首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Nicotine has been shown to stimulate neurotransmitter release from brain tissue by acting on presynaptic receptors. In this study, the ability of nicotine pretreatment to produce functional desensitization was investigated in rat striatal synaptosomes in which the release of [3H]dopamine was measured with an in vitro superfusion system. Pretreatment of synaptosomes with low concentrations of l -nicotine resulted in a decrease in the ability of a subsequent nicotine challenge to evoke [3H]dopamine release. The IC50 for nicotine-induced desensitization was found to be 12 n M with a maximum inhibition of >90% at 300 n M . Nicotine pretreatment did not affect the release evoked by amphetamine, veratridine, or 15 m M K+. The onset of nicotine-induced desensitization occurred with a t 1/2 of 43 s at 30 n M nicotine. The temperature dependence of onset yielded a Q10 of 1.2.Recovery from desensitization was slower ( t 1/2 = 4.33 min), and both the onset and recovery appeared to follow a single first-order process. Several intermittent schedules of nicotine treatment were found to be effective at inducing and maintaining desensitization. The results of this study show that nonstimulating concentrations of nicotine can produce a complete functional desensitization of subsequent nicotine-induced neurotransmitter release.  相似文献   

2.
3.
Two distinct binding sites with properties corresponding to those expected for nicotinic cholinergic receptors can be identified in brain by the specific binding of nicotine (or acetylcholine) and alpha-bungarotoxin. The effects of modification of these binding sites by treatment with the disulfide-reducing agent dithiothreitol were examined in tissue prepared from DBA mouse brains. Treatment with dithiothreitol reduced the binding measured with either ligand, and reoxidization of the disulfides fully restored binding. The effects of dithiothreitol treatment appeared to be due to a reduction in the maximal binding of nicotine and to a decrease in the binding affinity for alpha-bungarotoxin. Agonist affinity for the alpha-bungarotoxin binding site was reduced by treatment with low concentrations of dithiothreitol. The nicotine binding sites remaining after disulfide treatment displayed rates of ligand association and dissociation similar to those of unmodified tissue, but treatment of previously unmodified tissue with dithiothreitol accelerated the rate of nicotine dissociation. After reduction, both binding sites could be selectively alkylated with bromoacetylcholine. The results suggest that both putative nicotinic receptors in brain respond similarly to disulfide reduction and that their responses resemble those known for the nicotinic receptor of electric tissue.  相似文献   

4.
To clarify the regulation of central histaminergic (HAergic) activity by cholinergic receptors, the effects of drugs that stimulate the cholinergic system on brain histamine (HA) turnover were examined, in vivo, in mice and rats. The HA turnover was estimated from the accumulation of tele-methylhistamine (t-MH) during the 90-min period after administration of pargyline (65 mg/kg, i.p.). In the whole brain of mice, oxotremorine, at doses higher than 0.05 mg/kg, s.c., significantly inhibited the HA turnover, this effect being completely antagonized by atropine but not by methylatropine. A large dose of nicotine (10 mg/kg, s.c.) also significantly inhibited the HA turnover. This inhibitory effect was antagonized by mecamylamine but not by atropine or hexamethonium. A cholinesterase inhibitor, physostigmine, at doses higher than 0.1 mg/kg, s.c., significantly inhibited the HA turnover. This effect was antagonized by atropine but not at all by mecamylamine. None of these cholinergic antagonists used affected the steady-state t-MH level or HA turnover by themselves. In the rat brain, physostigmine (0.1 and 0.3 mg/kg, s.c.) also decreased the HA turnover. This inhibitory effect of physostigmine was especially marked in the striatum and cerebral cortex where muscarinic receptors are present in high density. Oxotremorine (0.2 mg/kg, s.c.) and nicotine (1 mg/kg, s.c.) also decreased the HA turnover in the rat brain. However, these effects showed no marked regional differences. These results suggest that the stimulation of central muscarinic receptors potently inhibits the HAergic activity in the brain and that strong stimulation of central nicotinic receptors can also induce a similar effect.  相似文献   

5.
Abstract: The effects of extracellular calcium on functional properties of nicotinic receptors from mouse thalamus were investigated. Previous studies have reported that calcium modulates the function of several neuronal nicotinic receptors. A 86Rb+ ion efflux assay was developed to measure nicotinic receptor function from brain tissue, and data indicate that α4β2 receptors may mediate this response. Using the 86Rb+ efflux assay, calcium effects on receptor activation, desensitization induced by high, activating and low, subactivating concentrations of agonist, and recovery from desensitization were examined. Effects of calcium on the kinetics of ligand binding were also investigated. Calcium modulated receptor activation by increasing the maximal response to nicotine in a concentration-dependent manner, without affecting the EC50 of nicotine. Barium, but not magnesium, mimicked the effects of calcium on receptor activation. The increase in receptor activation could not be explained by changes in the ratio of activatable to desensitized receptors as assessed by the kinetics of ligand binding. Desensitization following activation was unaffected by calcium. Calcium, barium, and magnesium, however, increased the potency of nicotine for desensitization induced by exposure to low, subactivating concentrations of nicotine. Recovery from desensitization was not modulated by calcium. These data suggest that calcium modulates various functional aspects of nicotinic receptors from mouse brain and may do so via different mechanisms.  相似文献   

6.
Bicuculline Up-Regulation of GABAA Receptors in Rat Brain   总被引:2,自引:2,他引:0  
Effects of acute and subacute administration of bicuculline on [3H]muscimol, [3H]flunitrazepam, and t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to various brain regions were studied in Sprague-Dawley rats. Acute administration of bicuculline affected neither the KD nor the Bmax of the three receptor sites. In rats treated subacutely with bicuculline (2 mg/kg, i.p., daily for 10 days), [3H]muscimol binding was increased in the frontal cortex, cerebellum, striatum, and substantia nigra. Scatchard analysis revealed that subacute treatment of rats with bicuculline resulted in a significantly lower KD of high-affinity sites in the striatum and in a significantly lower KD of high- and low-affinity sites in the frontal cortex. In the cerebellum, two binding sites were apparent in controls and acutely treated animals; however, only the high-affinity site was defined in subacutely treated animals, with an increase in the Bmax value. Triton X-100 treatment of frontal cortical membranes eliminated the difference in [3H]muscimol binding between control and subacute bicuculline treatments. On the other hand, [3H]muscimol binding was significantly increased in the cerebellum from bicuculline-treated animals even after Triton X-100 treatment. The apparent Ki of bicuculline for the GABAA receptor was also decreased in the frontal cortex and the striatum following the treatment. However, subacute administration of bicuculline affected neither the KD nor the Bmax of [3H]flunitrazepam and [35S]TBPS binding in the frontal cortex and the cerebellum. These results suggest that GABAA receptors are up-regulated after subacute administration of bicuculline, with no change in benzodiazepine and picrotoxin binding sites.  相似文献   

7.
A number of studies have found that the chronic administration of nicotine causes an increase in the density of nicotinic binding sites in the brain, but it is not known whether these additional binding sites are functionally active receptors. In this study, the effects of 1-week administration of the potent nicotinic agonist, (+)-anatoxin-a (96 nmol/day via osmotic minipumps), was assessed on [3H]nicotine binding and [3H]dopamine uptake and release in rat striatal synaptosomes. Chronic (+)-anatoxin-a treatment resulted in a 32% increase in the Bmax of [3H]nicotine binding in anatoxin-treated animals compared to control. There was a 43% increase in the activity of 3 microM nicotine to release [3H]dopamine from synaptosomes of anatoxin-treated animals, but the release induced by 20 mM K+ depolarization was unaffected. There was no effect of chronic (+)-anatoxin-a treatment on the uptake of [3H]dopamine. A strong positive correlation (r = 0.64) was found between the density of [3H]nicotine binding sites and the nicotine-induced stimulation of [3H]dopamine release in individual animals. These results indicate that (+)-anatoxin-a, like nicotine, produces an up-regulation of nicotine binding sites following chronic administration, and that these additional sites are functional receptors capable of mediating the release of dopamine from striatal synaptosomes.  相似文献   

8.
Characterization and Regulation of Insulin Receptors in Rat Brain   总被引:9,自引:7,他引:2  
An in vitro receptor binding assay, using filtration to separate bound from free [125I]insulin, was developed and used to characterize insulin receptors on membranes isolated from specific areas of rat brain. The kinetic and equilibrium binding properties of central receptors were similar to those of hepatic receptors. The binding profiles in all tissues were complex and were consistent with binding in multiple steps or to multiple sites. Similar binding properties were found among receptors in olfactory tubercle/bulb, cerebral cortex, hippocampus, striatum, hypothalamus, and cerebellum. High affinity [125I]insulin binding sites (KD = 3-11 nM) were distributed evenly between membranes isolated from P1 and P2 fractions of these brain areas, with the exception of the olfactory tubercle in which binding to P2 membranes was four-fold greater (Bmax = 150 fmol/mg protein). One difference between insulin receptors in brain and peripheral target tissues, however, was observed. Following exposure to 0.17 microM insulin for 3 h at 37 degrees C, the number of specific [125I]insulin binding sites on adipocytes decreased by 40%, while the number of binding sites on minces of cerebral cortex/olfactory tubercle remained constant. The results suggest that although the binding characteristics of central and peripheral insulin receptors are similar, these receptors do not appear to be regulated in the same manner.  相似文献   

9.
Abstract: The present results demonstrate stable expression of α-bungarotoxin (α-BGT) binding sites by cells of the GH4C1 rat pituitary clonal line. Wild-type GH4C1 cells do not express α-BGT binding sites, nor do they contain detectable mRNA for nicotinic receptor α2, α3, α4, α5, α7, β2, or β3 subunits. However, GH4C1 cells stably transfected with rat nicotinic receptor α7 cDNA (α7/GH4C1 cells) express the transgene abundantly as mRNA, and northern analysis showed that the message is of the predicted size. The α7/GH4C1 cells also express saturable, high-affinity binding sites for 125I-labeled α-BGT, with a KD of 0.4 nM and Bmax of 3.2 fmol/106 intact cells. 125I-α-BGT binding affinities and pharmacological profiles are not significantly different for sites in membranes prepared either from rat brain or α7/GH4C1 cells. Furthermore, KD and Ki values for 125I-α-BGT binding sites on intact α7/GH4C1 cells are essentially similar to those for hippocampal neurons in culture. Sucrose density gradient analysis showed that the size of the α-BGT binding sites expressed in α7/GH4C1 cells was similar to that of the native brain α-BGT receptor. Chronic exposure of α7/GH4C1 cells in culture to nicotine or an elevated extracellular potassium concentration induces changes in the number of α-BGT binding sites comparable to those observed in cultured neurons. Collectively, the present results show that the properties of α-BGT binding sites in transfected α7/GH4C1 cells resemble those for brain nicotinic α-BGT receptors. If the heterologously expressed α-BGT binding sites in the present study are composed solely of α7 subunits, the results could suggest that the rat brain α-BGT receptor has a similar homooligomeric structure. Alternatively, if α-BGT binding sites exist as heterooligomers of α7 plus some other previously identified or novel subunit(s), the data would indicate that the α7 subunits play a major role in determining properties of the α-BGT receptor.  相似文献   

10.
Patients with schizophrenia present with deficits in specific areas of cognition. These are quantifiable by neuropsychological testing and can be clinically observable as negative signs. Concomitantly, they self-administer nicotine in the form of cigarette smoking. Nicotine dependence is more prevalent in this patient population when compared to other psychiatric conditions or to non-mentally ill people. The target for nicotine is the neuronal nicotinic acetylcholine receptor (nAChR). There is ample evidence that these receptors are involved in normal cognitive operations within the brain. This review describes neuronal nAChR structure and function, focusing on both cholinergic agonist-induced nAChR desensitization and nAChR up-regulation. The several mechanisms proposed for the nAChR up-regulation are examined in detail. Desensitization and up-regulation of nAChRs may be relevant to the physiopathology of schizophrenia. The participation of several subtypes of neuronal nAChRs in the cognitive processing of non-mentally ill persons and schizophrenic patients is reviewed. The role of smoking is then examined as a possible cognitive remediator in this psychiatric condition. Finally, pharmacological strategies focused on neuronal nAChRs are discussed as possible therapeutic avenues that may ameliorate the cognitive deficits of schizophrenia.  相似文献   

11.
Abstract: Progesterone and its A-ring reduced metabolites are allosteric activators of GABAA receptors. The studies reported here examined the effects of these steroids on brain nicotinic receptors using an 86Rb+ efflux assay that likely measures the function of α4β2-type nicotinic receptors and [3H]dopamine release, which may be modulated by an α3-containing nicotinic receptor. Both of the A-ring reduced metabolites of progesterone were noncompetitive inhibitors of both assays, whereas progesterone inhibited only the 86Rb+ efflux assay. The 86Rb+ efflux assay was slightly more sensitive than was the dopamine release assay to steroid inhibition. Inhibition developed slowly for both assays ( t 1/2 = 0.4 min) and was reversed even more slowly ( t 1/2 = 10–15 min). Steroid addition did not alter either the rate of association of [3H]nicotine binding to brain membranes, nor was equilibrium binding changed. These findings argue that neurosteroids are allosteric inhibitors of brain nicotinic receptors.  相似文献   

12.
Specific and reproducible changes involving the cholinergic and dopaminergic systems have been described in both the aging rodent and the human nervous system. Nevertheless, relatively little information is available on changes in nicotinic cholinergic receptors occurring in normal aging, and there have been few attempts to correlate alterations in receptor densities with changes in nicotinic actions. We have utilized the nicotine-mediated stimulation of endogenous dopamine efflux in a striatal slice preparation as a functional index of responsiveness to nicotine in aging. Following incubation with nicotine, this efflux was significantly lower in 25-month-old (aged) as opposed to 4-month-old (young) rats. In contrast, the release of striatal dopamine following a high-potassium stimulus was similar at both ages. Binding studies in young and aged animals did not reveal any significant change with age in the total number of striatal nicotinic receptors recognized by either [3H]nicotine or the neuronal nicotinic antagonist 125l-neuronal bungarotoxin. However, there was a nearly 80% decline in the subpopulation of striatal nicotinic receptors jointly recognized by both nicotine and neuronal bungarotoxin, but not by α-bungarotoxin. Quantitative autoradiography demonstrated declines with age in this receptor subtype in several brain regions examined. Decrements in this specific subpopulation of nicotinic receptors or in the nerve cells expressing these receptors may contribute to the functional declines that take place in the aging motor and visual systems.  相似文献   

13.
Studies were conducted to ascertain the temporal and dose-dependent effects of nicotinic ligand exposure on functional activity of different nicotinic acetylcholine receptor (nAChR) subtypes, as expressed by cells of the PC12 rat pheochromocytoma (ganglia-type nAChR) or the TE671/RD human (muscle-type nAChR) clonal line. Chronic (3-72-h) agonist (nicotine or carbamylcholine) treatment of cells led to a complete (TE671) or nearly complete (PC12) loss of functional nAChR responses, which is referred to as "functional inactivation." Some inactivation of nAChR function was also observed for the nicotinic ligands d-tubocurarine (d-TC), mecamylamine, and decamethonium. Half-maximal inactivation of nAChR function was observed within 3 min for TE671 cells and within 10 min for PC12 cells treated with inactivating ligands. Functional inactivation occurred with dose dependencies that could not always be reconciled with those obtained for acute agonist activation of nAChR function or for acute inhibition of those responses by d-TC, decamethonium, or mecamylamine. Treatment of TE671 or PC12 cells with the nicotinic antagonist pancuronium or alcuronium alone had no effect on levels of expression of functional nAChRs. However, evidence was obtained that either of these antagonists protected TE671 cell muscle-type nAChRs or PC12 cell ganglia-type nAChRs from functional inactivation on long-term treatment with agonists. Recovery of TE671 cell nAChR function following treatment with carbamylcholine, nicotine, or d-TC occurred with half-times of 1-3 days whether cells were maintained in situ or harvested and replated after removal of ligand. By contrast, 50% recovery of functional nAChRs on PC12 cells occurred within 2-6 h after drug removal. In either case the time course for recovery from nAChR functional inactivation is much slower than recovery from nAChR "functional desensitization," which is a reversible process that occurs on shorter-term (0-5-min) agonist exposure of cells. These results indicate that ganglia-type and muscle-type nAChRs are similar in their sensitivities to functional inactivation by nicotinic ligands but differ in their rates of recovery from and onset of those effects. The ability of drugs such as the agonists d-TC, decamethonium, and mecamylamine to induce functional inactivation may relate to their activities as partial/full agonists, channel blockers, and/or allosteric regulators. Effects of drugs such as pancuronium and alcuronium are likely to reflect simple competitive inhibition of primary ligand binding at functional activation sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Brain nicotinic receptors display pronounced permeability for Ca2+ and localize to presynaptic nerve terminals, in addition to postsynaptic sites. Chronic exposure to nicotine has been shown to alter brain nicotinic receptor expression, but the functional consequences for presynaptic Ca2+ have not been directly examined. Here, we used confocal imaging to assess Ca2+ responses in individual nerve terminals from cortices of mice treated up to 14 days with nicotine as compared to vehicle-treated controls. Chronic nicotine treatment led to substantially enhanced amplitudes of presynaptic Ca2+ responses to acute application of nicotine at concentrations of 50 nM (2-fold) and 500 nM (1.7-fold), but not 50 μM. In addition, increased expression of high-affinity nicotinic receptors on isolated terminals was observed following chronic treatment, as determined immunocytochemically and pharmacologically. These findings suggest that chronic exposure to nicotine may lead to enhanced sensitivity to nicotine at select presynaptic sites in brain via up-regulation of high-affinity nicotinic receptors.  相似文献   

15.
Regulation of Brain Nicotinic Receptors by Chronic Agonist Infusion   总被引:8,自引:2,他引:6  
Several studies have demonstrated that chronic treatment with nicotine elicits an increase in the number of brain nicotinic receptors. To determine whether this effect is elicited by other nicotinic agonists found in tobacco, the effects of chronic infusion with nicotine on brain nicotinic receptors were compared with those after anabasine and lobeline. C57BL/6 mice were infused with saline or equimolar doses (18.5 mumol/kg/h) of nicotine, anabasine, or lobeline for 8 days. Nicotinic receptors, quantified by the binding of [3H]nicotine and [125I]iodo-alpha-bungarotoxin (alpha-[125I]BTX), and muscarinic receptors, quantified by the binding of [3H]quinuclidinyl benzilate ([3H]QNB), were then assayed in eight brain regions. An increase in [3H]nicotine binding was observed in all regions except cerebellum following chronic infusion with nicotine and anabasine, whereas lobeline did not alter the number or affinity of these binding sites. This increase was due to changes in Bmax and not in the affinity of the receptor for the ligand (KD). A slight increase in alpha-[125I]BTX binding was observed in cortex following chronic anabasine infusion. [3H]QNB binding sites were largely unaltered following chronic infusion with any of the nicotinic analogs. The levels of the agonists in the brain were also determined after chronic treatment, and the amounts of lobeline and anabasine were found to be higher than that of nicotine. Thus, the failure of lobeline to elicit changes in nicotine binding is not due to reduced brain concentrations.  相似文献   

16.
(-)-[3H]Nicotine was found to bind specifically to membranes of human brains obtained at autopsy. The binding was stereospecific, (-)-nicotine being 40 times more potent than (+)-nicotine in displacing labeled (-)-nicotine. Saturation binding studies revealed the presence of two binding sites with dissociation constant (KD) values of 8.1 and 86 nM, and maximum binding capacity (Bmax) values of 36 and 90 fmol/mg protein, respectively. In competition studies, nicotinic agonists were 1,000 times more potent than ganglionic, neuromuscular, and muscarinic blocking drugs in displacing labeled (-)-nicotine. IC50 values for cholinergic drugs of (-)-[3H]nicotine binding were as follows: (-)-nicotine, 0.51 nM; acetylcholine, 12.6 nM; (+)-nicotine, 19.9 nM; cytisine, 27.3 nM; and carbachol, 527 nM. IC50 values of alpha-bungarotoxin, hexamethonium, d-tubocurarine, and atropine were larger than 50 microM. (-)-[3H]Nicotine binding was highest in the nucleus basalis of Meynert and thalamus and lowest in the cerebral cortex and caudate in the brain regions tested. These results suggest that nicotinic cholinergic receptors are present in human brain and that there are regional differences in the density of these receptors.  相似文献   

17.
Neosurugatoxin, a Specific Antagonist of Nicotinic Acetylcholine Receptors   总被引:8,自引:6,他引:2  
Neosurugatoxin (NSTX) (3 nM-30 nM), recently isolated from the Japanese ivory mollusc (Babylonia japonica) exerted a potent antinicotinic action in the isolated guinea pig ileum. Specific [3H]nicotine binding to rat forebrain membranes was saturable, reversible, and of high affinity. Nicotinic cholinergic agonists exhibited a markedly greater affinity for [3H]nicotine binding sites than a muscarinic agonist, oxotremorine. Although alpha-bungarotoxin had no effect on [3H]nicotine binding, low concentrations (1 nM-1 microM) of NSTX inhibited [3H]nicotine binding in the forebrain membranes and its IC50 value was 69 +/- 6 nM. On the other hand, NSTX did not affect muscarinic receptor binding in the brain. These data indicate that NSTX may be of appreciable interest as a neurotoxin with a selective affinity for ganglionic nicotinic receptors.  相似文献   

18.
α-Bungarotoxin Binds to Low-Affinity Nicotine Binding Sites in Rat Brain   总被引:1,自引:4,他引:1  
Reported differences in the pharmacology and distribution of [3H]nicotine and [125I]alpha-bungarotoxin binding sites in mammalian brain suggest that these ligands label separate receptor sites. Affinity purification of an alpha-bungarotoxin binding protein from rat brain failed to copurify the high-affinity nicotine binding site, which remained in the nonbound soluble fraction after the affinity chromatography step. This confirms the independence of these putative receptor sites. Nevertheless, the binding of [125I]alpha-bungarotoxin to P2 membranes was inhibited by (-)-nicotine (Ki = 9 X 10(-6) M), and this sensitivity was preserved after affinity purification. It is proposed that alpha-bungarotoxin binds to a population of low-affinity nicotine binding sites. Comparison of the enantiomers of nicotine in competition studies at both radioligand binding sites revealed an 80-fold preference for the (-) form at the high-affinity [3H]nicotine binding site, whereas the site labelled by [125I]alpha-bungarotoxin displayed little stereoselectivity. In this respect, the brain alpha-bungarotoxin binding site resembles the nicotinic acetylcholine receptor from Torpedo electric organ.  相似文献   

19.
20.
Abstract: To determine whether prolonged exposure to nicotine differentially affects α3β2 versus α4β2 nicotinic receptors expressed in Xenopus oocytes, oocytes were coinjected with subunit cRNAs, and peak responses to agonist, evoked by 0.7 or 7 µ M nicotine for α4β2 and α3β2 receptors, respectively, were determined before and following incubation for up to 48 h with nanomolar concentrations of nicotine. Agonist responses of α4β2 receptors decreased in a concentration-dependent manner with IC50 values in the 10 n M range following incubation for 24 h and in the 1 n M range following incubation for 48 h. In contrast, responses of α3β2 receptors following incubation for 24–48 h with 1,000 n M nicotine decreased by only 50–60%, and total ablation of responses could not be achieved. Attenuation of responses occurred within the first 5 min of nicotine exposure and was a first-order process for both subtypes; half-lives for inactivation were 4.09 and 2.36 min for α4β2 and α3β2 receptors, respectively. Recovery was also first-order for both subtypes; half-lives for recovery were 21 and 7.5 h for α4β2 and α3β2 receptors, respectively. Thus, the responsiveness of both receptors decreased following sustained exposure to nicotine, but α4β2 receptors recovered much slower. Results may explain the differential effect of sustained nicotine exposure on nicotinic receptor-mediated neurotransmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号