首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
X-ray diffraction and spectroscopic techniques were used to characterize ultrathin fatty acid multilayers having a bound surface layer of cytochrome c. Three to six monolayers of arachidic acid were deposited onto an alkylated glass surface, using the Langmuir-Blodgett method. These fatty acid multilayer films were stored either in a 1 mM NaHCO3 pH 7.5 solution or a buffered 10 microM cytochrome c solution, pH 7.5. After washing extensively with buffer, these multilayer films were assayed for bound cytochrome c by optical spectroscopy. It was found that the cytochrome c bound only to the odd-numbered monolayer films (which have hydrophilic surfaces). The theoretical number of cytochrome c molecules bound to the ultrathin multilayer films having three or five monolayers was calculated as N = 1.2 x 10(13)/cm2 (assuming a hexagonally close-packed monolayer of protein), which would produce an optical density of 0.002 at a wavelength of 550 nm; for a three or five monolayer ultrathin film that was incubated with cytochrome c, OD550 approximately equal to 0.002. The protein was released from the film when treated with greater than 100 mM KCl solution, as would be expected for an electrostatic interaction. Meridional x-ray diffraction data were collected from the arachidic acid films with and without a bound cytochrome c layer. A box refinement technique, previously shown to be effective in deriving the profile structures of nonperiodic ultrathin films, was used to determine the multilayer electron density profiles. The electron density profiles and their autocorrelation functions showed that bound cytochrome c resulted in an additional electron dense feature on the multilayer surface, consistent with a bound cytochrome c monolayer. The position of the bound protein relative to the multilayer surface was independent of the number of fatty acid monolayers in the multilayer. Future studies will use these methods to investigate the structures of membrane protein complexes bound directly to the surface of multilayer films.  相似文献   

2.
We have previously shown that cytochrome c can be electrostatically bound to an ultrathin multilayer film having a negatively charged hydrophilic surface; furthermore, x-ray diffraction and absorption spectroscopy techniques indicated that the cytochrome c was bound to the surface of these ultrathin multilayer films as a molecular monolayer. The ultrathin fatty acid multilayers were formed on alkylated glass, using the Langmuir-Blodgett method. In this study, optical linear dichroism was used to determine the average orientation of the heme group within cytochrome c relative to the multilayer surface plane. The cytochrome c was either electrostatically or covalently bound to the surface of an ultrathin multilayer film. Horse heart cytochrome c was electrostatically bound to the hydrophilic surface of fatty acid multilayer films having an odd number of monolayers. Ultrathin multilayer films having an even number of monolayers would not bind cytochrome c, as expected for such hydrophobic surfaces. Yeast cytochrome c was covalently bound to the surface of a multilayer film having an even number of fatty acid monolayers plus a surface monolayer of thioethyl stearate. After washing extensively with buffer, the multilayer films with either electrostatically or covalently bound cytochrome c were analyzed for bound protein by optical absorption spectroscopy; the orientation of the cytochrome c heme was then investigated via optical linear dichroism. Polarized optical absorption spectra were measured from 450 to 600 nm at angles of 0 degrees, 30 degrees, and 45 degrees between the incident light beam and the normal to the surface plane of the multilayer. The dichroic ratio for the heme alpha-band at 550 nm as a function of incidence angle indicated that the heme of the electrostatically-bound monolayer of cytochrome c lies, on average, nearly parallel to the surface plane of the ultrathin multilayer. Similar results were obtained for the covalently-bound yeast cytochrome c. Furthermore, fluorescence recovery after photobleaching (FRAP) was used to characterize the lateral mobility of the electrostatically bound cytochrome c over the monolayer plane. The optical linear dichroism and these initial FRAP studies have indicated that cytochrome c electrostatically bound to a lipid surface maintains a well-defined orientation relative to the membrane surface while exhibiting measurable, but highly restricted, lateral motion in the plane of the surface.  相似文献   

3.
We have recently developed x-ray diffraction methods to derive the profile structure of ultrathin lipid multilayer films having one to five bilayers (e.g., Skita, V., W. Richardson, M. Filipkowski, A.F. Garito, and J.K. Blasie. 1987. J. Physique. 47:1849-1855). Furthermore, we have employed these techniques to determine the location of a monolayer of cytochrome c bound to the carboxyl group surface of various ultrathin lipid multilayer substrates via nonresonance x-ray diffraction (Pachence, J.M., and J.K. Blasie. 1987. Biophys. J. 52:735-747). Here an intense tunable source of x-rays (beam line X9-A at the National Synchrotron Light Source at the Brookhaven National Laboratory) was utilized to measure the resonance x-ray diffraction effect from the heme-Fe atoms within the cytochrome c molecular monolayer located on the carboxyl surface of a five monolayer arachidic acid film. Lamellar x-ray diffraction was recorded for energies above, below, and at the Fe K-absorption edge (E = 7,112 eV). An analysis of the resonance x-ray diffraction effect is presented, whereby the location of the heme-Fe atoms within the electron density profile of the cytochrome c/arachidic acid ultrathin multilayer film is indicated to +/- 3 A accuracy.  相似文献   

4.
Vectorially oriented monolayers of yeast cytochrome c and its bimolecular complex with bovine heart cytochrome c oxidase have been formed by self-assembly from solution. Both quartz and Ge/Si multilayer substrates were chemical vapor deposited with an amine-terminated alkylsiloxane monolayer that was then reacted with a hetero-bifunctional cross-linking reagent, and the resulting maleimide endgroup surface then provided for covalent interactions with the naturally occurring single surface cysteine 102 of the yeast cytochrome c. The bimolecular complex was formed by further incubating these cytochrome c monolayers in detergent-solubilized cytochrome oxidase. The sequential formation of such monolayers and the vectorially oriented nature of the cytochrome oxidase was studied via meridional x-ray diffraction, which directly provided electron density profiles of the protein(s) along the axis normal to the substrate plane. The nature of these profiles is consistent with previous work performed on vectorially oriented monolayers of either cytochrome c or cytochrome oxidase alone. Furthermore, optical spectroscopy has indicated that the rate of binding of cytochrome oxidase to the cytochrome c monolayer is an order of magnitude faster than the binding of cytochrome oxidase to an amine-terminated surface that was meant to mimic the ring of lysine residues around the heme edge of cytochrome c, which are known to be involved in the binding of this protein to cytochrome oxidase.  相似文献   

5.
X-ray interferometry/holography was applied to meridional x-ray diffraction data to determine uniquely the profile structures of a single monolayer of an integral membrane protein and a peripheral membrane protein, each tethered to the surface of a solid inorganic substrate. Bifunctional, organic self-assembled monolayers (SAMs) were utilized to tether the proteins to the surface of Ge/Si multilayer substrates, fabricated by molecular beam epitaxy, to facilitate the interferometric/holographic x-ray structure determination. The peripheral membrane protein yeast cytochrome c was covalently tethered to the surface of a sulfhydryl-terminated 11-siloxyundecanethiol SAM via a disulfide linkage with residue 102. The detergent-solubilized, photosynthetic reaction center integral membrane protein was electrostatically tethered to the surface of an analogous amine-terminated SAM. Optical absorption measurements performed on these two tethered protein monolayer systems were consistent with the x-ray diffraction results indicating the reversible formation of densely packed single monolayers of each fully functional membrane protein on the surface of the respective SAM. The importance of utilizing the organic self-assembled monolayers (as opposed to Langmuir-Blodgett) lies in their ability to tether specifically both soluble peripheral membrane proteins and detergent-solubilized integral membrane proteins. The vectorial orientations of the cytochrome c and the reaction center molecules were readily distinguishable in the profile structure of each monolayer at a spatial resolution of 7 A.  相似文献   

6.
X-ray diffraction techniques have been used to study the structures of lipid bilayers containing basic proteins. Highly ordered multilayer specimens have been formed by using the Langmuir-Blodgett method in which a solid support is passed through a lipid monolayer held at constant surface pressure at an air/water interface. If the lipid monolayer contains acidic lipids then basic proteins in the aqueous subphase are transferred with the monolayer and incorporated into the multi-membrane stack. X-ray diffraction patterns have been recorded from multilayers of cerebroside sulphate and 40% (molar) cholesterol both with and without polylysine, cytochrome c and the basic protein from central nervous system myelin. Electron density profiles across the membranes have been derived at between 6 A and 12 A resolution. All of the membrane profiles have been placed on an absolute scale of electron density by the isomorphous exchange of cholesterol with a brominated cholesterol analog. The distributions and conformations of the various basic proteins incorporated within the cerebroside sulphate/cholesterol bilayer are very different. Polylysine attaches to the surface of the lipid bilayer as a fully extended chain while cytochrome c maintains its native structure and attaches to the bilayer surface with its short axis approximately perpendicular to the membrane plane. The myelin basic protein associates intimately with the lipid headgroups in the form of an extended molecule, yet its dimension perpendicular to the plane of the membrane of approx. 15 A is consistent with the considerable degree of secondary structure found in solution. In the membrane plane, the myelin basic protein extends to cover an area of about 2500 A2. There is no significant penetration of the protein into the hydrocarbon region of the bilayer or, indeed, beyond the position of the sulphate group of the cerebroside sulphate molecule.  相似文献   

7.
The uptake of cytochrome c by charged and neutral lipid monolayers was studied by using reflection spectroscopy. The method was shown to be a very sensitive and useful technique in studies of lipid-protein interactions. It was found that cytochrome c is preferentially bound to monolayers of negatively charged monolayers in the solid phase. Polarized light under oblique incidence was used to determine the average orientation of chromophores in cytochrome c bound to lipid monolayer. The transition moments of chromophore are oriented parallel to the monolayer plane.  相似文献   

8.
Yeast cytochrome c (YCC) can be covalently tethered to, and thereby vectorially oriented on, the soft surface of a mixed endgroup (e.g., -CH3/-SH = 6:1, or -OH/-SH = 6:1) organic self-assembled monolayer (SAM) chemisorbed on the surface of a silicon substrate utilizing a disulfide linkage between its unique surface cysteine residue and a thiol endgroup. Neutron reflectivities from such monolayers of YCC on Fe/Si or Fe/Au/Si multilayer substrates with H2O versus D2O hydrating the protein monolayer at 88% relative humidity for the nonpolar SAM (-CH3/-SH = 6:1 mixed endgroups) surface and 81% for the uncharged-polar SAM (-OH/-SH = 6:1mixed endgroups) surface were collected on the NG1 reflectometer at NIST. These data were analyzed using a new interferometric phasing method employing the neutron scattering contrast between the Si and Fe layers in a single reference multilayer structure and a constrained refinement approach utilizing the finite extent of the gradient of the profile structures for the systems. This provided the water distribution profiles for the two tethered protein monolayers consistent with their electron density profile determined previously via x-ray interferometry (Chupa et al., 1994).  相似文献   

9.
The pulmonary surfactant lines as a complex monolayer of lipids and proteins the alveolar epithelial surface. The monolayer dynamically adapts the surface tension of this interface to the varying surface areas during inhalation and exhalation. Its presence in the alveoli is thus a prerequisite for a proper lung function. The lipid moiety represents about 90% of the surfactant and contains mainly dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG). The surfactant proteins involved in the surface tension adaption are called SP-A, SP-B and SP-C. The aim of the present investigation is to analyse the properties of monolayer films made from pure SP-C and from mixtures of DPPC, DPPG and SP-C in order to mimic the surfactant monolayer with minimal compositional requirement. Pressure-area diagrams were taken. Ellipsometric measurements at the air-water interface of a Langmuir film balance allowed measurement of the changes in monolayer thickness upon compression. Isotherms of pure SP-C monolayers exhibit a plateau between 22 and 25 mN/m. A further plateau is reached at higher compression. Structures of the monolayer formed during compression are reversible during expansion. Together with ellipsometric data which show a stepwise increase in film thickness (coverage) during compression, we conclude that pure SP-C films rearrange reversibly into multilayers of homogenous thickness.

Lipid monolayers collapse locally and irreversibly if films are compressed to approximately 0–4 nm2/molecule. In contrast, mixed DPPG/SP-C monolayers with less than 5 mol% protein collapse in a controlled and reversible way. The pressure-area diagrams exhibit a plateau at 20 mN/m, indicating partial demixing of SP-C and DPPG. The thickness isotherm obtained by ellipsometry indicates a transformation into multilayer structures. In DPPC/DPPG/SP-C mixtures again a reversible collapse was observed but without a drastic increase in surface layer thickness which may be due to the formation of protrusion under the surface. Thus lipid monolayers containing small amounts of SP-C may mimic the lung surfactant.  相似文献   

10.
A multilayered complex forms when a solution of myelin basic protein is added to single-bilayer vesicles formed by sonicating myelin lipids. Vesicles and multilayers have been studied by electron microscopy, biochemical analysis, and X-ray diffraction. Freeze-fracture electron microscopy shows well-separated vesicles before myelin basic protein is added, but afterward there are aggregated, possibly multilayered, vesicles and extensive planar multilayers. The vesicles aggregate and fuse within seconds after the protein is added, and the multilayers form within minutes. No intra-bilayer particles are seen, with or without the protein. Some myelin basic protein, but no lipid, remains in the supernatant after the protein is added and the complex sedimented for X-ray diffraction. A rather variable proportion of the protein is bound. X-ray diffraction patterns show that the vesicles are stable in the absence of myelin basic protein, even under high g-forces. After the protein is added, however, lipid/myelin basic protein multilayers predominate over single-bilayer vesicles. The protein is in every space between lipid bilayers. Thus the vesicles are torn open by strong interaction with myelin basic protein. The inter-bilayer spaces in the multilayers are comparable to the cytoplasmic spaces in central nervous system myelins . The diffraction indicates the same lipid bilayer thickness in vesicles and multilayers, to within 1 A. By comparing electron-density profiles of vesicles and multilayers, most of the myelin basic protein is located in the inter-bilayer space while up to one-third may be inserted between lipid headgroups. When cytochrome c is added in place of myelin basic protein, multilayers also form. In this case the protein is located entirely outside the unchanged bilayer. Comparison of the various profiles emphasizes the close and extensive apposition of myelin basic protein to the lipid bilayer. Numerous bonds may form between myelin basic protein and lipids. Cholesterol may enhance binding by opening gaps between diacyl-lipid headgroups.  相似文献   

11.
1. The interaction between [(14)C]carboxymethylated cytochrome c and monolayers of egg phosphatidylethanolamine at the air/water interface has been investigated by measurements of surface radioactivity, pressure and potential. 2. On adding (14)C-labelled cytochrome c to the subphase under monolayers with a surface pressure below 24dynes/cm. there was an initial surface pressure increment as the protein penetrated, followed by an adsorption that could be detected only by a continued increase in the surface radioactivity. 3. Above film pressures of 24dynes/cm. only adsorption was observed, i.e. an increment in surface radioactivity with none in surface pressure. 4. The changes in surface parameters with penetration of cytochrome c added to the subphase were indirectly proportional to the initial pressure of the monolayer. With hydrogenated phosphatidylethanolamine the constant of proportionality was increased but penetration again ceased at 24dynes/cm. 5. On compressing a phosphatidylethanolamine film containing penetrated cytochrome c to 40dynes/cm. only a proportion of the protein was ejected on a subphase of 10mm-sodium chloride, whereas on a subphase of m-sodium chloride nearly all the protein was lost. 6. With both penetration and adsorption only a small proportion of the added cytochrome c interacted with the phospholipid films, and initially the amount bound was proportional to the added protein concentration. There was no evidence of a stoicheiometric relationship between the protein and phospholipid or the build-up of multilayers. The bonded protein was not released by removing cytochrome c from the subphase. 7. The addition of m-sodium chloride to the subphase delays the rate of protein penetration into low-pressure films, but the final surface-pressure increment is not appreciably decreased. In contrast, m-sodium chloride almost completely stops adsorption on to films at all pressures. 8. When sodium chloride is added to the subphase below cytochrome c adsorbed to monolayers at high pressures, so that the final concentration is 1m, only a proportion of the protein is desorbed and this decreases as the time of the interaction increases. This indicates that adsorption is initially electrostatic, followed by the formation of non-ionic bonds. 9. Alteration of the subphase pH under a high-pressure film leads to a steady increase in adsorption from pH3 to 8.5 followed by a rapid fall to zero adsorption at pH11. 10. The penetration into phospholipid monolayers at 10dynes/cm. shows a rate that is consistent with the relative electrostatic status of the two components of the interaction as the subphase pH is varied between 3 and 10.5. The final equilibrium penetration shows a pronounced peak in the increments of surface pressure at pH9.0 although a similar peak is not observed in the surface radioactivity. This indicates that more residues of the protein are penetrating into the film at about this pH. 11. Determinations were made of the electrophoretic mobilities of phosphatidylethanolamine particles both alone and after interaction with cytochrome c. 12. The electrophoretic mobilities of cytochrome c adsorbed on lipid particles showed an isoelectric point below that of cytochrome c. This and the observations on the monolayers suggest that, with cytochrome c, protein-protein interactions are weak compared with other proteins.  相似文献   

12.
The formation of DNA complexes with Langmuir monolayers of the cationic lipid octadecylamine (ODA) and the new amphiphilic polycation poly-4-vinylpyridine with 16% of cetylpyridinium groups (PVP-16) on the surface of an aqueous solution of native DNA of low ionic strength was studied. Topographic images of Langmuir-Blodgett films of DNA/ODA and DNA/PVP-16 complexes applied to micaceous substrates were investigated by the method of atomic force microscopy. It was found that films of the amphiphilic polycation have an ordered planar polycrystalline structure. The morphology of planar DNA complexes with the amphiphilic cation substantially depended on the incubation time and the phase state of the monolayer on the surface of the aqueous DNA solution. Complex structures and individual DNA molecules were observed on the surface of the amphiphilic monolayer. Along with quasi-linear individual bound DNA molecules, characteristic extended net-like structures and quasi-circular toroidal condensed conformations of planar DNA complexes were detected. Mono- and multilayer films of DNA/PVP-16 complexes were used as templates and nanoreactors for the synthesis of inorganic nanostructures via the binding of metal cations from the solution and subsequent generation of the inorganic phase. As a result, ultrathin polymeric composite films with integrated DNA building blocks and quasi-linear arrays of inorganic semiconductor (CdS) and iron oxide nanoparticles and nanowires were obtained. The nanostructures obtained were characterized by scanning probe microscopy and transmission electron microscopy techniques. The methods developed are promising for investigating the mechanisms of structural organization and transformation in DNA and polyelectrolyte complexes at the gas-liquid interface and for the design of new extremely thin highly ordered planar polymeric and composite materials, films, and coatings with controlled ultrastructure for applications in nanoelectronics and nanobiotechnology.  相似文献   

13.
(1) The interaction of apocytochrome c with different molecular species of phosphatidylserine was studied using monolayers at constant surface area or constant surface pressure. The protein inserted readily into dioleoylphosphatidylserine monolayers up to a limiting pressure of 50 mN/m, whereas the interaction decreased with increasing molecular packing of the phosphatidylserine species, indicating the importance of the hydrophobic core of the lipid layer for the interaction. (2) The high affinity of apocytochrome c for dioleoylphosphatidylserine is indicated by the low Kd of 0.017 microM. There is little or no interaction with phosphatidylcholines. The importance of charge interactions is underlined by its ionic strength and pH dependency. (3) Experiments using 14C-labelled apocytochrome c indicate that cholesterol can enhance the protein binding. (4) It was demonstrated that apocytochrome c monomers penetrate the monolayer whereas oligomers can be formed in an adsorbed layer and washed off without changing the surface pressure. Preincubation of apocytochrome c in 3 M guanidine, to obtain the monomeric form, was essential to measure the full effect of interfacial interaction. (5) The molecular area of apocytochrome c changed from 1200-1300 A2/molecule in the absence of lipid to 700-900 A2/molecule after penetration of dioleoylphosphatidylserine monolayers. (6) Apocytochrome c-dioleoylphosphatidylserine interactions are only possible when the monolayer is approached from the subphase. It is concluded that the charge interactions are required for binding and penetration of the protein.  相似文献   

14.
Phospholipid asymmetry in the isolated sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The total phospholipid content and distribution of phospholipid species between the outer and inner monolayers of the isolated sarcoplasmic reticulum membrane was measured by phospholipase A2 activities and neutron diffraction. Phospholipase measurements showed that specific phospholipid species were asymmetric in their distribution between the outer and inner monolayers of the sarcoplasmic reticulum lipid bilayer; phosphatidylcholine (PC) was distributed 48/52 +/- 2% between the outer and inner monolayer of the sarcoplasmic reticulum bilayer, 69% of the phosphatidyl-ethanolamine (PE) resided mainly in the outer monolayer of the bilayer, 85% of the phosphatidylserine (PS) and 88% of the phosphatidylinositol (PI) were localized predominantly in the inner monolayer. The total phospholipid distribution determined by these measurements was 48/52 +/- 2% for the outer/inner monolayer of the sarcoplasmic reticulum lipid bilayer. Sarcoplasmic reticulum phospholipids were biosynthetically deuterated and exchanged into isolated vesicles with both a specific lecithin and a general exchange protein. Neutron diffraction measurements directly provided lipid distribution profiles for both PC and the total lipid content in the intact sarcoplasmic reticulum membrane. The outer/inner monolayer distribution for PC was 47/53 +/- 1%, in agreement with phospholipase measurements, while that for the total lipid was 46/54 +/- 1%, similar to the phospholipase measurements. These neutron diffraction results regarding the sarcoplasmic reticulum membrane bilayer were used in model calculations for decomposing the electron-density profile structure (10 A resolution) of isolated sarcoplasmic reticulum previously determined by X-ray diffraction into structures for the separate membrane components. These structure studies showed that the protein profile structure within the membrane lipid bilayer was asymmetric, complementary to the asymmetric lipid structure. Thus, the total phospholipid asymmetry obtained by two independent methods was small but consistent with a complementary asymmetric protein structure, and may be related to the highly vectorial functional properties of the calcium pump ATPase protein in the sarcoplasmic reticulum membrane.  相似文献   

15.
Protein multilayers composed of avidin and biotin-labeled antibody (bio-Ab) were prepared on gold surface by layer-by-layer assembly technology using the high specific binding constant (K(a): approximately 10(15) M(-1)) between avidin and biotin. The assembly process of the multilayer films was monitored by using real-time BIA technique based on surface plasmon resonance (SPR). The multilayer films were also characterized by electrochemical impedance spectroscopy (EIS) and reflection absorption Fourier transform infrared spectroscopy (FTIR). The results indicate that the growth of the multilayer is uniform. From response of SPR for each layer, the stoichiometry S for the interaction between avidin and bio-Ab is calculated to be 0.37 in the multilayer whereas 0.82 in the first layer. The protein mass concentration for each layer was also obtained. The schematic figure for the multilayer assembly was proposed according to the layer mass concentration and S value. The utility of the mutilayer films for immunosensing has been investigated via their subsequent interaction with hIgG. The binding ability of the multilayer increased for one to three layers of antibody, and then reach saturation after the fourth layer. These layer-by-layer constructed antibody multilayers enhance the binding ability than covalently immobilized monolayer antibody. This technology can be also used for construction of other thin films for immunosensing and biosensor.  相似文献   

16.
Reaction center protein, isolated from the photosynthetic bacterium Rhodopseudomonas sphaeroides R26 mutant, was incorporated into phosphatidylcholine bilayers forming a homogeneous population of unilamellar vesicles. Cytochrome c, added to preformed reaction center-phosphatidylcholine vesicles, rapidly reduced up to 90% of the laser-generated (BChl)2+ of the reaction center (with kinetics of electron transfer similar to those in the chromatophore membrane) which suggests that the portion of the reaction center which accommodates functional cytochrome c binding sites is exposed predominantly on the exterior of the vesicles. Unit cell electron density profiles were derived from lamellar X-ray diffraction from oriented reaction center-phosphatidylcholine membrane multilayers at varying lipid/protein ratios. The analysis of these profiles showed that the reaction center protein incorporates into the phosphatidylcholine membrane with unique sidedness and that the profile of the reaction center protein itself is asymmetric and spans the membrane.  相似文献   

17.
Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between monolayers and multilayers within the fluid phase domains of the monolayer. The morphology and thickness of the multilayer phase depends on the lipid composition of the monolayer and the concentration of SP-C or SP-C peptide. Lung surfactant protein SP-B and peptides based on SP-B induce a reversible folding transition at monolayer collapse that allows all components of surfactant to be retained at the interface during respreading. Supplementing Survanta, a clinically used replacement lung surfactant, with a peptide based on the first 25 amino acids of SP-B also induces a similar folding transition at monolayer collapse. Palmitic acid makes the monolayer rigid at low surface tension and fluid at high surface tension and modifies SP-C function. Identifying the function of lung surfactant proteins and lipids is essential to the rational design of replacement surfactants for treatment of respiratory distress syndrome.  相似文献   

18.
1. The interactions between cytochrome c (native and [(14)C]carboxymethylated) and monolayers of phosphatidylcholine, phosphatidic acid and cardiolipin at the air/water interface was investigated by measurements of surface radioactivity, pressure and potential. 2. On a subphase of 10mm-or m-sodium chloride, penetration of cytochrome c into egg phosphatidylcholine monolayers, as measured by an increase of surface pressure, and the number of molecules penetrating, as judged by surface radioactivity, were inversely proportional to the initial pressure of the monolayer and became zero at 20dynes/cm. The constant of proportionality was increased when the cytochrome c was carboxymethylated or decreased when the phospholipid was hydrogenated, but the cut-off point remained at 20dynes/cm. 3. Penetrated cytochrome c could be removed almost entirely by compression of the phosphatidylcholine monolayer above 20dynes/cm. 4. With phosphatidic acid and cardiolipin monolayers on 10mm-sodium chloride the binding of cytochrome c was much stronger and cytochrome c penetrated into films nearing the collapse pressure (>40dynes/cm.). The penetration was partly electrostatically facilitated, since it was decreased by carrying out the reaction on a subphase of m-sodium chloride, and the relationship between the surface pressure increment and the initial film pressure moved nearer to that observed with phosphatidylcholine. 5. Surface radioactivity determinations showed that [(14)C]carboxymethylated cytochrome c was still adsorbed on phosphatidic acid and cardiolipin monolayers after the cessation of penetration. This adsorption was primarily electrostatic in nature because it could be prevented and substantially reversed by adding m-sodium chloride to the subphase and there was no similar adsorption on phosphatidylcholine films. 6. The penetration into and adsorption on the three phospholipid monolayers was examined as a function of the pH of the subphase and compared with the state of ionization of both the phospholipid and the protein, and the area occupied by the latter at an air/water interface. 7. It is concluded that the binding of cytochrome c to phospholipids can only be partially understood by a consideration of the ionic interaction between the components and that subtle conformational changes in the protein must affect the magnitude and stability of the complex. 8. If cytochrome c is associated with a phospholipid in mitochondria then cardiolipin would fulfil the characteristics of the binding most adequately.  相似文献   

19.
The interaction of a nonspecific wheat lipid transfer protein (LTP) with phospholipids has been studied using the monolayer technique as a simplified model of biological membranes. The molecular organization of the LTP-phospholipid monolayer has been determined by using polarized attenuated total internal reflectance infrared spectroscopy, and detailed information on the microstructure of the mixed films has been investigated by using epifluorescence microscopy. The results show that the incorporation of wheat LTP within the lipid monolayers is surface-pressure dependent. When LTP is injected into the subphase under a dipalmytoylphosphatidylglycerol monolayer at low surface pressure (< 20 mN/m), insertion of the protein within the lipid monolayer leads to an expansion of dipalmytoylphosphatidylglycerol surface area. This incorporation leads to a decrease in the conformational order of the lipid acyl chains and results in an increase in the size of the solid lipid domains, suggesting that LTP penetrates both expanded and solid domains. By contrast, when the protein is injected under the lipid at high surface pressure (> or = 20 mN/m) the presence of LTP leads neither to an increase of molecular area nor to a change of the lipid order, even though some protein molecules are bound to the surface of the monolayer, which leads to an increase of the exposure of the lipid ester groups to the aqueous environment. On the other hand, the conformation of LTP, as well as the orientation of alpha-helices, is surface-pressure dependent. At low surface pressure, the alpha-helices inserted into the monolayers are rather parallel to the monolayer plane. In contrast, at high surface pressure, the alpha-helices bound to the surface of the monolayers are neither parallel nor perpendicular to the interface but in an oblique orientation.  相似文献   

20.
We investigate the effect of the skeletal protein spectrin on the lateral order in dipalmitoyl phosphatidylserine monolayers spread on aqueous surfaces using grazing incidence X-ray diffraction. Without spectrin, the condensed lipid monolayer exhibits two-dimensional hexagonal packing, characterized by monotonic decrease in the d-spacing and increase in the degree of order with increasing surface pressure between 17 and 36 mN/m. Addition of spectrin to the aqueous subphase at high pressures preserves the monolayers structural parameters unchanged from 36 to 25 mN/m. These results demonstrate for the first time that spectrin could participate in sustaining the two-dimensional order in lipid domains through a direct interaction with phosphatidylserine species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号