dependent manner (IC50: 3.25 × 10?8 M). The CB1 receptor agonist WIN55212‐2 (WIN; 1 μM) had no effect on single pulse dopamine release (93.9 ± 6.6% at 60 min, n = 5) but attenuated the inhibitory effect of quinpirole (30 nM; quinpirole 39.0 ± 4.2% vs. quinpirole + WIN, 48.2 ± 3.7%, n = 5, p < 0.05). This affect was antagonized by the CB1 receptor anatgonist [N‐(Piperidin‐1‐yl)‐5‐(4‐iodophenyl)‐1‐(2,4‐dichlorophenyl)‐4‐methyl‐1H‐pyrazole‐3‐carboxamide] (AM‐251, 1 μM). Dopamine release evoked by four pulses delivered at 1 Hz (4P1Hz) and 10 pulses delivered at 5 Hz (10P5Hz) was significantly inhibited by WIN [72.3 ± 7.9% control (peak 4 to 1 ratio measurement) and 66.9 ± 3.8% control (area under the curve measurement), respectively, p < 0.05; n = 6 for both]. Prior perfusion of WIN significantly attenuated the effects of quinpirole on multiple pulse‐evoked dopamine release (4P1Hz: quinpirole, 28.4 ± 4.8% vs. WIN + quinpirole, 52.3 ± 1.2%; 10P5Hz: quinpirole, 29.5 ± 1.3% vs. WIN + quinpirole, 59.4 ±7.1%; p < 0.05 for both; n = 6). These effects were also antagonized by AM‐251 (1 μM). This is the first report demonstrating a functional, antagonistic interaction between CB1 receptors and D2 autoreceptors in regulating rat striatal dopamine release.  相似文献   

8.
Abstract: Neuronal migration in brain is followed by differentiation of committed neurons and simultaneous apoptosis of uncommitted preneuronal cells due to a limiting supply of trophic factors and nutrients. We have dissected differentiation and apoptosis by designing a simple in vitro model for this nutrient deprivation using engineered neuronal cell lines stably transfected with a promoterless segment (G-21) of the intronless human serotonin1A receptor (5-HT1A-R) gene. Despite the use of widely different heterologous promoters (cytomegalovirus and Rous sarcoma virus) for the stable expression of G-21, a dramatic increase in expression of the 5-HT1A-R (five- to 15-fold) and its mRNA was always observed during degeneration and apoptosis of nutrient-deprived neuronal cells. Involvement in this induction of a 170-bp 5'-end untranslated sequence (5'-UT) (tail end of the 500-bp natural promoter) of G-21 was confirmed by stable transfection of neuronal cells with an SV-40 promoter-driven construct harboring the 5'-UT and the reporter chloramphenicol acetyltransferase (CAT) cDNA. Presence of the 5'-UT resulted in a threefold increase in CAT expression during nutrient deprivation in randomly chosen clones. The induction was also observed in the endogenous 5-HT1A-R, expressed by embryonic day 16 mouse hippocampal neurons, subsequent to nutrient deprivation and onset of degeneration. A trophic role of the 5-HT1A-R has been suggested in earlier studies. Considering the example of protective heat shock proteins, which are induced during various types of stress, our results suggest that stressed neuronal cells undergoing degeneration and apoptosis synthesize increased levels of 5-HT1A-R as a final attempt to survive.  相似文献   

9.
Abstract: Molecular cloning of the rat and human 5-hydroxytryptamine1B (5-HT1B) receptors has revealed that the primary amino acid sequence of these two receptors is >90% identical. Despite this high degree of primary sequence homology, these two receptors have significantly different pharmacological properties. A mutant human 5-HT1B receptor was constructed in which Thr355 was replaced by Asn, the corresponding residue at this position in the rat 5-HT1B receptor. The pharmacology of the mutant human 5-HT1B receptor was very similar to that of the rat 5-HT1B receptor. Specifically, the mutant receptor had much higher affinity for pindolol, [125I]-iodocyanopindolol, propranolol, and CP-93,129 than the wild-type receptor. In contrast, the mutant had significantly lower affinity for sumatriptan, N,N -dipropyl-5-carboxamidotryptamine, 5-methoxy- N,N -dimethyltryptamine, methysergide, metergoline, and rauwolscine. These data suggest that a single amino acid difference at position 355 is responsible for the pharmacological differences between the rat and human 5-HT1B receptors.  相似文献   

10.
Although the subtypes of serotonin 5-HT1 receptors have distinct structure and pharmacology, it has not been clear if they also exhibit differences in coupling to cellular signals. We have sought to compare directly the coupling of 5-HT1A and 5-HT1B receptors to adenylyl cyclase and to the mitogen-activated protein kinase ERK2 (extracellular signal-regulated kinase-2). We found that 5-HT1B receptors couple better to activation of ERK2 and inhibition of adenylyl cyclase than do 5-HT1A receptors. 5-HT stimulated a maximal fourfold increase in ERK2 activity in nontransfected cells that express endogenous 5-HT1B receptors at a very low density and a maximal 13-fold increase in transfected cells expressing 230 fmol of 5-HT1B receptor/mg of membrane protein. In contrast, activation of 5-HT1A receptors stimulated only a 2.8-fold maximal activation of ERK2 in transfected cells expressing receptors at 300 fmol/mg of membrane protein but did stimulate a 12-fold increase in activity in cells expressing receptors at 3,000 fmol/mg of membrane protein. Similarly, 5-HT1A, but not 5-HT1B, receptors were found to cause significant inhibition of forskolin-stimulated cyclic AMP accumulation only when expressed at high densities. These findings demonstrate that although both 5-HT1A and 5-HT1B receptors have been shown to couple to G proteins of the Gi class, they exhibit differences in coupling to ERK2 and adenylyl cyclase.  相似文献   

11.
Abstract: The modulation by adenosine analogues and endogenous adenosine of the electrically evoked release of [3H]acetylcholine ([3H]ACh) was compared in subslices of the three areas of the rat hippocampus (CA1, CA3, and dentate gyrus). The mixed A1/A2 agonist 2-chloroadenosine (CADO; 2–10 µM) inhibited, in a concentration-dependent manner, the release of [3H]ACh from the three hippocampal areas, being more potent in the CA1 and CA3 areas than in the dentate gyrus. The inhibitory effect of CADO (5 µM) on [3H]ACh release was prevented by the A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 50 nM) in the three hippocampal areas and was converted in an excitatory effect in the CA3 and dentate gyrus areas. The A2A agonist CGS-21680 (30 nM) produced a greater increase of the evoked release of [3H]ACh in the CA3 than in the dentate gyrus areas, whereas no consistent effect was found in the CA1 area or in the whole hippocampal slice. The excitatory effect of CGS-21680 (30 nM) in the CA3 area was prevented by the adenosine receptor antagonist 3,7-dimethyl-1-propargylxanthine (10 µM). Both adenosine deaminase (2 U/ml) and DPCPX (250 nM) increased the evoked release of [3H]ACh in the CA1 and CA3 areas but not in the dentate gyrus. The amplitude of the effect of DPCPX and adenosine deaminase was similar in the CA1 area, but in the CA3 area DPCPX produced a greater effect than adenosine deaminase. It is concluded that the electrically evoked release of [3H]ACh in the three areas of the rat hippocampus can be differentially modulated by adenosine. In the CA1 area, only A1 inhibitory receptors modulate ACh release, whereas in the CA3 area, both A2A excitatory and A1 inhibitory adenosine receptors modulate ACh release. In the dentate gyrus, both A1 inhibitory and A2A excitatory adenosine receptors are present, but endogenous adenosine does not activate them.  相似文献   

12.
Abstract: The serotonin2A and serotonin2C receptors are unique among receptors coupled to guanine nucleotide binding proteins in that chronic treatment in vivo with agonists as well as antagonists decreases receptor density. In an attempt to uncover molecular events involved in down-regulation of the serotonin2A receptor, the ability of agonists and antagonists to alter receptor density was examined in three heterologous expression systems, i.e., transfected NIH 3T3, transfected Madin-Darby canine kidney, and transfected AtT-20 cells. All three transfected cell lines exhibited pharmacological properties consistent with that predicted for cells expressing the serotonin2A receptor. However, the three cell lines displayed different receptor regulation properties in response to drugs acting at the serotonin2A receptor. In transfected NIH 3T3 cells, neither agonist nor antagonist treatment altered receptor density. Treatment with agonist as well as antagonist led to up-regulation of the serotonin2A receptor in transfected Madin-Darby canine kidney cells. In transfected AtT-20 cells, treatment with agonist led to receptor down-regulation, whereas antagonist treatment increased receptor density. Thus, the cellular background in which the serotonin2A receptor is expressed appears to determine the regulation properties of the receptor.  相似文献   

13.
Bilateral olfactory bulbectomy in the rat (OBX) induces behavioral, neurochemical, and structural abnormalities similar to those observed in human depression that are normalized after chronic, but not acute, treatment with antidepressants. In our study, OBX animals exhibited significant increases in both CB1 receptor density ([3H]CP55490 binding) and functionality (stimulation of [35S]GTPγS binding by the cannabinoid (CB) agonist WIN 55212-2) at the prefrontal cortex (PFC). After chronic treatment with fluoxetine (10 mg/kg/day, 14 days, s.c.), OBX-induced hyperactivity in the open-field test was fully abolished. Interestingly, chronic fluoxetine fully reversed the enhanced CB1-receptor signaling in PFC observed following OBX. The CB agonist Δ9-tetrahydrocannabinol (5 mg/kg, i.p., 1 day) did not produce any behavioral effect in sham-operated animals but returned locomotor activity to control values in OBX rats. As both acute administration of Δ9-tetrahydrocannabinol and chronic fluoxetine elicited a similar behavioral effect in the OBX rat, it is not unlikely that the regionally selective enhancement of CB1 receptor-signaling in the PFC could be related with the altered OBX behavior. Our findings reinforce the utility of this animal model to further investigating the implication of the endocannabinoid system in the modulation of emotional processes and its potential role in the adaptive responses to chronic antidepressants.  相似文献   

14.
Abstract: We examined the effect of kindling on serotonergic neurotransmission in the hippocampus by measuring serotonin (5-HT) release and uptake in hippocampal synaptosomes and 5-HT1A and 5-HT4 receptor subtypes during and at different times after electrical kindling of the dentate gyrus. Using quantitative receptor autoradiography, we found that binding of 8-[3H]hydroxy-2-(di- n -propylamino)tetralin ([3H]8-OH-DPAT) to 5-HT1A receptors was selectively increased by 20% on average ( p < 0.05) in the dentate gyrus of the stimulated and contralateral hippocampus 2 days after stage 2 (stereotypes and occasional retraction of a forelimb) and by 100% on average ( p < 0.05) 1 week after stage 5 (tonic-clonic seizures) compared with sham-stimulated rats. A 20% increase ( p < 0.05) was observed 1 month after the last generalized seizure. No changes were found after a single afterdischarge. 5-HT4 receptors, which colocalize with 5-HT1A receptors on hippocampal neurons, were not modified in kindled tissue. [3H]5-HT uptake and its release as well as the 5-HT1B autoreceptor function did not differ from shams in hippocampal synaptosomes at stages 2 and 5. Systemic administration of 100 and 1,000 µg kg−1 8-OH-DPAT or 1,000 µg kg−1 WAY-100,635, 30 min before each electrical stimulation, did not significantly alter kindling progression or the occurrence of stage 5 seizures in fully kindled rats. The changes in 5-HT1A receptor density in the dentate gyrus are part of the plastic modifications occurring during kindling and may contribute to modulating tissue hyperexcitability.  相似文献   

15.
16.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

17.
Abstract: G protein activation mediated by serotonin 5-HT1A and 5-HT1B/D receptors in guinea pig brain was investigated by using quantitative autoradiography of agonist-stimulated [35S]GTPγS binding to brain sections. [35S]GTPγS binding was stimulated by the mixed 5-HT1A/5-HT1B/D agonist L694247 in brain structures enriched in 5-HT1A binding sites, i.e., hippocampus (+140 ± 14%), dorsal raphe (+70 ± 8%), lateral septum (+52 ± 12%), cingulate (+36 ± 8%), and entorhinal cortex (+34 ± 5%). L694247 caused little or no stimulation of [35S]GTPγS binding in brain regions with high densities of 5-HT1B/D binding sites (e.g., substantia nigra, striatum, central gray, and dorsal subiculum). The [35S]GTPγS binding response was antagonized by WAY100635 (10 µM) and methiothepin (10 µM). In contrast, the 5-HT1B inverse agonist SB224289 (10 µM) did not affect the L694247-mediated [35S]GTPγS binding response, and the mixed 5-HT1B/D antagonist GR127935 (10 µM) yielded a partial blockade. The distribution pattern of the [35S]GTPγS binding response and the antagonist profile suggest the L694247-mediated response in guinea pig brain to be mediated by 5-HT1A receptors. In addition to L694247, 8-hydroxy-2-(di-n-propylamino)tetralin, and flesinoxan also stimulated [35S]GTPγS binding; their maximal responses varied between 46 and 52% compared with L694247, irrespective of the brain structure being considered. Sumatriptan, rizatriptan, and zolmitriptan (10 µM) stimulated [35S]GTPγS binding in the hippocampus by 20–50%. Naratriptan, CP122638, and dihydroergotamine stimulated [35S]GTPγS binding to a similar level as L694247 in hippocampus, lateral septum, and dorsal raphe. It appears that under the present experimental conditions, G protein activation through 5-HT1A but not 5-HT1B/D receptors can be measured in guinea pig brain sections.  相似文献   

18.
Abstract: 3-(1,2,5,6-Tetrahydro-4-pyridyl)-5- n -propoxyindole (CP-96,501) was found to be a more selective ligand at the serotonin 5-HT1B receptor than the commonly used 5-HT1B agonist, 3-(1,2,5,6-tetrahydro-4-pyridyl)-5-methoxyindole (RU 24969). In rat brain membranes, the tritiated derivative, [3H]CP-96,501, was found to bind with a high affinity ( K D, 0.21 n M ) to a single binding site ( n H, 1.0). The receptor density of this site ( B max, 72 fmol/mg of protein) matched that of the 5-HT1B receptor determined with [3H]5-HT. Competition curves of 16 serotonergic compounds in [3H]CP-96,501 binding also indicated a single binding site. The rank order of their binding affinities with this new radioligand showed a high degree of correlation with their affinities at the 5-HT1B receptor determined with [3H]5-HT or [125I]iodocyanopindolol. Serotonergic compounds displayed competitive inhibition of [3H]CP-96,501 binding. In the presence of 5'-guanylylimidodiphosphate [Gpp(NH)p], [3H]CP-96,501 binding was reduced, while the potency of CP-96,501 to displace [125I]iodocyanopindolol binding was also decreased. These findings are consistent with the agonist nature of CP-96,501. The results of this study suggest that [3H]CP-96,501 is a useful agonist radioligand for the 5-HT1B receptor.  相似文献   

19.
Abstract: The immunological properties and the functional role of the first (loop I) and second (loop II) extracellular loops of the human serotonin 5-HT1A receptor were studied with three populations of anti-peptide antibodies: Ab-1 (loop I; sequence Y-Q-V-L-N-K-W-T-L-G-Q-V-T-C-D-L; residues 96–111), Ab-2 (loop II; sequence G-W-R-T-P-E-D-R-S-D-P-D-A-C-T-I-S-K-D-H-G; residues 173–193), and Ab-12 (produced against loop I but cross-reacting with loop II). Chemical modification of peptide amino acid residues revealed the importance of the polyanionic stretch near the N-terminal domain of loop II for Ab-2 antibody binding and the role of the cysteine residues in both loops for the binding of Ab-1 and Ab-12 antibodies. Antibodies Ab-2 and Ab-12 recognized only the nonglycosylated form of the receptor (42 kDa) on immunoblots with transfected HeLa cells expressing the human 5-HT1A receptor but recognized the glycosylated forms (55 and 65 kDa) of rat 5-HT1A receptor from hippocampus membranes. The Ab-1 antibodies recognized no protein band from any cell type studied. Preincubation of transfected HeLa cell membranes with Ab-2 antibodies revealed two affinity binding sites of the 5-HT1A receptor (KDH = 0.54 ± 0.09 nM and KDL = 13.74 ± 4.9 nM) for the agonist 8-hydroxy-2-(di-n-[3H]propylamino)tetralin ([3H]8-OH-DPAT) binding, but Ab-1 and Ab-12 revealed only one site (KD of ≈2.5 nM). In contrast to the Ab-2 antibodies, Ab-1 and Ab-12 antibodies decreased the Bmax of the [3H]8-OH-DPAT binding to 42 and 31%, respectively. These findings suggest that there are at least two epitopes on the extracellular loops: one inducing a high-affinity state for agonist binding and the other interfering with the accessibility of the ligand binding pocket.  相似文献   

20.
To identify the involvement of dopamine receptors in the transmembrane signaling of the adenosine receptor-G protein-adenylate cyclase system in the CNS, we examined the effects of pertussis toxin (islet-activating protein, IAP) and apomorphine on A1 adenosine agonist (-)N6-R-[3H]phenylisopropyladenosine ([3H]PIA) and antagonist [3H]xanthine amine congener ([3H]XAC) binding activity and adenylate cyclase activity in cerebral cortex membranes of the rat brain. Specific binding to a single class of sites for [3H]XAC with a dissociation constant (KD) of 6.0 +/- 1.3 nM was observed. The number of maximal binding sites (Bmax) was 1.21 +/- 0.13 pmol/mg protein. Studies of the inhibition of [3H]XAC binding by PIA revealed the presence of two classes of PIA binding states, a high-affinity state (KD = 2.30 +/- 1.16 nM) and a low-affinity state (KD = 1.220 +/- 230 nM). Guanosine 5'-(3-O-thio)triphosphate or IAP treatment reduced the number of the high-affinity state binding sites without altering the KD for PIA. Apomorphine (100 microM) increased the KD value 10-fold and decreased Bmax by approximately 20% for [3H]PIA. The effect of apomorphine on the KD value increase was irreversible and due to a conversion from high-affinity to low-affinity states for PIA. The effect was dose dependent and was mediated via D2 dopamine receptors, since the D2 antagonist sulpiride blocked the phenomenon. The inhibitory effect of PIA on adenylate cyclase activity was abolished by apomorphine treatment. There was no effect of apomorphine on displacement of [3H]quinuclidinyl benzilate (muscarinic ligand) binding by carbachol. These data suggest that A1 adenosine receptor binding and function are selectively modified by D2 dopaminergic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号