首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of Phenylmethylsulfonylfluoride, an inhibitor of cholesterol esterase, to male mice caused an increase in the concentration of esterified cholesterol in the testis, a decrease in the weight of seminal vesicles and a decrease in the concentration of testosterone in peripheral plasma. It is suggested that hydrolysis of cholesterol esters present in the testis is required for normal production of androgenic steroids.Administration of prostaglandin F to male mice lowered plasma testosterone levels and raised the concentration of esterified cholesterol in the testes. Apparently testicular steroidogenesis was inhibited.  相似文献   

2.
In experiments in which liver and testis freeze-stops were performed on pentobarbital-anaesthetized rats, ethanol (1.5 g/kg body wt.) reduced plasma testosterone concentration from 13.1 to 3.2 nmol/litre. 4-Methylpyrazole abolished the ethanol-induced hepatic and testicular increase in the lactate/pyruvate ratio, and the testicular acetaldehyde level, but did not diminish the reduction in plasma testosterone concentration. In testes, but not in liver, ethanol decreased the 3-hydroxybutyrate/acetoacetate ratio, and 4-methylpyrazole did not prevent this effect. In experiments in which freeze-stop was performed after cervical dislocation, ethanol decreased the testis testosterone concentration from 590 to 220 pmol per g wet wt. The effects of ethanol and 4-methylpyrazole on testis acetaldehyde, lactate/pyruvate and 3-hydroxybutyrate/acetoacetate ratios were the same as found during anaesthesia. The NAD+-dependent ethanol oxidation capacity in testis ranged from 0.1 to 0.2 mumol/min per g wet wt. and seemed to be inhibited by 4-methylpyrazole both in vivo and in vitro. In additional experiments, ethanol doses between 0.3 and 0.9 g/kg body wt. did not alter the plasma testosterone concentration in rats treated, or not treated, with cyanamide, which induced elevated acetaldehyde levels in blood and testes. The results suggest that ethanol-induced inhibition of testosterone biosynthesis was not caused by extratesticular redox increases, or by extra- or intra-testicular acetaldehyde per se. The inhibition is accompanied by changes in testicular ketone-body metabolism.  相似文献   

3.
Ethyl alcohol injected intraperitoneally to rats in a dose of 3 g/kg of body weight caused hypoglycaemia which was not observed after similar administration of acetaldehyde in a dose od 0.3 g/kg. The serum levels of lipids and total cholesterol were unchanged after administration of ethyl alcohol while acetaldehyde decreased to cholesterol level 0.5, 1.5 and 3 hours after administration. Both these compounds raised the serum activity of AspAT and AlAT, and this rise was observed 0.5 hour after ethyl alcohol and 6 hours after acetaldehyde.  相似文献   

4.
Repeated oral administration of the non-psychoactive cannabinol (CBN; 5 or 50 mg/kg) significantly reduced the concentration of norepinephrine (NE) in median eminence and greatly reduced NE levels 1 and 2 hrs after administration of alpha-methylparatyrosine (alpha-MPT). The levels of dopamine (DA) in median eminence were significantly different, as indicated by the differences in slopes obtained in CBN- treated and control mice before and after alpha-MPT. Plasma levels of luteinizing hormone (LH) were significantly reduced in CBN-exposed mice before alpha-MPT, elevated at 1 hr post-injection, but were also reduced 2 hrs post-injection at 50 mg/kg CBN. Follicle-stimulating hormone (FSH) levels were increased at 1 hr post-alpha-MPT in mice receiving 50 mg/kg CBN. Oral administration of CBN at 50 mg/kg for 4 days enhanced testicular testosterone (T) production in response to intratesticular in vivo injection of 2.5 or 25 mIU human chorionic gonadotropin (hCG). A single oral dose of the psychoactive delta 9-tetrahydrocannabinol (THC) enhanced the production of T 15 min after intratesticular LH (10 ng) injection. However, at 45 or 60 min post-THC treatment, the response to LH was significantly attenuated. These studies demonstrate that both psychoactive and non-psychoactive components of marihuana alter testicular responsiveness to gonadotropins in vivo. These effects may be biphasic, involving stimulation and inhibition of responsiveness, and appear to be correlated with alterations in plasma LH levels. Alterations in plasma gonadotropins may be mediated by cannabinoid effects on catecholamine concentrations in median eminence and THC-induced alterations in testicular responsiveness to gonadotropin probably also involve direct effects of THC at the gonadal level.  相似文献   

5.
Production of testosterone (T) by decapsulated mouse testes in vitro was significantly inhibited by adding prostaglanain (PG) A1, PGA2 or PGE1 to the incubation medium. Prostaglandin A1 at a concentration of 10?6M inhibited T production in this system both in the presence of moderate amounts of hCG (12.5 or 25.0 mIU/ml), and in the absence of gonadotropins. However, in the presence of very high levels of hCG (125.0 mIU/ml), all PGs tested appeared to have had a slight potentiating effect on T production when added in concentrations ranging from 10?7 to 10?5M, and the inhibition of T accumulation in the medium was consistently observed only when the concentration of PGs was increased to 10?3M. These results suggest that a direct effect of PGs on testicular steroidogenesis may account for, or contributes to, the decrease in peripheral T levels observed after administration of PGs in vivo.  相似文献   

6.
Single-strain milk cultures of Leuconostoc dextranicum are capable of reducing added acetaldehyde, propionaldehyde, and butanone to the corresponding alcohols at 30 C. L. dextranicum and L. citrovorum reduced propionaldehyde to n-propanol quantitatively in 30 hr, and the reduction of this compound paralleled culture growth. Under unagitated conditions, these organisms produced large amounts of acetic acid and ethyl alcohol. The yield of acetic acid increased when cultures were agitated during growth. This increase in acetic acid production was accompanied by a 20- to 70-fold decrease in ethyl alcohol. The addition of acetaldehyde to the fermentation caused a reduction in the final concentration of acetic acid.  相似文献   

7.
We evaluated the effect of acute and chronic diazepam administration on testicular peripheral type benzodiazepine receptors (PBZD-R), serum testosterone and LH levels and the "in vitro" androgen production in response to Ro 5-4864, a PBZD-R agonist. The chronic diazepam treatment induced a significant fall in plasma testosterone concentration while LH levels remained unchanged. The number of PBZD-R was reduced by 37% and low concentrations (10(-8)-10(-6) M) of Ro 5-4864 failed to stimulate "in vitro" androgen production. The acute diazepam administration caused a significant increase in plasma testosterone levels while no changes were observed in LH concentrations and testicular PBZD-R. These results further suggest a modulatory role of PBZD-R on testicular steroidogenic activity.  相似文献   

8.
The effect of daily treatment with the pure antiandrogen Flutamide has been studied either alone or in combination with the LHRH agonist [D-Trp6, des-Gly-NH2(10)]LHRH ethylamide (LHRH-A), on testicular and prostatic functions in adult male rats. Treatment for 10 days with Flutamide (5 mg/rat, twice daily) caused a marked stimulation of plasma testosterone (T) associated with a significant increase in plasma gonadotropin concentrations and inhibited plasma PRL levels. Testicular weight is not changed following antiandrogen administration but testicular LH/hCG receptor levels are markedly decreased with no change in FSH receptor levels. Moreover, Flutamide treatment alone produces an important inhibition of ventral prostate and seminal vesicle weights associated with a significant decrease in prostatic beta-adrenergic receptor levels but no change is observed in specific ornithine decarboxylase (ODC) activity. Daily LHRH-A treatment at the dose of 1 microgram/day for 10 days decreases plasma T to levels comparable to those found in orchiectomized men (0.30 +/- 0.5 ng/ml). This effect is associated with an almost complete loss of testicular LH/hCG receptors, a decrease in testicular weight, a significant increase in plasma gonadotropins and a marked inhibition of plasma PRL concentration. A relatively smaller inhibition of ventral prostate and seminal vesicle weights follows treatment with the LHRH agonist alone, this effect being accompanied by a significant reduction in beta-adrenergic receptor concentration but no change in prostatic ODC activity. Combination of the two drugs, however, caused a potent inhibitory effect on both ventral prostate and seminal vesicle weight to values similar to those found in castrated rats. The prostatic weight loss is accompanied by a marked fall in ODC activity and in the concentration of beta-adrenergic receptors. The present data clearly show that combined treatment with an LHRH agonist and a pure antiandrogen is highly effective in inhibiting, not only prostatic growth, but also two androgen-sensitive parameters of prostatic activity.  相似文献   

9.
Alcohol and acetaldehyde in rat's milk following ethanol administration   总被引:1,自引:0,他引:1  
C Guerri  R Sanchis 《Life sciences》1986,38(17):1543-1556
Alcohol and acetaldehyde were measured in milk and peripheral blood in chronic alcoholic rats, at 5 and 15 days of lactation. Ethanol in blood increased throughout lactation and the levels of acetaldehyde were much higher than in nonlactating alcoholic rats. The concentration of acetaldehyde in milk was always ca. 50% of that in blood, whereas that of ethanol varied within the range of 44-80% of the blood levels. Blood alcohol levels in the corresponding sucking pups were much lower than in maternal blood and increased throughout lactation. The time course of ethanol and acetaldehyde concentration in blood and milk were determined in normal lactating rats after cyanamide (40 mg/kg) and ethanol administration (2 or 4 g/kg). Milk alcohol reached higher concentrations than in blood within the first hour of ethanol administration, decreasing and remaining constant thereafter at ca. 65% of those in blood. Acetaldehyde levels in milk were always 35-45% lower than in blood. No alcohol dehydrogenase activity was found in homogenates of mammary tissue; however there was some aldehyde dehydrogenase activity. A significant decrease in mammary tissue aldehyde dehydrogenase was found in chronic alcoholic rats. The role of this enzyme is discussed.  相似文献   

10.
These studies determined the local acute responsiveness of the testis to intratesticular administration of human chorionic gonadotropin (hCG) under basal, stimulated (systemic hCG pre-treated), hypogonadotropic (steroid pre-treatment) and hyperprolactinemic conditions in male mice. In addition, testicular testosterone (T) levels were determined after intratesticular administration of the aromatase inhibitor, 4-hydroxyandrostenedione (4-OHA) or progesterone under basal or hCG-stimulated conditions. Intratesticular administration of 0.025, 0.25, 2.5 or 25 mIU hCG resulted in a dose-dependent (3- to 14-fold) increase in testicular T concentrations in hCG compared to vehicle-injected testes. Systemic (i.p.) pre-treatment with 5 IU hCG 24 h before prevented any further increases in the already elevated (10-fold basal) T levels after direct intratesticular hCG injection. Pretreatment with 250 micrograms testosterone propionate (TP) reduced basal testicular T concentrations, but resulted in increased responsiveness to intratesticular hCG administration. In contrast, estradiol benzoate (EB) pretreatment, which also reduced basal testicular T concentrations, did not affect the testicular responsiveness to hCG. Hyperprolactinemia reduced testicular responsiveness to intratesticular administration of 0.025, 0.25 or 2.5 mIU hCG, but basal levels of testicular T were elevated. One hour after intratesticular injections of an aromatase inhibitor, 4-OHA; (0.25 micrograms) testis, T levels were increased in males pre-treated with 5 IU hCG (i.p.) 24 h earlier. Higher doses of 4-OHA (2.5, 25 or 250 micrograms) resulted in significant, dose-related increases in basal testicular T levels which were attenuated by hCG-pre-treatment. Intratesticular administration of 20 micrograms progesterone increased testicular T concentrations 2.7-fold, but this effect was attenuated (1.5-fold) in hCG-pre-treated mice, suggesting that enzymatic lesions beyond progesterone may be involved in hCG-induced testicular desensitization. These results indicate that testicular responsiveness to hCG depends on the existing levels of gonadotropic stimulation. However, it is evident that estrogens and prolactin also influence the sensitivity of the testis to gonadotropin.  相似文献   

11.
An experimental model of chronic alcohol abuse is developed, in order to study the hypothalamic-pituitary testicular axis in the rat. For this purpose basal plasma prolactin, gonadotropins, testosterone and estradiol have been measured. Also these hormones were studied after LHRH or hCG stimulation. This experimental model allows us to study the role of alcohol in hypogonadism induction. Chronic alcohol administration resulted in an inconstant decrease in plasma testosterone levels and very diminished response of it to hCG. Along with these modifications, there was an increase in basal plasma estrogen levels, as has been shown in the human. The decrease in plasma LH levels in alcoholic rats together with a normal response to LHRH suggest a toxic role of alcohol at higher levels than the pituitary. The existence of a hyperprolactinemic state under chronic alcohol ingestion is confirmed. The decrease in plasma prolactin levels after LHRH administration suggests that prolactin and gonadotropin secretion are very closely related.  相似文献   

12.
The in vivo effects of short photoperiod (SPP, 6L:18D) for 8 and 12 wk on plasma and testicular levels of testosterone (T) precursors in adult golden hamsters were evaluated. Plasma and testicular progesterone (P), 17 alpha-hydroxyprogesterone (17 alpha-OHP), androstenedione (A-dione), and T were measured after 5 injections of saline or human chorionic gonadotropin (hCG) (5 or 25 IU/day). The basal levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL) in circulation were also determined. There were significant reductions in the weight of the testes in animals exposed to SPP. After 12 wk in SPP, circulating levels and testicular content of 17 alpha-OHP, A-dione, and T were significantly reduced, suggesting that the decrease in T secretion may be associated with the impairment of synthesis and/or action of 17 alpha-steroid hydroxylase, C17-20 steroid lyase, and 17 beta-hydroxysteroid dehydrogenase enzymes in the testes. Exposure to SPP for 8 wk resulted in decreased plasma and testicular content of T. Although there were reductions in testicular content of 17 alpha-OHP and A-dione, this was not reflected in plasma levels of these steroids. After 8 and 12 wk of exposure to SPP, hCG treatment increased the total amounts of T precursors (except P at 8 wk) in the testes, but the values attained in animals exposed to 12 wk of SPP remained below those observed in hamsters kept in a long photoperiod (14L:10D), suggesting that gonadotropin replacement alone may be insufficient to normalize testicular steroidogenesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The concentrations of testosterone, 5 alpha-dihydrotestosterone, 5 alpha-androstan-3 alpha, 17 beta-diol, 5 alpha-androstane-3 beta, 17 beta-diol, estradiol-17 beta and testosterone-glucosiduronate were measured in the plasma of the testicular vein and artery simultaneously with the estimation in peripheral venous and arterial plasma 60 min after an infusion of 3000 micrograms dihydrotestosterone (DHT) or estradiol (E2), respectively, in patients undergoing orchiectomy for prostatic cancer. The results were as follows; following infusion of DHT or E2, both steroids were completely metabolized by the testes. After DHT the testicular secretion of E2 was significantly reduced. In peripheral plasma 3 alpha-diol concentration was increased. Following E2 a transient elevation of testosterone in the spermatic vein was observed, whereas a slight decrease of DHT and an increase especially of 3 beta-diol levels occurred. It is assumed that DHT as well as E2 plays a role as intratesticular regulator of steroid synthesis and metabolism.  相似文献   

14.
The in vivo and in vitro testicular responsiveness to hCG of hemicastrated lamb fetuses 95-99, 110-118 and 130-141 days of gestational age was studied. Basal plasma testosterone (T) levels were similar at all ages (less than 0.25 ng/ml), while the mean testicular concentrations of dehydroepiandrosterone sulfate (DHA-S), 17 alpha-hydroxyprogesterone (17-OHP) and T were higher in 95- to 99-day-fold fetuses. Plasma T levels and the concentration of T, DHA-S, 17-OHP, androstenedione (A) and cyclic adenosine 3'5'-monophosphate (cAMP) were increased by hCG in the hemicastrated animal at all ages. cAMP and T production by enriched preparations of dispersed interstitial cells from control testes was increased by hCG in all groups. In fetuses pretreated with hCG in vivo the addition of hCG in vitro failed to modify cAMP and T production. 100 micrograms of LHRH to a 130-day-old fetus increased plasma LH and T levels. From these experiments, it is suggested that the low plasma LH and T levels found throughout the last trimester of fetal life reflect a relative lack of endogenous LHRH synthesis and/or release, rather than reduced testicular steroidogenic capacity.  相似文献   

15.
Evidence for episodic secretion of testosterone in laboratory mice.   总被引:2,自引:0,他引:2  
A Bartke  S Dalterio 《Steroids》1975,26(6):749-756
The concentration of testosterone (T) in the peripheral plasma of laboratory mice is extremely variable. This variability is already evident at 20--25 days of age and is not eliminated by brief or chronic exposure to male or female mice, or by isolation. The variation in T levels in plasma samples collected from the same animals on different occasions is comparable to the variation between individuals bled on a single occasion. The concentration of T in the testis is as variable as that in the peripheral plasma. It is suggested that in the laboratory mouse T is produced and released in an episodic fashion, that elevations in T levels in peripheral plasma of mice are greater than those observed in other species, and that testicular secretory episodes are interspersed with periods of minimal steroidogenic activity.  相似文献   

16.
Diabetes mellitus impairs testicular activity and leads to infertility. Leptin is one of the endogenous regulators of the male reproductive functions, but the role of leptin and its receptor (LEPR/Ob‐R) in the control of testosterone production and testicular proliferation has not been investigated so far, especially in the Type 1 diabetes mellitus (DM1). Metformin is an anti‐hyperglycemic drug which is beneficial for treating the both DM2 and DM1. The aim of this work was to study the possible role of leptin and Ob‐R in the regulation of steroidogenesis and proliferation in the testes of mice with streptozotocin‐induced DM1 (75 mg/kg/day, 4 days) and to estimate the restoring effect of metformin treatment (500 mg/kg, 2 weeks) on the diabetic testes. In the diabetic testes, the plasma and intratesticular leptin levels and plasma testosterone levels were reduced and completely restored by metformin treatment. Metformin also restored the expression of the steroidogenic transport protein steroidogenic acute regulatory protein reduced in DM1. In the diabetic testes, the expression of Ob‐R was downregulated and the immunolocalization of Ob‐R showed weak staining in the Leydig cells, the primary spermatocytes and the round spermatids. The germ cell proliferation was also reduced in DM1, as noticed with proliferating cell nuclear antigen (PCNA) expression. Metformin increased the Ob‐R expression and immunostaining in the different cell types and improved the PCNA expression. Thus, DM1 impairs the testicular steroidogenesis and proliferation by inhibiting the leptin signaling, causing a decrease in leptin levels and Ob‐R expression in the testes of diabetic mice, while metformin improves the leptin signaling and restores testosterone production and testicular proliferation.  相似文献   

17.
The regulation of testicular hCG binding and steroidogenesis in adult mutant mice with hereditary diabetes and obesity was studied. Low doses of hCG caused no change in hCG binding in obese (ob/ob) mice, whereas, in diabetic (db/db) mice, the increase in binding measured 24 h after hCG administration was not as great as in normal males. Intermediate doses of hCG caused a decrease in hCG binding in obese and normal mice, but not in diabetic animals. However, 72 h after injection of intermediate doses of hCG, a decrease in hCG binding also was observed in diabetic mice. Plasma testosterone was elevated 24 h after hCG injection in all types of mice studied, but the increase in diabetic mice was smaller than in normal animals. However, 72 h after treatment with hCG, plasma testosterone was still elevated in diabetic mice, but not in normal males. In vitro, hCG stimulated testicular testosterone synthesis in all groups of mice, but the observed increase was smaller in diabetic and obese than in normal animals. Plasma LH levels were higher in diabetic than in normal mice, whereas plasma FSH and prolactin levels were lower in obese mice than in normal animals. All parameters (i.e., LH receptors and circulating hormone levels) measured in yellow (Ay/a) mice were similar to those in normal (a/a) mice. The present study indicates that in these models for noninsulin-dependent diabetes, the testicular metabolism of LH receptors and capacity to secrete steroids is altered.  相似文献   

18.
The role of the thyroid gland in modulating the gonad function depends on the functional state of the gonads. In sexually inactive (short-day's) male Japanese quails, thyroidectomy and thyroxine treatment prove ineffective. Thyroxine administered simultaneously with photo-gonadostimulation inhibits the maturation of the gonads: the testes decrease in weight, the metabolic clearance rate of testosterone accelerates, resulting in a decrease in the plasma level, and androsterone production increases. Photo-gonadostimulation of thyroidectomized quails shows down the growth of the testicles and decreases the plasma testosterone level. The latter change can be related to the inhibition of the secretion rate. Both thyroidectomy and thyroxine administration performed in mature male quail, cock, pigeon or Peking duck lower the testosterone plasma level. The loss of the testicular weight is more expressed in hyperthyroid than in normal quails, referring to the role of the increased thyroxine level in the seasonal (summer) gonadal involution. Thyroidectomy performed on sexually inactive (short-day's) female Japanese quails does not affect the ovarian structure, but 17 beta-oestradiol and testosterone plasma levels show a slight increase. Thyroxine administration is followed by a moderate increase in the size of the white follicles, and an increase of both the progesterone and the oestrogen concentrations. Photo-gonadostimulation of thyroidectomized quails causes an inhibition of the mechanism of ovulation without inhibiting the development of the yellow follicles. A similar phenomenon has been observed in mature quails and domestic fowls after thyroidectomy. In both cases, an unbalanced secretion of the sexual steroids occurs: the 17 beta-oestradiol plasma level declines, while the progesterone level increases. Simultaneous application of thyroxine and photo-gonadostimulation on female quails inhibits gonadal maturation: the growing of the yellow follicles slows down. In thyroxine-treated birds, the plasma level of all of the sexual steroids shows a considerable decrease, which can be attributed to a reduced secretion rate and increased metabolic clearance. In hatching turkeys, we failed to observe the increase of the T3 level described for other species, however, the T4 plasma concentration was increasing at the early period of hatching. The role of the thyroid hormones in the development of hatching has not been cleared up so far. Corticosterone administration shows a slight stimulating effect on the gonadal function of sexually inactive male and female Japanese quails.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
We have previously shown that testicular fluid contains factors that can inhibit luteinizing hormone (LH)-stimulated androgen production by Leydig cells, and others have reported the presence of immunoreactive vasopressin (iAVP) in the testes as well as in vitro inhibition by vasopressin of Leydig cell-androgen production. In the current report, we have used an established radioimmunoassay (RIA) to measure the concentration of iAVP in testicular fluid and have related changes in iAVP concentration to disruption of the seminiferous tubules. Spermatogenesis was disrupted in adult rats by surgically establishing bilateral cryptorchidism. The concentration of iAVP decreased progressively from 349 +/- 52 to 61 +/- 5 pg/ml during 4 wk. When cryptorchidism was unilaterally established, the concentration of iAVP in fluid from that testis decreased to 116 +/- 19 pg/ml while the concentration of iAVP in the contralateral scrotal testis remained unaffected. Unilateral ligation of the ductuli efferentes also caused an equivalent unilateral decrease in iAVP to 110 +/- 15 pg/ml. The osmotic pressure of the testicular fluid was not altered by disruption of gametogenesis, and the extracellular "albumin space" was not increased. Therefore, the decrease in concentration of iAVP was probably not due to dilution with increased amounts of interstitial fluid. We conclude that the disruption of spermatogenesis is associated with a decrease in the concentration of iAVP in testicular fluid and suggest that AVP or a similar peptide may be involved in the intratesticular mechanisms associated with increased production of androgen by Leydig cells after disruption of spermatogenesis.  相似文献   

20.
Adult rats were treated with ethane dimethane sulphonate (EDS), an agent that destroys Leydig cells. Within 5 days after EDS treatment, the levels of testosterone (T) in the circulation and in the testis were decreased to very low values, which makes it possible to manipulate the testicular T concentration through administration of exogenous T. Spermatogenesis was not markedly affected within 5 days after EDS treatment, also not in the absence of T administration. In testes of EDS-treated rats, the androgen receptor mRNA (ARmRNA) level remained unaltered for 5 days. In ventral prostate, however, this treatment caused a pronounced upregulation of the level of ARmRNA, which could be counteracted by implantation of silastic T implants immediately after EDS treatment. In EDS-treated rats carrying a T implant and in untreated rats, the same number of specific [3H]R1881 binding sites was observed using a total testis nuclear fraction (Scatchard analysis). In testes from EDS-treated rats without T implants, androgen receptors (AR) did not fractionate into the nuclear fraction; however, the total testicular AR content in these animals (measured by nuclear [3H]R1881 binding after receptor transformation through injection of a high dose of T, 2 h before killing the rats) remained unaltered. Immunoprecipitation and Western blotting using anti N-terminal antibodies seemed to indicate that the total testicular amount of AR protein in the EDS-treated rats was very low as compared to that in EDS-treated rats carrying T implants and in untreated rats. Even after receptor retransformation (by injection of a high dose of T) the receptors were not quantitatively detected by immunoprecipitation and Western blotting. This may point to a structural modification of the AR that occurs in the prolonged absence of androgens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号