首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After peptide release by a class-1 release factor, the ribosomal subunits must be recycled back to initiation. We have demonstrated that the distance between a strong Shine-Dalgarno (SD) sequence and a codon in the P site is crucial for the binding stability of the deacylated tRNA in the P site of the posttermination ribosome and the in-frame maintenance of its mRNA. We show that the elongation factor EF-G and the ribosomal recycling factor RRF split the ribosome into subunits in the absence of initiation factor 3 (IF3) by a mechanism that requires both GTP and GTP hydrolysis. Taking into account that EF-G in the GTP form and RRF bind with positive cooperativity to the free 50S subunit but with negative cooperativity to the 70S ribosome, we suggest a mechanism for ribosome recycling that specifies distinct roles for EF-G, RRF, and IF3.  相似文献   

2.
After termination of protein synthesis in bacteria, ribosomes are recycled from posttermination complexes by the combined action of elongation factor G (EF-G), ribosome recycling factor (RRF), and initiation factor 3 (IF3). The functions of the factors and the sequence in which ribosomal subunits, tRNA, and mRNA are released from posttermination complexes are unclear and, in part, controversial. Here, we study the reaction by rapid kinetics monitoring fluorescence. We show that RRF and EF-G with GTP, but not with GDPNP, promote the dissociation of 50S subunits from the posttermination complex without involving translocation or a translocation-like event. IF3 does not affect subunit dissociation but prevents reassociation, thereby masking the dissociating effect of EF-G-RRF under certain experimental conditions. IF3 is required for the subsequent ejection of tRNA and mRNA from the small subunit. The latter step is slower than subunit dissociation and constitutes the rate-limiting step of ribosome recycling.  相似文献   

3.
The pathway of bacterial ribosome recycling following translation termination has remained obscure. Here, we elucidate two essential steps and describe the roles played by the three translation factors EF-G, RRF, and IF3. Release factor RF3 is known to catalyze the dissociation of RF1 or RF2 from ribosomes after polypeptide release. We show that the next step is dissociation of 50S subunits from the 70S posttermination complex and that it is catalyzed by RRF and EF-G and requires GTP hydrolysis. Removal of deacylated tRNA from the resulting 30S:mRNA:tRNA posttermination complex is then necessary to permit rapid 30S subunit recycling. We show that this step requires initiation factor IF3, whose role was previously thought to be restricted to promoting specific 30S initiation complex formation from free 30S subunits.  相似文献   

4.
Ribosome recycling factor (RRF) together with elongation factor G (EF-G) disassembles the post- termination ribosomal complex. Inhibitors of translocation, thiostrepton, viomycin and aminoglycosides, inhibited the release of tRNA and mRNA from the post-termination complex. In contrast, fusidic acid and a GTP analog that fix EF-G to the ribosome, allowing one round of tRNA translocation, inhibited mRNA but not tRNA release from the complex. The release of tRNA is a prerequisite for mRNA release but partially takes place with EF-G alone. The data are consistent with the notion that RRF binds to the A-site and is translocated to the P-site, releasing deacylated tRNA from the P- and E-sites. The final step, the release of mRNA, is accompanied by the release of RRF and EF-G from the ribosome. With the model post-termination complex, 70S ribosomes were released from the post-termination complex by the RRF reaction and were then dissociated into subunits by IF3.  相似文献   

5.
The ribosome-recycling factor (RRF) and elongation factor-G (EF-G) disassemble the 70S post-termination complex (PoTC) into mRNA, tRNA, and two ribosomal subunits. We have determined cryo-electron microscopic structures of the PoTC·RRF complex, with and without EF-G. We find that domain II of RRF initially interacts with universally conserved residues of the 23S rRNA helices 43 and 95, and protein L11 within the 50S ribosomal subunit. Upon EF-G binding, both RRF and tRNA are driven towards the tRNA-exit (E) site, with a large rotational movement of domain II of RRF towards the 30S ribosomal subunit. During this intermediate step of the recycling process, domain II of RRF and domain IV of EF-G adopt hitherto unknown conformations. Furthermore, binding of EF-G to the PoTC·RRF complex reverts the ribosome from ratcheted to unratcheted state. These results suggest that (i) the ribosomal intersubunit reorganizations upon RRF binding and subsequent EF-G binding could be instrumental in destabilizing the PoTC and (ii) the modes of action of EF-G during tRNA translocation and ribosome-recycling steps are markedly different.  相似文献   

6.
Specific interactions between ribosome recycling factor (RRF) and elongation factor-G (EFG) mediate disassembly of post-termination ribosomal complexes for new rounds of initiation. The interactions between RRF and EFG are also important in peptidyl-tRNA release from stalled pre-termination complexes. Unlike the post-termination complexes (harboring deacylated tRNA), the pre-termination complexes (harboring peptidyl-tRNA) are not recycled by RRF and EFG in vitro, suggesting participation of additional factor(s) in the process. Using a combination of biochemical and genetic approaches, we show that, (i) Inclusion of IF3 with RRF and EFG results in recycling of the pre-termination complexes; (ii) IF3 overexpression in Escherichia coli LJ14 rescues its temperature sensitive phenotype for RRF; (iii) Transduction of infC135 (which encodes a functionally compromised IF3) in E.coli LJ14 generates a ‘synthetic severe’ phenotype; (iv) The infC135 and frr1 (containing an insertion in the RRF gene promoter) alleles synergistically rescue a temperature sensitive mutation in peptidyl-tRNA hydrolase in E.coli; and (v) IF3 facilitates ribosome recycling by Thermus thermophilus RRF and E.coli EFG in vivo and in vitro. These lines of evidence clearly demonstrate the physiological importance of IF3 in the overall mechanism of ribosome recycling in E.coli.  相似文献   

7.
After the termination step of translation, the posttermination complex (PoTC), composed of the ribosome, mRNA, and a deacylated tRNA, is processed by the concerted action of the ribosome-recycling factor (RRF), elongation factor G (EF-G), and GTP to prepare the ribosome for a fresh round of protein synthesis. However, the sequential steps of dissociation of the ribosomal subunits, and release of mRNA and deacylated tRNA from the PoTC, are unclear. Using three-dimensional cryo-electron microscopy, in conjunction with undecagold-labeled RRF, we show that RRF is capable of spontaneously moving from its initial binding site on the 70S Escherichia coli ribosome to a site exclusively on the large 50S ribosomal subunit. This movement leads to disruption of crucial intersubunit bridges and thereby to the dissociation of the two ribosomal subunits, the central event in ribosome recycling. Results of this study allow us to propose a model of ribosome recycling.  相似文献   

8.
Protein synthesis is initiated on ribosomal subunits. However, it is not known how 70S ribosomes are dissociated into small and large subunits. Here we show that 70S ribosomes, as well as the model post-termination complexes, are dissociated into stable subunits by cooperative action of three translation factors: ribosome recycling factor (RRF), elongation factor G (EF-G), and initiation factor 3 (IF3). The subunit dissociation is stable enough to be detected by conventional sucrose density gradient centrifugation (SDGC). GTP, but not nonhydrolyzable GTP analog, is essential in this process. We found that RRF and EF-G alone transiently dissociate 70S ribosomes. However, the transient dissociation cannot be detected by SDGC. IF3 stabilizes the dissociation by binding to the transiently formed 30S subunits, preventing re-association back to 70S ribosomes. The three-factor-dependent stable dissociation of ribosomes into subunits completes the ribosome cycle and the resulting subunits are ready for the next round of translation.  相似文献   

9.
Aminoglycosides are widely used antibiotics that cause messenger RNA decoding errors, block mRNA and transfer RNA translocation, and inhibit ribosome recycling. Ribosome recycling follows the termination of protein synthesis and is aided by ribosome recycling factor (RRF) in bacteria. The molecular mechanism by which aminoglycosides inhibit ribosome recycling is unknown. Here we show in X-ray crystal structures of the Escherichia coli 70S ribosome that RRF binding causes RNA helix H69 of the large ribosomal subunit, which is crucial for subunit association, to swing away from the subunit interface. Aminoglycosides bind to H69 and completely restore the contacts between ribosomal subunits that are disrupted by RRF. These results provide a structural explanation for aminoglycoside inhibition of ribosome recycling.  相似文献   

10.
Ribosome recycling factor (RRF) is required for disassembly of the posttermination complex of the ribosome after release of polypeptides. The crystal structure of RRF resembles a tRNA shape, with an architecturally different flexibility compared with tRNA, but its structure-and-function relationships are unknown. We here found that an RRF variant defective in ribosome binding regains the binding capacity through 20 independent secondary changes occurring in three topologically distinct regions of RRF. Because two of these regions are equivalent to the tip of the anticodon stem and the upper surface of the acceptor stem of tRNA, RRF may interact with the ribosome in a way similar to tRNA, spanning 30S and 50S subunits, to exert its action for splitting the ribosome.  相似文献   

11.
Recycling of eukaryotic posttermination ribosomal complexes   总被引:2,自引:0,他引:2  
Pisarev AV  Hellen CU  Pestova TV 《Cell》2007,131(2):286-299
After translational termination, mRNA and P site deacylated tRNA remain associated with ribosomes in posttermination complexes (post-TCs), which must therefore be recycled by releasing mRNA and deacylated tRNA and by dissociating ribosomes into subunits. Recycling of bacterial post-TCs requires elongation factor EF-G and a ribosome recycling factor RRF. Eukaryotes do not encode a RRF homolog, and their mechanism of ribosomal recycling is unknown. We investigated eukaryotic recycling using post-TCs assembled on a model mRNA encoding a tetrapeptide followed by a UAA stop codon and report that initiation factors eIF3, eIF1, eIF1A, and eIF3j, a loosely associated subunit of eIF3, can promote recycling of eukaryotic post-TCs. eIF3 is the principal factor that promotes splitting of posttermination ribosomes into 60S subunits and tRNA- and mRNA-bound 40S subunits. Its activity is enhanced by eIFs 3j, 1, and 1A. eIF1 also mediates release of P site tRNA, whereas eIF3j ensures subsequent dissociation of mRNA.  相似文献   

12.
Bacterial translation initiation factor 2 (IF2) is a GTPase that promotes the binding of the initiator fMet‐tRNAfMet to the 30S ribosomal subunit. It is often assumed that IF2 delivers fMet‐tRNAfMet to the ribosome in a ternary complex, IF2·GTP·fMet‐tRNAfMet. By using rapid kinetic techniques, we show here that binding of IF2·GTP to the 30S ribosomal subunit precedes and is independent of fMet‐tRNAfMet binding. The ternary complex formed in solution by IF2·GTP and fMet‐tRNA is unstable and dissociates before IF2·GTP and, subsequently, fMet‐tRNAfMet bind to the 30S subunit. Ribosome‐bound IF2 might accelerate the recruitment of fMet‐tRNAfMet to the 30S initiation complex by providing anchoring interactions or inducing a favourable ribosome conformation. The mechanism of action of IF2 seems to be different from that of tRNA carriers such as EF‐Tu, SelB and eukaryotic initiation factor 2 (eIF2), instead resembling that of eIF5B, the eukaryotic subunit association factor.  相似文献   

13.
At the end of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. In x-ray crystal structures of RRF with the Escherichia coli 70S ribosome, RRF binds to the large ribosomal subunit in the cleft that contains the peptidyl transferase center. Upon binding of either E. coli or Thermus thermophilus RRF to the E. coli ribosome, the tip of ribosomal RNA helix 69 in the large subunit moves away from the small subunit toward RRF by 8 Å, thereby disrupting a key contact between the small and large ribosomal subunits termed bridge B2a. In the ribosome crystals, the ability of RRF to destabilize bridge B2a is influenced by crystal packing forces. Movement of helix 69 involves an ordered-to-disordered transition upon binding of RRF to the ribosome. The disruption of bridge B2a upon RRF binding to the ribosome seen in the present structures reveals one of the key roles that RRF plays in ribosome recycling, the dissociation of 70S ribosomes into subunits. The structures also reveal contacts between domain II of RRF and protein S12 in the 30S subunit that may also play a role in ribosome recycling.  相似文献   

14.
Ribosome recycling, the disassembly of the posttermination complex after each round of protein synthesis, is an essential step in mRNA translation, but its mechanism has remained obscure. In eubacteria, recycling is catalyzed by RRF (ribosome recycling factor) and EF-G (elongation factor G). By using cryo-electron microscopy, we have obtained two density maps, one of the RRF bound posttermination complex and one of the 50S subunit bound with both EF-G and RRF. Comparing the two maps, we found domain I of RRF to be in the same orientation, while domain II in the EF-G-containing 50S subunit is extensively rotated (approximately 60 degrees) compared to its orientation in the 70S complex. Mapping the 50S conformation of RRF onto the 70S posttermination complex suggests that it can disrupt the intersubunit bridges B2a and B3, and thus effect a separation of the two subunits. These observations provide the structural basis for the mechanism by which the posttermination complex is split into subunits by the joint action of RRF and EF-G.  相似文献   

15.
Ribosome recycling involves the coordinated action of the ribosome recycling factor (RRF), elongation factor EF-G and initiation factor IF3 to disassemble the post-termination complex, recycling the components for the next round of translation. The crystal structure of domain I of RRF (RRF-DI) in complex with the large ribosomal subunit from the eubacteria Deinococcus radiodurans at high resolution reveals the nature and details of the interactions between this protein factor and rRNA/protein components of the ribosome. Universally conserved arginine residues within the RRF-DI establish important interactions with nuleotides of the 23S rRNA, explaining why mutations at these positions abolish factor binding. Furthermore, in conjunction with cryo-EM reconstruction, the X-ray analysis provides a structural complement to the recent biochemical data, offering additional insight into the mechanism of ribosome recycling.  相似文献   

16.
We demonstrate that ribosomes containing a messenger RNA (mRNA) with a strong Shine-Dalgarno sequence are rapidly split into subunits by initiation factors 1 (IF1) and 3 (IF3), but slowly split by ribosome recycling factor (RRF) and elongation factor G (EF-G). Post-termination-like (PTL) ribosomes containing mRNA and a P-site-bound deacylated transfer RNA (tRNA) are split very rapidly by RRF and EF-G, but extremely slowly by IF1 and IF3. Vacant ribosomes are split by RRF/EF-G much more slowly than PTL ribosomes and by IF1/IF3 much more slowly than mRNA-containing ribosomes. These observations reveal complementary splitting of different ribosomal complexes by IF1/IF3 and RRF/EF-G, and suggest the existence of two major pathways for ribosome splitting into subunits in the living cell. We show that the identity of the deacylated tRNA in the PTL ribosome strongly affects the rate by which it is split by RRF/EF-G and that IF3 is involved in the mechanism of ribosome splitting by IF1/IF3 but not by RRF/EF-G. With support from our experimental data, we discuss the principally different mechanisms of ribosome splitting by IF1/IF3 and by RRF/EF-G.  相似文献   

17.
Elongation factor G (EF-G) and ribosome recycling factor (RRF) disassemble post-termination complexes of ribosome, mRNA, and tRNA. RRF forms stable complexes with 70 S ribosomes and 50 S ribosomal subunits. Here, we show that EF-G releases RRF from 70 S ribosomal and model post-termination complexes but not from 50 S ribosomal subunit complexes. The release of bound RRF by EF-G is stimulated by GTP analogues. The EF-G-dependent release occurs in the presence of fusidic acid and viomycin. However, thiostrepton inhibits the release. RRF was shown to bind to EF-G-ribosome complexes in the presence of GTP with much weaker affinity, suggesting that EF-G may move RRF to this position during the release of RRF. On the other hand, RRF did not bind to EF-G-ribosome complexes with fusidic acid, suggesting that EF-G stabilized by fusidic acid does not represent the natural post-termination complex. In contrast, the complexes of ribosome, EF-G and thiostrepton could bind RRF, although with lower affinity. These results suggest that thiostrepton traps an intermediate complex having RRF on a position that clashes with the P/E site bound tRNA. Mutants of EF-G that are impaired for translocation fail to disassemble post-termination complexes and exhibit lower activity in releasing RRF. We propose that the release of ribosome-bound RRF by EF-G is required for post-termination complex disassembly. Before release from the ribosome, the position of RRF on the ribosome will change from the original A/P site to a new location that clashes with tRNA on the P/E site.  相似文献   

18.
19.
Ribosome recycling factor (RRF), elongation factor G (EF-G) and GTP split 70S ribosomes into subunits. Here, we demonstrated that the splitting was transient and the exhaustion of GTP resulted in re-association of the split subunits into 70S ribosomes unless IF3 (initiation factor 3) was present. However, the splitting was observed with sucrose density gradient centrifugation (SDGC) without IF3 if RRF, EF-G and GTP were present in the SDGC buffer. The splitting of 70S ribosomes causes the decrease of light scattering by ribosomes. Kinetic constants obtained from the light scattering studies are sufficient to account for the splitting of 70S ribosomes by RRF and EF-G/GTP during the lag phase for activation of ribosomes for the log phase. As the amount of 70S ribosomes increased, more RRF, EF-G and GTP were necessary to split 70S ribosomes. In the presence of a physiological amount of polyamines, GTP and factors, even 0.6 μM 70S ribosomes (12 times higher than the 70S ribosomes for routine assay) were split. Spermidine (2 mM) completely inhibited anti-association activity of IF3, and the RRF/EF-G/GTP-dependent splitting of 70S ribosomes.  相似文献   

20.
Lancaster L  Kiel MC  Kaji A  Noller HF 《Cell》2002,111(1):129-140
Ribosome recycling factor (RRF) disassembles posttermination complexes in conjunction with elongation factor EF-G, liberating ribosomes for further rounds of translation. The striking resemblance of its L-shaped structure to that of tRNA has suggested that the mode of action of RRF may be based on mimicry of tRNA. Directed hydroxyl radical probing of 16S and 23S rRNA from Fe(II) tethered to ten positions on the surface of E. coli RRF constrains it to a well-defined location in the subunit interface cavity. Surprisingly, the orientation of RRF in the ribosome differs markedly from any of those previously observed for tRNA, suggesting that structural mimicry does not necessarily reflect functional mimicry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号