首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An anaerobic consortium degrading pentachlorophenol (PCP) by methanogenic fermentation was enriched from PCP-contaminated soils. In a semi-continuous reactor, PCP biodegradation was unstable and necessitated periodic additions of unacclimated anaerobic sludge waste to restore the activity. In continuous-flow reactors, PCP degradation activity was more stable when a mixture of glucose and sodium formate was used as secondary carbon source instead of glucose. The analysis of the chlorophenol intermediates suggested that the main pathway of PCP dechlorination was PCP 2,3,5,6-tetrachlorophenol 2,3,5-trichlorophenol 3,5-dichlorophenol 3-chlorophenol phenol. In a laboratory-scale continuous-upflow fixed-film column reactor, a PCP removal of more than 99% was achieved at a PCP loading rate of 60 mol (1 reactor volume)–1 day–1 for a hydraulic retention time of 0.7 day. Analysis of culture samples taken at different levels in the reactor have shown that, at this PCP loading rate, only the lower part of the reactor was active. 3-chlorophenol and 3,5- and 3,4-dichlorophenol were detected at the different levels of the reactor. A study of the microorganisms in the biofilm was carried out by scanning electron microscopy and suggested that the microorganisms involved in the consortium were present as a well-structured arrangement. Methanosaeta-like microorganisms were observed mainly at the base of the biofilm whereas, at the surface, a larger diversity of morphotypes was observed in which coccoid or small rod organisms were dominant. This work shows the importance of the design and the control of the operation parameters on the efficiency of the fixed-film reactor.  相似文献   

2.
Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l(-1)). Batch experiments with diluted SSL and pretreated SSL indicated a potential of 12-22 l methane per litre SSL, which corresponds to 0.13-0.22 l methane (g VS)(-1) and COD removal of up to 37%. COD removal in a mesophilic upflow anaerobic sludge blanket, UASB. reactor ranged from 10% to 31% at an organic loading rate, OLR, of 10-51 g (1 d)(-1) and hydraulic retention time from 3.7 to 1.5 days. The biogas productivity was 3 1 (l(reactor d)(-1), with a yield of 0.05 l gas (g VS)(-1). These results suggest that anaerobic digestion in UASB reactors may provide a new alternative for the treatment of SSL to other treatment strategies such as incineration. Although the total COD reduction achieved is limited, bioenergy is produced and readily biodegradable matter is removed causing less load on post-treatment installations.  相似文献   

3.
Anaerobic biodegradation of pentachlorophenol (PCP), in mixtures containing cadmium (Cd), by sulfidogenic (SRB) and methanogenic (MET) enrichment cultures, was studied. Removal of 91–93% of PCP occurred in both SRB- and MET-enriched cultures, in the absence of Cd, within 82 days. The presence of soluble Cd initially decreased the rate of PCP removal by the enrichment cultures, but PCP removal rates improved as the Cd precipitated. GC-MS, 14C-PCP, and 13C-PCP studies confirmed mineralization of PCP by both enrichment cultures, as well as the incorporation of PCP carbon into specific phospholipid fatty acids (PLFAs) of the cell membranes of PCP-degrading anaerobes. This is the first report on anaerobic biodegradation of PCP by SRB- and MET-enriched cultures in the presence, with simultaneous precipitation, of the toxic heavy metal Cd, and of the incorporation of PCP carbons into specific PLFAs of the anaerobic bacterial cells. Journal of Industrial Microbiology & Biotechnology (2001) 27, 11–17. Received 22 May 2000/ Accepted in revised form 17 March 2001  相似文献   

4.
The effects of three aromatic compounds, p-cresol, 2,4-dichlorophenol (DCP), and 2,4,6-trichlorophenol (TCP), on cell growth and pentachlorophenol (PCP) degradation bya Flavobacterium species were investigated. While p-cresol was not degraded by this bacterium, DCP and TCP were simultaneously degraded with PCP. Both DCP and TCP lowered cell growth and PCP degradation rate. Cell growth was modeled by cell death, because p-cresol, DCP, and TCP were toxic to the organism. A new model was used to predict cell death rate in a mixture of two toxic compounds from the cell death kinetics for each individual compound. PCP degradation rates were modeled by conventional inhibition models, but only over a small concentration range for the secondary toxic compound. However, a new empirical model described PCP degradation over a wider concentration range of the secondary toxic compound. (c) 1995 John Wiley & Sons Inc.  相似文献   

5.
White rot fungi are good lignin degraders and have the potential to be used in industry. In the present work, Phellinus sp., Daedalea sp., Trametes versicolor and Pycnoporus coccineus were selected due to their relatively high ligninolytic enzyme activity, and grown on Acacia mangium wood chips under solid state fermentation. Results obtained showed that manganese peroxidase produced is far more compared to lignin peroxidase, suggesting that MnP might be the predominating enzymes causing lignin degradation in Acacia mangium wood chips. Cellulase enzyme assays showed that no significant cellulase activity was detected in the enzyme preparation of T. versicolor and Phellinus sp. This low cellulolytic activity further suggests that these two white rot strains are of more interest in lignin degradation. The results on lignin losses showed 20–30% of lignin breakdown at 60 days of biodegradation. The highest lignin loss was found in Acacia mangium biotreated with T. versicolor after 60 days and recorded 26.9%, corresponding to the percentage of their wood weight loss recorded followed by P. coccineus. In general, lignin degradation was only significant from 20 days onwards. The overall percentage of lignin weight loss was within the range of 1.02–26.90% over the biodegradation periods. Microscopic observations conducted using scanning electron microscope showed that T. versicolor, P. coccineus, Daedalea sp. and Phellinus sp. had caused lignin degradation in Acacia mangium wood chips.  相似文献   

6.
Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.  相似文献   

7.
During the anaerobic biodegradation of effluent from a dimethyl terephthalate (DMT) manufacturing plant, reduction in chemical oxygen demand (COD) degradation and biogas formation was observed after the waste-water concentration exceeded 25% of added feed COD. This condition reverted back to normal after 25–30 days when the DMT waste-water concentration in the feed was brought down to a non-toxic level. However, the above effects were observed only after the concentration of DMT waste-water reached more than 75% of added feed COD when biomass support particles (BSP) were augmented to the system. In the BSP system, a biomass concentration of up to 7000 mg/l was retained and the sludge retention time increased to > 200 days compared to 2200 mg/l and 8–10 days, respectively, in the system without BSP (control). Formaldehyde in the waste-water was found to be responsible for the observed toxicity. The BSP system was found to resist formaldehyde toxicity of up to 375 mg/l as against 125 mg/l in the control system. Moreover, the BSP system recovered from the toxicity much faster (15 days) than the control (25–30 days). The advantages of the BSP system in anaerobic treatment of DMT waste-water are discussed.Correspondence to: C. Ramakrishna  相似文献   

8.
Pentachlorophenol (PCP) is an extremely dangerous worldwide pollutant due to its high toxicity towards all organisms. It has been introduced into the environment mainly as a wood preservative, biocides and from the bleaching of paper or tissues. The use of PCP indiscriminate has led to the contamination of water and soil systems. Many countries have specific regulations, guidelines or procedures for the management and disposal of PCP but the most common methods are: adsorption with activate carbons, incineration in an approved and secure area, closed in sealed containers and biological degradation. PCP depletion can occur either by abiotic processes such as: absorption, volatilization and photo degradation or by biotic degradation. One of the main studies focused on remediation using plants, animals and microbial communities. Aerobic and anaerobic microorganisms can degrade PCP under a variety of conditions and at different PCP concentrations. Bacterial strains such as Pseudomonas sp., Sphingomonas sp., Arthrobacter sp., Mycobacterium sp., Flavobacterium sp., Serratia sp. and Bacillus sp., and fungal cultures as Trametes sp., Phanerochaete sp., Anthracophyllum sp., Armillaria sp., Bjerkandera sp., Ganoderma sp., Lentinula sp., Penicillium sp, Trichoderma sp., Rhizopus sp. and Plerotus sp. showed various rates and extent of PCP degradation. This review focuses on PCP degradation by various aerobic and anaerobic microorganisms with emphases on the biological and chemical aspects. Furthermore we will analyze intermediate products, processes and enzymes involved in the degradation of PCP in different environmental conditions and at various PCP concentrations.  相似文献   

9.
We investigated the anaerobic biodegradation of mono- and dichlorophenol isomers by fresh (unacclimated) sludge and by sludge acclimated to either 2-chlorophenol, 3-chlorophenol, or 4-chlorophenol. Biodegradation was evaluated by monitoring substrate disappearance and, in selected cases, production of 14CH4 from labeled substrates. In unacclimated sludge, each of the monochlorophenol isomers was degraded. The relative rates of disappearance were in this order: ortho greater than meta greater than para. For the dichlorophenols in unacclimated sludge, reductive dechlorination of the Cl group ortho to phenolic OH was observed, and the monochlorophenol compounds released were subsequently degraded. 3,4-Dichlorophenol and 3,5-dichlorophenol were persistent. Sludge acclimated to 2-chlorophenol cross-acclimated to 4-chlorophenol but did not utilize 3-chlorophenol. This sludge also degraded 2,4-dichlorophenol. Sludge acclimated to 3-chlorophenol cross-acclimated to 4-chlorophenol but not to 2-chlorophenol. This sludge degraded 3,4- and 3,5-dichlorophenol but not 2,3- or 2,5-dichlorophenol. The specific cross-acclimation patterns observed for monochlorophenol degradation demonstrated the existence of two unique microbial activities that were in turn different from fresh sludge. The sludge acclimated to 4-chlorophenol could degrade all three monochlorophenol isomers and 2,4- and 3,4-dichlorophenol. The active microbial population in this sludge appeared to be a mixture of populations present in the 2-chlorphenol- and 3-chlorophenol-acclimated sludges, both of which could utilize 4-chlorophenol. Experiments with 14C-radiolabeled p-chlorophenol, o-chlorophenol, and 2,4-dichlorophenol demonstrated that these compounds were converted to 14CH4 and 14CO2.  相似文献   

10.
Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments   总被引:1,自引:0,他引:1  
We examined the extent of biodegradation of benzene, toluene, ethylbenzene and the three isomers of xylene (BTEX) as a mixture and from gasoline in four different sediments: the New York/New Jersey Harbor estuary (polluted); Tuckerton, N.J. (pristine); Onondaga Lake, N.Y. (polluted) and Blue Mtn. Lake, N.Y. (pristine). Enrichment cultures were established with each sediment using denitrifying, sulfidogenic, methanogenic and iron reducing media, as well as site water. BTEX loss, as measured by GC-FID, was extensive in the sediments which had a long history of pollution, with all compounds being utilized within 21–91 days in the most active cultures, and was very slight or non-existent in the pristine sediments. Also, the pattern of loss was different under the various reducing conditions within each sediment and between sediments. For example benzene loss was only observed in sulfidogenic cultures from the NY/NJ Harbor sediments while toluene was degraded under all redox conditions. The loss of BTEX was correlated to the reduction of the various electron acceptors. In cultures amended with gasoline the degradation was much slower and incomplete. These results show that the fate of the different BTEX components in anoxic sediments is dependent on the prevailing redox conditions as well as on the characteristics and pollution history of the sediment.  相似文献   

11.
Anaerobic biodegradation of phenolic compounds in digested sludge.   总被引:8,自引:27,他引:8       下载免费PDF全文
We examined the anaerobic degradation of phenol and the ortho, meta, and para isomers of chlorophenol, methoxyphenol, methylphenol (cresol), and nitrophenol in anaerobic sewage sludge diluted to 10% in a mineral salts medium. Of the 12 monosubstituted phenols studied, only p-chlorophenol and o-cresol were not significantly degraded during an 8-week incubation period. The phenol compounds degraded and the time required for complete substrate disappearance (in weeks) were: phenol (2), o-chlorophenol (3), m-chlorophenol (7), o-methoxyphenol (2), m- and p-methoxyphenol (1), m-cresol (7), p-cresol (3), and o-, m-, and p-nitrophenol (1). Complete mineralization of phenol, o-chlorophenol, m-cresol, p-cresol, o-nitrophenol, p-nitrophenol, and o-, m-, and p-methoxyphenol was observed. In general, the presence of Cl and NO2 groups on phenols inhibited methane production. Elimination or transformation of these substituents was accompanied by increased methane production, o-Chlorophenol was metabolized to phenol, which indicated that dechlorination was the initial degradation step. The methoxyphenols were transformed to the corresponding dihydroxybenzene compounds, which were subsequently mineralized.  相似文献   

12.
Shake flask studies examined the rate and extent of biodegradation of pentachlorophenol (PCP) and 42 components of coal-tar creosote present in contaminated groundwater recovered from the American Creosote Works Superfund site, Pensacola, Fla. The ability of indigenous soil microorganisms to remove these contaminants from aqueous solutions was determined by gas chromatographic analysis of organic extracts of biotreated groundwater. Changes in potential environmental and human health hazards associated with the biodegradation of this material were determined at intervals by Microtox assays and fish toxicity and teratogenicity tests. After 14 days of incubation at 30 degrees C, indigenous microorganisms effectively removed 100, 99, 94, 88, and 87% of measured phenolic and lower-molecular-weight polycyclic aromatic hydrocarbons (PAHs) and S-heterocyclic, N-heterocyclic, and O-heterocyclic constituents of creosote, respectively. However, only 53% of the higher-molecular-weight PAHs were degraded; PCP was not removed. Despite the removal of a majority of the organic contaminants through biotreatment, only a slight decrease in the toxicity and teratogenicity of biotreated groundwater was observed. Data suggest that toxicity and teratogenicity are associated with compounds difficult to treat biologically and that one may not necessarily rely on indigenous microorganisms to effectively remove these compounds in a reasonable time span; to this end, alternative or supplemental approaches may be necessary. Similar measures of the toxicity and teratogenicity of treated material may offer a simple, yet important, guide to bioremediation effectiveness.  相似文献   

13.
Tetrachlorohydroquinone dehalogenase catalyzes the replacement of chlorine atoms on tetrachlorohydroquinone and trichlorohydroquinone with hydrogen atoms during the biodegradation of pentachlorophenol by Sphingomonas chlorophenolica. The sequence of the active site region of tetrachlorohydroquinone dehalogenase is very similar to those of the corresponding regions of maleylacetoacetate isomerases, enzymes that catalyze the glutathione-dependent isomerization of a cis double bond in maleylacetoacetate to the trans configuration during the catabolism of phenylalanine and tyrosine. Furthermore, tetrachlorohydroquinone dehalogenase catalyzes the isomerization of maleylacetone (an analogue of maleylacetoacetate) at a rate nearly comparable to that of a bona fide bacterial maleylacetoacetate isomerase. Since maleylacetoacetate isomerase is involved in a common and presumably ancient pathway for catabolism of tyrosine, while tetrachlorohydroquinone dehalogenase catalyzes a more specialized reaction, it is likely that tetrachlorohydroquinone dehalogenase arose from a maleylacetoacetate isomerase. The substrates and overall transformations involved in the dehalogenation and isomerization reactions are strikingly different. This enzyme provides a remarkable example of Nature's ability to recruit an enzyme with a useful structural scaffold and elaborate upon its basic catalytic capabilities to generate a catalyst for a newly needed reaction.  相似文献   

14.
Anaerobic digestions have been proved more successful than aerobic systems for the degradation and destruction of dye-containing wastewaters. The performance of a hybrid up flow anaerobic sludge-filter bed (UASFB) reactor was tested with a synthetic wastewater containing Crystal violet (CV) as a carbon source and sodium acetate as a co-substrate. Continuous feeding of the reactor started with an initial OLR of 0.9 g COD/l-d and then it was increased step wise to 4 g COD l−1 d−1, while maintaining constant HRT (24 h). The optimum pH value and temperature for decolorization of crystal violet by this mixed culture species under anaerobic conditions were found to be 8–9 and 30–35°C respectively. N,N-dimethylaminophenol and N,N-bis (dimethylamino) benzophenone (Michler’s Ketone) were detected as the degradative metabolites of Crystal Violet. Subsequently, N,N-dimethylaminophenol was further degraded to aniline in the reactor whereas Michler’s ketone was not degraded under anaerobic conditions. The UASFB bioreactor was able to remove the CV completely up to a loading rate of 100 mg CV l−1d−1.  相似文献   

15.
The effects of nutrient addition on the in situ biodegradation of polycyclic aromatic hydrocarbons in creosote contaminated soil were studied in soil columns taken from various soil strata at a wood preserving plant in Norway. Three samples were used: one from the topsoil (0–0.5 m), one from an organic rich layer (2–2.5 m) and one from the sandy aquifer (4.5–5 m). The addition of inorganic nitrogen and phosphorous stimulated the degradation of polycyclic aromatic hydrocarbons (PAHs) in the top soil and the aquifer sand. These two soils, which differed strongly in contamination levels, responded similarly to nutrient addition with the corresponding degradation of 4-ring PAHs. The ratio between available nitrogen (N) and phosphorous (P) might explain the degree of degradation observed for the 4-ring PAHs. However, the degree of degradation of 3-ring PAHs did not significantly increase after nutrient addition. An increase in the respiration rate, after nutrient addition, could only be observed in the topsoil. In the aquifer sand, 4-ring PAH degradation was not accompanied by an increase in the respiration rate or the number of heterotrophic micro-organisms. PAH degradation in the organic layer did not respond to nutrient addition. This was probably due to the low availability of the contaminants for micro-organisms, as a result of sorption to the soil organic matter. Our data illustrate the need for a better understanding of the role of nutrients in the degradation of high molecular weight hydrocarbons for the successful application of bioremediation at PAH contaminated sites.  相似文献   

16.
Shake flask studies examined the rate and extent of biodegradation of pentachlorophenol (PCP) and 42 components of coal-tar creosote present in contaminated groundwater recovered from the American Creosote Works Superfund site, Pensacola, Fla. The ability of indigenous soil microorganisms to remove these contaminants from aqueous solutions was determined by gas chromatographic analysis of organic extracts of biotreated groundwater. Changes in potential environmental and human health hazards associated with the biodegradation of this material were determined at intervals by Microtox assays and fish toxicity and teratogenicity tests. After 14 days of incubation at 30 degrees C, indigenous microorganisms effectively removed 100, 99, 94, 88, and 87% of measured phenolic and lower-molecular-weight polycyclic aromatic hydrocarbons (PAHs) and S-heterocyclic, N-heterocyclic, and O-heterocyclic constituents of creosote, respectively. However, only 53% of the higher-molecular-weight PAHs were degraded; PCP was not removed. Despite the removal of a majority of the organic contaminants through biotreatment, only a slight decrease in the toxicity and teratogenicity of biotreated groundwater was observed. Data suggest that toxicity and teratogenicity are associated with compounds difficult to treat biologically and that one may not necessarily rely on indigenous microorganisms to effectively remove these compounds in a reasonable time span; to this end, alternative or supplemental approaches may be necessary. Similar measures of the toxicity and teratogenicity of treated material may offer a simple, yet important, guide to bioremediation effectiveness.  相似文献   

17.
Anaerobic granules developed for the treatment of pentachlorophenol (PCP) completely minearilized14C-labeled PCP to14CH4 and14CO2. Release of chloride ions from PCP was performed by live cells in the granules under anaerobic conditions. No chloride ions were released under aerobic conditions or by autoclaved cells. Addition of sulfate enhanced the initial chloride release rate and accelerated the process of mineralization of14C-labeled PCP. Addition of molybdate (10 mM) inhibited the chloride release rate and severely inhibited PCP mineralization. This suggests involvement of sulfate-reducing bacteria in PCP dechlorination and mineralization. Addition of 2-bromoethane sulfonate slightly decreased the chloride release rate and completely stopped production of14CH4 and14CO2 from [14C]PCP. 2,4,6-trichlorophenol was observed as an intermediate during PCP dechlorination. On the basis of experimental results, dechlorination of 2,4,6-trichlorophanol by the granules was conducted through 2,4-dichlorophenol, 4-chlorophenol or 2-chlorophenol to phenol at pH 7.0–7.2.  相似文献   

18.
Chlorophenol degradation was studied by combined anaerobic–aerobic treatments as a single or multi-substrate system. 2,4-Dichlorophenol (2,4-DCP) was degraded to the extent of 52 and 78% in up-flow anaerobic sludge blanket (UASB) and aerobic suspended growth (ASG) reactors respectively, at organic loading rates of 0.18kg/m3/day and hydraulic retention time of 26.4h in the presence of glucose. The UASB represents the dominating facultative anaerobic microbial population. When the effluent from the anaerobic reactor (UASB) was subjected to aerobic treatment on the ASG reactor, 2,4-DCP and COD removals of 86 and 95% respectively were achieved. Aerobic degradation of chlorophenol by acclimated mixed bacterial isolates was found to be sequential: 2-Chlorophenol (2-CP) and 4-CP were degraded first, followed by 2,4-DCP and 2,4,6-Trichlorophenol (2,4,6-TCP) while the contrary was obtained in anaerobic degradation. In anaerobic degradation by acclimated mixed bacterial cells, 2,4-DCP and 2,4,6-TCP were degraded first followed by mono-chlorophenols. The anaerobic/aerobic bioreactors were most efficient when operated in sequence (series) rather than in parallel.  相似文献   

19.
A pentachlorophenol (PCP)-degrading mixed bacterial population was enriched in a biofilter filled with soft wood bark chips. We found that bark chips were essential for the degradation to proceed at PCP concentrations higher than 10M. PCP-degrading bacteria were found to be extremely sensitive to PCP. Bark chips absorbed PCP reversibly, thus detoxifying the medium and allowing degradation to proceed at higher concentrations of PCP (beyond 200M).  相似文献   

20.
Activated sludge was used to treat the wastewater containing spiramycin I. Three new metabolites were isolated and identified, which produced by oxidation of C6-aldehyde, hydrolysis of C5-mycaminose-mycarose and macrolactone ring-open reaction of spiramycin I in anaerobic digestion. And their antimicrobial activities were inactivated. Our results indicated that anaerobic biodegradation metabolites of spiramycin I could not induce bacterial resistance in environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号