首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Escherichia coli cells carrying the srnB+ gene of the F plasmid, rifampin, added at 42 degrees C, induces the extensive rapid degradation of the usually stable cellular RNA (Ohnishi, Y., (1975) Science 187, 257-258; Ohnishi, Y., Iguma, H., Ono, T., Nagaishi, H. and Clark, A.J. (1977) J. Bacteriol. 132, 784-789). We have studied further the necessity for rifampin and for high temperature in this degradation. Streptolydigin, another inhibitor of RNA polymerase, did not induce the RNA degradation. Moreover, the stable RNA of some strains in which RNA polymerase is temperature-sensitive did not degrade at the restrictive temperature in the absence of rifampin. These data suggest that rifampin has an essential role in the RNA degradation, possibly by the modification of RNA polymerase function. A protein (Mr 12 000) newly synthesized at 42 degrees C in the presence of rifampin appeared to be the product of the srnB+ gene that promoted the RNA degradation. In a mutant deficient in RNAase I, the extent of the RNA degradation induced by rifampin was greatly reduced. RNAase activity of cell-free crude extract from the RNA-degraded cells was temperature-dependent. The RNAase was purified as RNAase I in DEAE-cellulose column chromatography and Sephadex G-100 gel filtration. Both in vivo and with purified RNAase I, a shift of the incubation mixture from 42 to 30 degrees C, or the addition of Mg2+ ions, stopped the RNA degradation. Thus, an effect on RNA polymerase seems to initiate the expression of the srnB+ gene and the activation of RNAase I, which is then responsible for the RNA degradation of E. coli cells carrying the srnB+ gene.  相似文献   

2.
The DNA-dependent RNA polymerase I (or A) from the lower eukaryote Aspergillus nidulans has been purified on a large scale to apparent homogeneity by homogenizing the fungal hyphae in liquid nitrogen, extraction of the enzyme at high salt concentration, precipitation of RNA polymerase activity with polymin P (a polyethylene imine), elution of the RNA polymerase from the polymin P precipitate, ammonium sulphate precipitation, molecular sieving on Bio-Gel A-1.5m, binding to ion-exchangers and DNA-cellulose affinity chromatography. By this procedure 1.6 mg of RNA polymerase I can be purified over 2000-fold from 500 g wet weight of starting material with a yield of 30--35%. The isolated RNA polymerase I is stable for several months at -20 degrees C. The subunit compostion has been resolved by polyacrylamide gel electrophoresis on two-dimensional gels, using either non-denaturing of 8 M urea (pH 8.7) cylindrical gels in the first dimension and sodium dodecyl sulphate slab gels in the second dimension. The putative subunits have molecular weights of 190,000, 135,000, 63,000, 62,000, 43,000, 29,000, (28,000), 16,000 and probably 13,000 and 12,000. Two distinct forms of RNA polymerase I (Ia and Ib) have been resolved by DEAE-Sephadex A-25 chromatography showing ample differences in enzymatic properties and subunit pattern. Additional information is given on RNA polymerase II (or B) which appears to be highly insensitive to alpha-amanitin at concentrations up to 400 micrograms/ml.  相似文献   

3.
In a medium containing 10mM Tris, pH 8, 10 mM MG++, 50 mM K+ and 10 mM NH4, the binding of an E. coli RNA polymerase holoenzyme unwinds the DNA helix by about 240 degrees at 37 degrees C. In this medium the total unwinding of the DNA increases linearly with the molar ratio of polymerase to DNA. The number of binding sites at which unwinding can occur is very large. If the K+ concentration is increased at 200 mM, the enzyme binds to only a limited number of sites, and the bound and free enzyme molecules do not exchange at an appreciable rate. The unwinding angle of the DNA per bound enzyme in this high salt medium is measured to be 140 degrees at 37 degrees C. The total unwinding angle for a fixed number of bound polymerase molecules per DNA is strongly temperature dependent, and decreases with decreasing temperature.  相似文献   

4.
The promoter-specific binding of Escherichia coli RNA polymerase to the T7-A3 and the lacUV5 promoters at 0 degrees C was analyzed by DNase I footprinting. At 37 degrees C, the footprint from RNA polymerase bound to the A3 promoter is essentially the same as that reported by Galas, D.J., and Schmitz, A., (1978) Nucleic Acids Res. 5, 3157-3170 for the lacUV5 promoter. At 0 degrees C, the footprint for the A3 promoter is well defined but reduced in size. The principal difference between the 0 and 37 degrees C footprints is a region from -2 to +18 which is protected by polymerase at the higher but not at the lower temperature. In contrast, the 0 degree C footprint for the lacUV5 promoter differs substantially in character from the footprint for A3 at 0 degree C. The footprint is similar to the pattern of DNase I digestion of DNA bound to a surface; alternating regions of sensitive and protected DNA are spaced at intervals of about 10 base pairs. This region of DNase I-sensitive and -resistant DNA has the same boundaries as the 0 degree C footprint on T7-A3. Temperature shift experiments confirmed the sequence specificity of the RNA polymerase interaction with UV5 at 0 degree C. These results indicate that RNA polymerase binds specifically to each promoter sequence in a closed complex. The increased time and amounts of RNA polymerase required to form the 0 degree C footprint on the lacUV5 promoter indicate that it binds RNA polymerase more weakly than does the T7-A3 promoter. Therefore there is a correlation between the binding constant for closed complex formation estimated from kinetic measurements and the formation of the 0 degree C footprint. The -35 region of the promoter may be more important in establishing the 0 degree C footprint because the T7-A3 promoter is a better match to the consensus sequence. Conversely, the -10 region seems less important because lacUV5 is a perfect match to the consensus, whereas the T7-A3 promoter matches at only five out of seven positions. The 0 degree C footprints encompass both regions along with the spacer; the combination of these regions rather than an individual region may determine the character of the footprint and the magnitude of the binding constant.  相似文献   

5.
6.
The kinetics of formation and of dissociation of open complexes (RPo) between Escherichia coli RNA polymerase (R) and the lambda PR promoter (P) have been studied as a function of temperature in the physiological range using the nitrocellulose filter binding assay. The kinetic data provide further evidence for the mechanism R + P in equilibrium I1 in equilibrium I2 in equilibrium RPo, where I1 and I2 are kinetically distinguishable intermediate complexes at this promoter which do not accumulate under the reaction conditions investigated. The overall second-order association rate constant (ka) increases dramatically with increasing temperature, yielding a temperature-dependent activation energy in the range 20 kcal (near 37 degrees C) to 40 kcal (near 13 degrees C) (1 kcal = 4.184 kJ). Both isomerization steps (I1----I2 and I2----RPo) appear to be highly temperature dependent. Except at low temperatures (less than 13 degrees C) the step I1----I2, which we attribute to a conformational change in the polymerase with a large negative delta Cp degrees value, is rate-limiting at the reactant concentrations investigated and hence makes the dominant contribution to the apparent activation energy of the pseudo first-order association reaction. The subsequent step I2----RPo, which we attribute to DNA melting, has a higher activation energy (in excess of 100 kcal) but only becomes rate-limiting at low temperature (less than 13 degrees C). The initial binding step R + P in equilibrium I1 appears to be in equilibrium on the time-scale of the isomerization reactions under all conditions investigated; the equilibrium constant for this step is not a strong function of temperature and is approximately 10(7) M-1 under the standard ionic conditions of the assay (40 mM-Tris . HCl (pH 8.0), 10 mM-MgCl2, 0.12 M-KC1). The activation energy of the dissociation reaction becomes increasingly negative at low temperatures, ranging from approximately -9 kcal near 37 degrees C to -30 kcal near 13 degrees C. Thermodynamic (van't Hoff) enthalpies delta H degrees of open complex formation consequently are large and temperature-dependent, increasing from approximately 29 to 70 kcal as the temperature is reduced from 37 to 13 degrees C. The corresponding delta Cp degrees value is approximately -2.4 kcal/deg. We propose that this large negative delta Cp degrees value arises primarily from the burial of hydrophobic surface in the conformational change (I1 in equilibrium I2) in RNA polymerase in the key second step of the mechanism.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Bacteriophage T3-induced RNA polymerase is rapidly inactivated at 42 degrees C. Addition of T3 DNA delays this process for 30 s and reduces the rate with which the enzyme activity is lost indicating that a labile binary complex between T3 DNA and polymerase must have been formed. The ternary complex between T3-specific RNA polymerase, T3 DNA, and nascent RNA chains obtained when the enzyme is incubated with T3 DNA, GTP, ATP, and UTP is stable to heat (42 degrees C) and only slowly inactivated by polyvinyl sulfate. The optimal temperature for the formation of polyanionresistant ternary complexes is 30 degrees C while the elongation of T3 RNA chains proceeds fastest at 38 degrees C.  相似文献   

8.
Optimum conditions were studied for the determination of RNA polymerase activity in nuclei isolated from Rana catesbeiana tadpole hindlimbs. Tadpole nuclei were tested at 15 degrees C in the presence of spermidine (1.5 mM) bovine serum albumin (1.0%) and a high concentration of nucleoside triphosphates (1.0 mM). Tadpole nuclei exhibited a 60-70% higher total RNA polymerase activity with maximum activity of RNA polymerase I at 4 hr and RNA polymerase II at 8 hr after triiodothyronine injection. The results support a nuclear mechanism for the differentiation of tadpole hindlimbs induced by triiodothyronine.  相似文献   

9.
10.
Temperature dependence of RNA synthesis parameters in Escherichia coli   总被引:19,自引:10,他引:9       下载免费PDF全文
For Escherichia coli B/r growing in glucose minimal medium, the following parameters of RNA synthesis remained invariant between 20 and 40 degrees C: RNA polymerase concentration (RNA polymerase/mass), rRNA and tRNA concentration (RNA/mass), RNA polymerase activity (fraction of total RNA polymerase actively engaged in RNA chain elongation), and stable RNA synthesis relative to total RNA synthesis. The following parameters increased 3.4-fold over the same temperature range: rRNA chain elongation rate, guanosine tetraphosphate (ppGpp) concentration, and culture growth rate. Above 40 degrees C, the changes became more complex, and the growth rate began to decrease. The observation that most RNA synthesis parameters are temperature invariant despite the increase of ppGpp suggests that the mechanism of RNA synthesis control by ppGpp, assumed to involve an interaction of RNA polymerase wtih ppGpp, is itself temperature dependent such that, with increasing temperature, higher concentrations of ppGpp are required to affect the RNA polymerase.  相似文献   

11.
Cell free extracts were prepared from E. coli CRT266 9 min after infection with T3 phages. RNA synthesis in these extracts is almost entirely due to T3 RNA polymerase. The inactivation of T3 RNA polymerase in these extracts proceeds rapidly at 42 degrees C. 90% of the activity is lost within 10 min at this temperature. Under conditions where the formation of a stable initiation complex with T3 DNA is possible, i.e., in the presence of GPT, APT, and UTP the T3 RNA polymerase becomes protected against heat inactivation losing only )0% of its activity during an exposure to 42 degrees C for 10 min. Studies on the time course of RNA synthesis have shown that reinitiation is still possible at 37 degrees C and 42 degrees C. At 44 degrees C, however, RNA synthesis stops abruptly after 3 min indicating that reinitiation does no longer take place. The elongation of already initiated T3 RNA chains is rather resistant to heat. At 44 degrees C the same elongation rates are observed as at 37 degrees C and 42 degrees C, respectively.  相似文献   

12.
R S Johnson 《Biochemistry》1991,30(1):198-206
A derivative of RNA polymerase containing approximately 2 pyrene equiv per enzyme molecule has been used to study the interaction of RNA polymerase with poly[d(A-T)].poly[d(A-T)] and poly[d-(G-C)].poly[d(G-C)]. As monitored by fluorescence spectroscopy, pyrenyl RNA polymerase displays a unique set of conformational changes with each synthetic polynucleotide as a function of temperature. An increase in the fluorescence intensity was observed for both polynucleotides at 5 degrees C. A decrease was observed in the case of poly[d(A-T)].poly[d(A-T)] at 25 and 37 degrees C, whereas no discernible perturbation was observed in the case of poly[d(G-C)].poly[d(G-C)]. Different salt dependencies were observed for the interaction of pyrenyl RNA polymerase with these polynucleotides at 5 and 25 degrees C. Further characterization of these interactions as well as correlation of the observed fluorescence changes to the corresponding open and closed complexes was carried out with heparin. The interaction between pyrenyl RNA polymerase and poly[d-(A-T)].poly[d(A-T)] at 25 degrees C was quantified by using two different methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
15.
16.
17.
The gene 1 of the Klebsiella phage K11 encoding the phage RNA polymerase was amplified using the polymerase chain reaction of the Pfu DNA polymerase, cloned and expressed under the control of tac promoter in Escherichia coli. Although the gene was efficiently expressed in E. coli BL21 cells at 37 degrees C, most of the K11 RNA polymerase produced was insoluble, in contrast to soluble expression of the cloned T7 RNA polymerase gene. Coexpression of the bacterial chaperone GroES and GroEL genes together did not help solubilize the K11 RNA polymerase. When the temperature of cell growth was lowered, however, solubility of the K11 RNA polymerase was increased substantially. It was found much more soluble when expressed at 25 degrees C than at 30 and 37 degrees C. Thus, the cloned K11 RNA polymerase gene was expressed in E. coli mostly to the soluble form at 25 degrees C. The protein was purified to homogeneity by chromatography using DEAE-Sephacel and Affigel-blue columns and was found to be active in vitro with the K11 genome or a K11 promoter. The purified K11 RNA polymerase showed highly stringent specificity for the K11 promoter. Low-level cross-reactivity was shown with the SP6 and T7 consensus promoters, while no activity shown with the T3 consensus promoter at all.  相似文献   

18.
19.
20.
E M Owens  G N Gussin 《Gene》1983,23(2):157-166
Escherichia coli RNA polymerase binding to the promoters pR and pRM of bacteriophage lambda was visualized and quantitated by electron microscopy. Although the two promoters are located close together in the phage genome, their proximity to the end of an 889-bp HaeIII DNA fragment made it possible to position binary complexes within 18 bp (2%) intervals. Thus, polymerase binding to pR and pRM could be distinguished by comparing the locations of binary complexes formed with wild-type and mutant (prm-) DNA at 37 degrees and 15 degrees C. We found that at 37 degrees C, RNA polymerase bound primarily to pR, while at 15 degrees C the efficiency of binding was the same at pRM as at pR. In addition, at 15 degrees C the overall efficiency of binding was significantly reduced relative to that at 37 degrees C. When the enzyme was incubated with prm- DNA, binding to pRM was reduced at both temperatures, as expected. Reduced binding to pRM was accompanied by an increase in binding to pR, apparently as a consequence of the low enzyme-to-DNA ratios used in these experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号