首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND AND AIMS: The anatomy of bamboo culms and the multilayered structure of fibre cell walls are known to be the main determinant factors for its physical and mechanical properties. Studies on the bamboo cell wall have focussed mainly on fully elongated and mature fibres. The main aim of this study was to describe the ultrastructure of primary and secondary cell walls in culm tissues of Dendrocalamus asper at different stages of development. METHODS: The development of fibre and parenchyma tissues was classified into four stages based on light microscopy observations made in tissues from juvenile plants. The stages were used as a basis for transmission electron microscopy study on the ultrastructure of the cell wall during the process of primary and early secondary cell wall formation. Macerations and phloroglucinol-HCl staining were employed to investigate fibre cell elongation and fibre cell wall lignification, respectively. KEY RESULTS: The observations indicated that the primary wall is formed by the deposition of two distinct layers during the elongation of the internode and that secondary wall synthesis may begin before the complete cessation of internode and fibre elongation. Elongation was followed by a maturation phase characterized by the deposition of multiple secondary wall layers, which varied in number according to the cell type, location in the culm tissue and stage of shoot development. Lignification of fibre cell walls started at the period prior to the cessation of internode elongation. CONCLUSIONS: The structure of the primary cell wall was comprised of two layers. The fibre secondary cell wall began to be laid down while the cells were still undergoing some elongation, suggesting that it may act to cause the slow-down and eventual cessation of cell elongation.  相似文献   

2.
The fungal cell wall field, traditionally focused on polysaccharide composition and synthesis, retains a certain static architectural imagery of structural rigidity and integrity, with the wall offering protection from a harsh environment. This picture of the wall is increasingly changing to that of a bustling construction site, as research uncovers the organizational complexity of its assembly. With recent molecular and genomic studies on Saccharomyces cerevisiae, cell wall synthesis and biology appear increasingly to be dynamic and adaptable processes that are fully integrated with the underlying cytoskeletal and polarity machinery that drive cell cycle progression.  相似文献   

3.
The plant cell changes its cell wall architecture during growth and development through synthesis and degradation of wall polysaccharides. Changes of chemical components in the cell wall include not only the synthesis and degradation but also the shift of molecular-weight distribution of certain species of the component polysaccharides. The changes in chemical structure, in turn lead to alteration of physical properties of the cell wall. Changes of physical parameters of cell walls obtained by a physical method accord with the biochemical degradation of polysaccharides. The changes in chemical structures of the cell wall are regulated by plant hormones, stress signals and gene expression. The physical and chemical studies of the cell wall have disclosed that degradation and/or depolymerization of wall polysaccahrides causes decrease in viscosity of the cell wall, leading further extension of the cell wall even under the unchanged osmotic relation. Furthermore, cell walls of outer and inner tissues play different regulatory roles in tissue growth and stem strength was governed by the number of cellulose molecules in the cell wall. Recipient of the Botanical Society Award for Young Scientists, 1990.  相似文献   

4.
BACKGROUND AND AIMS: The relationship between composition and structure of plant primary cell walls, and cell mechanical properties is not fully understood, partly because intrinsic properties of walls such as Young's modulus cannot be obtained readily. The aim of this work is to show that Young's modulus of walls of single suspension-cultured tomato cells can be determined by modelling force-deformation data. METHODS: The model simulates the compression of a cell between two flat surfaces, with the cell treated as a liquid-filled sphere with thin compressible walls. The cell wall and membrane were taken to be permeable, but the compression was so fast that water loss could be neglected in the simulations. Force-deformation data were obtained by compressing the cells in micromanipulation experiments. RESULTS:Good fits were obtained between the model and low-strain experimental data, using the modulus and initial inflation of the cell as adjustable parameters. The mean Young's modulus for 2-week-old cells was found to be 2.3 +/- 0.2 GPa at pH 5. This corresponds to an instantaneous bulk modulus of elasticity of approx. 7 MPa, similar to a value found by the pressure probe method. However, Young's modulus is a better parameter, as it should depend only on the composition and structure of the cell wall, not on bulk cell behaviour. This new method has been used to show that Young's modulus of cultured tomato cell walls is at its lowest at pH 4.5, the pH optimum for expansin activity. CONCLUSIONS:The linear elastic model is very suitable for estimating wall Young's modulus from micromanipulation experiments on single tomato cells. This is a powerful method for determining cell wall material properties.  相似文献   

5.

Background and Aims

The production of multicellular gametangia in green plants represents an early evolutionary development that is found today in all land plants and advanced clades of the Charophycean green algae. The processing of cell walls is an integral part of this morphogenesis yet very little is known about cell wall dynamics in early-divergent green plants such as the Charophycean green algae. This study represents a comprehensive analysis of antheridium development and spermatogenesis in the green alga, Chara corallina.

Methods

Microarrays of cell wall components and immunocytochemical methods were employed in order to analyse cell wall macromolecules during antheridium development.

Key Results

Cellulose and pectic homogalacturonan epitopes were detected throughout all cell types of the developing antheridium including the unique cell wall protuberances of the shield cells and the cell walls of sperm cell initials. Arabinogalactan protein epitopes were distributed only in the epidermal shield cell layers and anti-xyloglucan antibody binding was only observed in the capitulum region that initially yields the sperm filaments. During the terminal stage of sperm development, no cell wall polymers recognized by the probes employed were found on the scale-covered sperm cells.

Conclusions

Antheridium development in C. corallina is a rapid event that includes the production of cell walls that contain polymers similar to those found in land plants. While pectic and cellulosic epitopes are ubiquitous in the antheridium, the distribution of arabinogalactan protein and xyloglucan epitopes is restricted to specific zones. Spermatogenesis also includes a major switch in the production of extracellular matrix macromolecules from cell walls to scales, the latter being a primitive extracellular matrix characteristic of green plants.  相似文献   

6.

Background

Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed.

Scope

The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every aspect of plant and algal physiology that will present many of the major challenges in future cell wall research.  相似文献   

7.
The composition of the cell wall of the cotton fiber (Gossypium hirsutum L. Acala SJ-1) has been studied from the early stages of elongation (5 days postanthesis) through the period of secondary wall formation, using cell walls derived both from fibers developing on the plant and from fibers obtained from excised, cultured ovules. The cell wall of the elongating cotton fiber was shown to be a dynamic structure. Expressed as a weight per cent of the total cell wall, cellulose, neutral sugars (rhamnose, fucose, arabinose, mannose, galactose, and noncellulosic glucose), uronic acids, and total protein undergo marked changes in content during the elongation period. As a way of analyzing absolute changes in the walls with time, data have also been expressed as grams component per millimeter of fiber length. Expressed in this way for plant-grown fibers, the data show that the thickness of the cell wall is relatively constant until about 12 days postanthesis; after this time it markedly increases until secondary wall cellulose deposition is completed. Between 12 and 16 days postanthesis increases in all components contribute to total wall increase per millimeter fiber length. The deposition of secondary wall cellulose begins at about 16 days postanthesis (at least 5 days prior to the cessation of elongation) and continues until about 32 days postanthesis. At the time of the onset of secondary wall cellulose deposition, a sharp decline in protein and uronic acid content occurs. The content of some of the individual neutral sugars changes during development, the most prominent change being a large increase in noncellulosic glucose which occurs just prior to the onset of secondary wall cellulose deposition. Methylation analyses indicate that this glucose, at least in part, is 3-linked. In contrast to the neutral sugars, no significant changes in cell wall amino acid composition are observed during fiber development.  相似文献   

8.
Summary Abnormally thick cell walls of a clonal maize cell line with the labyrinth wall morphology found in transfer cells were analyzed and compared to the relatively thin and even archetypical walls of a sister cell line. Despite a drastic difference in wall morphology between the transfer and archetypical cell walls, the chemical composition of the walls was essentially the same. There were no major differences in the glycosyl residue composition, in the amount of total lipid, and in the amount of total protein. The amounts of wall material released by chemical extraction of cellulosic, hemicellulosic, and pectic fractions were the same for the two types of walls. There were some differences in the protein profile and in the inorganic ion content between the transfer and archetypical walls. These results indicate that profound changes in wall morphology can be brought about in the absence of gross changes in wall composition and suggest that major changes in time- or place-dependent deposition and/or subtle changes in arrangement of rare wall constituents may be responsible.  相似文献   

9.
Changes in arabinoxylan content and composition during development of wheat seedlings were investigated. The cell walls isolated from the seedlings showed an increasing content of arabinoxylan during development, which could be correlated to increased activity of xylan synthase and arabinoxylan arabinosyltransferase. Arabinoxylan changed from initially having a high degree of arabinose substitution to a much lower degree of substitution. beta-Glucan was present in the walls at the early stages of development, but was actively degraded after day 4. Increased deposition of arabinoxylan did not take place until beta-glucan had been fully degraded. Ferulic and p-coumaric acid esters were present at all points but increased significantly from day 3 to 6, where lignification began. Ferulic acid dimers did not appear in the cell wall until day three and the different ferulic acid dimers varied in the course of accumulation. The ratio of ferulic acid dimers to free ferulic acid was maximal at the time when the wall had been depleted for beta-glucan, which had not yet been fully replaced by arabinoxylan. This pattern suggests a role for ferulic acid dimers in stabilizing the wall during the transition from a flexible to a more rigid structure. To investigate if the same changes could be observed within a single seedling, 7 day old seedlings were divided into four sections and the walls were analyzed. Some of the changes observed during the seedling development could also be observed within a single seedling, when analyzing the segments from the elongation zone at the base to the top of the leaf. However, the expanding region of older seedlings was much richer in hydroxycinnamates than the expanding region of younger seedlings. Diferulic acids are stabilizing the wall in the transition phase from an expanding to a mature wall. This transition can take place in different manners depending on the cell and tissue type.  相似文献   

10.
Mutations of the secondary cell wall   总被引:6,自引:0,他引:6  
It has not been possible to isolate a number of crucial enzymes involved in plant cell wall synthesis. Recent progress in identifying some of these steps has been overcome by the isolation of mutants defective in various aspects of cell wall synthesis and the use of these mutants to identify the corresponding genes. Secondary cell walls offer numerous advantages for genetic analysis of plant cell walls. It is possible to recover very severe mutants since the plants remain viable. In addition, although variation in secondary cell wall composition occurs between different species and between different cell types, the composition of the walls is relatively simple compared to primary cell walls. Despite these advantages, relatively few secondary cell wall mutations have been described to date. The only secondary cell wall mutations characterised to date, in which the basis of the abnormality is known, have defects in either the control of secondary cell wall deposition or secondary cell wall cellulose or lignin biosynthesis. These mutants have, however, provided essential information on secondary cell wall biosynthesis.  相似文献   

11.

Background and Aims

In seed plants, the ability of guard cell walls to move is imparted by pectins. Arabinan rhamnogalacturonan I (RG1) pectins confer flexibility while unesterified homogalacturonan (HG) pectins impart rigidity. Recognized as the first extant plants with stomata, mosses are key to understanding guard cell function and evolution. Moss stomata open and close for only a short period during capsule expansion. This study examines the ultrastructure and pectin composition of guard cell walls during development in Funaria hygrometrica and relates these features to the limited movement of stomata.

Methods

Developing stomata were examined and immunogold-labelled in transmission electron microscopy using monoclonal antibodies to five pectin epitopes: LM19 (unesterified HG), LM20 (esterified HG), LM5 (galactan RG1), LM6 (arabinan RG1) and LM13 (linear arabinan RG1). Labels for pectin type were quantitated and compared across walls and stages on replicated, independent samples.

Key Results

Walls were four times thinner before pore formation than in mature stomata. When stomata opened and closed, guard cell walls were thin and pectinaceous before the striated internal and thickest layer was deposited. Unesterified HG localized strongly in early layers but weakly in the thick internal layer. Labelling was weak for esterified HG, absent for galactan RG1 and strong for arabinan RG1. Linear arabinan RG1 is the only pectin that exclusively labelled guard cell walls. Pectin content decreased but the proportion of HG to arabinans changed only slightly.

Conclusions

This is the first study to demonstrate changes in pectin composition during stomatal development in any plant. Movement of Funaria stomata coincides with capsule expansion before layering of guard cell walls is complete. Changes in wall architecture coupled with a decrease in total pectin may be responsible for the inability of mature stomata to move. Specialization of guard cells in mosses involves the addition of linear arabinans.  相似文献   

12.
The mode of spore differentiation in a strain of Streptomyces melanochromogenes was followed by analysis of ultrathin sections of sporulating aerial hyphae at various stages of sporogenesis. A special accent was laid on the formation of the sporulation septum and its alterations in the course of spore delimitation and separation. Distinct differences in formation and substructure have been observed between the cross walls of vegetative hyphae and the sporulation septa.Cross walls of vegetative hyphae are formed in a way typical for Gram-positive bacteria by a centripetal annular ingrowth of cytoplasmic membrane, on which wall material immediately is deposited. The development of the sporulation septa is characterized by the accumulation of amorphous material in addition to the newly synthesized wall layer inside the invaginating cytoplasmic membrane. This amorphous septal material will later be decomposed presumably by two lytic systems which cause the separation of the spores. The central region of the finished sporulation septum is perforated by microplasmodesmata. Spores are released by a break down of the surface sheath. The complete spores are enveloped by a twolayered cell wall and the spiny surface sheath.  相似文献   

13.
Arabidopsis thaliana is a model organism commonly used to understand and manipulate various cellular processes in plants, and it has been used extensively in the study of secondary cell wall formation. Secondary cell wall deposition occurs after the primary cell wall is laid down, a process carried out exclusively by specialized cells such as those forming vessel and fiber tissues. Most secondary cell walls are composed of cellulose (40–50%), hemicellulose (25–30%), and lignin (20–30%). Several mutations affecting secondary cell wall biosynthesis have been isolated, and the corresponding mutants may or may not exhibit obvious biochemical composition changes or visual phenotypes since these mutations could be masked by compensatory responses. Staining procedures have historically been used to show differences on a cellular basis. These methods are exclusively visual means of analysis; nevertheless their role in rapid and critical analysis is of great importance. Congo red and calcofluor white are stains used to detect polysaccharides, whereas Mäule and phloroglucinol are commonly used to determine differences in lignin, and toluidine blue O is used to differentially stain polysaccharides and lignin. The seemingly simple techniques of sectioning, staining, and imaging can be a challenge for beginners. Starting with sample preparation using the A. thaliana model, this study details the protocols of a variety of staining methodologies that can be easily implemented for observation of cell and tissue organization in secondary cell walls of plants.  相似文献   

14.
Effects of environmental factors on wood formation in Scots pine stems   总被引:10,自引:0,他引:10  
Summary To find the optimal conditions for growth and development of tracheid walls in Scots pine stems the effects of temperature and precipitation on xylem cell production by the cambium, radial cell expansion and secondary wall thickening have been studied. The observations were carried out on 10 specially chosen 50 to 60-year-old trees, growing in central Siberia, over 2 seasons. The data on the number of cells in differentiation zones and mature xylem along radial rows of tracheids, radial and tangential sizes of tracheids and their lumens were used for calculating cambial activity, the rates and durations of cell development in the zones, and both the thickness and cross sectional areas of tracheid walls. The mean day, mean maximal diurnal and mean minimal nocturnal temperatures have been shown by correlation and regression analyses to affect differentially separate stages of cytogenesis. The temperature influenced the initial division the side of xylem and radial cell expansion mainly in May–June, while the influence of precipitation increased in July–August. Throughout all seasons it was the temperature that had the main influence on the biomass accumulation in cell walls. Optimal values of temperature and precipitation for cell production by cambium, radial cell expansion and secondary wall thickening have been calculated. The data are discussed in connection with productivity and quality of wood.  相似文献   

15.
Regulation of cell wall biosynthesis   总被引:5,自引:0,他引:5  
  相似文献   

16.
The methylesterification status of cell wall pectins, mediated through the interplay of pectin methylesterases (PMEs) and pectin methylesterase inhibitors (PMEIs), influences the biophysical properties of plant cell walls. We found that the overexpression of a PMEI gene in Arabidopsis thaliana plants caused the stems to develop twists and loops, most strongly around points on the stem where leaves or inflorescences failed to separate from the main stem. Altered elasticity of the stem, underdevelopment of the leaf cuticle, and changes in the sugar composition of the cell walls of stems were evident in the PMEI overexpression lines. We discuss the mechanisms that potentially underlie the aberrant growth phenotypes.  相似文献   

17.
In adaptation to their function the walls of plant cell display tissue-specific variations of composition according to their developmental stage, cell type and stress of various origin. It is therefore important to obtain a precise analytical data describing the cell wall composition with respect to these different factors. In the present work, laser capture microdissection (LCM) was used for isolating different tissues from the stem of Urtica dioica L. at a semi-preparative scale. The technique was associated for the first time to a one-pot sequential cell wall preparation and hydrolysis for the carbohydrate analysis of each cell type. The results demonstrate that the combination of LCM and micro-analytical methods can provide individual cell type composition and should improve our knowledge of the biochemical diversity of cell walls in plants. This approach will be of potential interest for the understanding of the effects of stress or genetic engineering on the composition of the cell walls.  相似文献   

18.
Plant cell walls serve several functions: they impart rigidity to the plant, provide a physical and chemical barrier between the cell and its environment, and regulate the size and shape of each cell. Chemical studies have provided information on the biochemical composition of the plant cell walls as well as detailed knowledge of individual cell wall molecules. In contrast, very little is known about the distribution of specific cell wall components around individual cells and throughout tissues. To address this problem, we have produced polyclonal antibodies against two cell wall matrix components; rhamnogalacturonan I (RG-I), a pectic polysaccharide, and xyloglucan (XG), a hemicellulose. By using the antibiodies as specific markers we have been able to localize these polymers on thin sections of suspension-cultured sycamore cells (Acer pseudoplatanus). Our results reveal that each molecule has a unique distribution. XG is localized throughout the entire wall and middle lamella. RG-I is restricted to the middle lamella and is especially evident in the junctions between cells. These observations indicate that plant cell walls may have more distinct chemical (and functional?) domains than previously envisaged.  相似文献   

19.
Although the Dasycladalean alga Acetabularia acetabulum has long been known to contain mannan-rich walls, it is not known to what extent wall composition varies as a function of the elaborate cellular differentiation of this cell, nor has it been determined what other polysaccharides accompany the mannans. Cell walls were prepared from rhizoids, stalks, hairs, hair scars, apical septa, gametophores and gametangia, subjected to nuclear magnetic resonance and Fourier transform infrared spectroscopy, and analyzed for monosaccharide composition and linkage, although material limitations prevented some cell regions from being analyzed by some of the methods. In diplophase, walls contain a para-crystalline mannan, with other polysaccharides accounting for 10-20% of the wall mass; in haplophase, gametangia have a cellulosic wall, with mannans and other polymers representing about a quarter of the mass. In the walls of the diplophase, the mannan appears less crystalline than typical of cellulose. The walls of both diploid and haploid phases contain little if any xyloglucan or pectic polysaccharides, but appear to contain small amounts of a homorhamnan, galactomannans and glucogalactomannans, and branched xylans. These ancillary polysaccharides are approximately as abundant in the cellulose-rich gametangia as in the mannan-rich diplophase. In the diplophase, different regions of the cell differ modestly but reproducibly in the composition of the cell wall. These results suggest unique cell wall architecture for the mannan-rich cell walls of the Dasycladales.  相似文献   

20.

Background and Aims

Extraxylary helical cell wall thickenings in vascular plants are not well documented, except for those in orchid velamen tissues which have been studied extensively. Reports on their occurrence in ferns exist, but detailed information is missing. The aim of this study is to focus on the broad patterns of structure and composition and to study the taxonomic occurrence of helical cell wall thickenings in the fern family Aspleniaceae.

Methods

Structural and compositional aspects of roots have been examined by means of light, electron, epifluorescence and laser scanning confocal microscopy. To assess the taxonomical distribution of helical cell wall thickenings a molecular phylogenetic analysis based on rbcL sequences of 64 taxa was performed.

Key Results

The helical cell wall thickenings of all examined species showed considerable uniformity of design. The pattern consists of helical, regularly bifurcating and anastomosing strands. Compositionally, the cell wall thickenings were found to be rich in homogalacturonan, cellulose, mannan and xyloglucan. Thioacidolysis confirmed our negative phloroglucinol staining tests, demonstrating the absence of lignins in the root cortex. All taxa with helical cell wall thickenings formed a monophyletic group supported by a 100 % bootstrap value and composed of mainly epiphytic species.

Conclusions

This is the first report of non-lignified pectin-rich secondary cell walls in ferns. Based on our molecular analysis, we reject the hypothesis of parallel evolution of helical cell wall thickenings in Aspleniaceae. Helical cell wall thickenings can mechanically stabilize the cortex tissue, allowing maximal uptake of water and nutrients during rainfall events. In addition, it can also act as a boundary layer increasing the diffusive pathway towards the atmosphere, preventing desiccation of the stele of epiphytic growing species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号