首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combining higher resolution chromosome analysis and bromodeoxyuridine (BrdU) incorporation, our study demonstrates that: (1) Human chromosomes synthesize DNA in a segmental but highly coordinated fashion. Each chromosome replicates according to its innate pattern of chromosome structure (banding). (2) R-positive bands are demonstrated as the initiation sites of DNA synthesis in all human chromosomes, including late-replicating chromosomes such as the LX and Y. (3) Replication is clearly biphasic in the sense that late-replicating elements, such as G-bands, the Yh, C-bands, and the entire LX, initiate replication after it has been completed in the autosomal R-bands (euchromatin) with minimal or no overlap. The chronological priority of R-band replication followed by G-bands is also retained in the facultative heterochromatin or late-replicating X chromosome (LX). Therefore, the inclusion of G-bands as a truly late-replicating chromatin type or G(Q)-heterochromatin is suggested. (4) Lateral asymmetry (LA) in the Y chromosome can be detected after less than half-cycle in 5-bromodeoxyuridine (BrdUrd), and the presence of at least two regions of LA in this chromosome is confirmed. (5) Finally, the replicational map of human chromosomes is presented, and a model of replication chronology is suggested. Based on this model, a system of nomenclature is proposed to place individual mitoses (or chromosomes) within S-phase, according to their pattern of replication banding. Potential applications of this methodology in clinical and theoretical cytogenetics are suggested.  相似文献   

2.
DNA replication within the first 10 min of the S phase was studied using synchronized human diploid cells. It appeared that every chromosome in the human genome, including late-replicating X, had segment(s) which initiated DNA replication within the first 10 min of the S phase. The position, the shape and the size of these segments corresponded to those of Q(G)-negative bands suggesting that each of them constitutes a basic unit of initiation of DNA replication.  相似文献   

3.
A family of DNA fragments from the yeast genome has properties that suggest that chromosome replication starts at specific DNA sequences. These elements (autonomously replicating sequences: ARS) have a bipartite structure: a small (less than 20 base pairs) AT-rich region essential for function, flanked by larger regions important for maximal activity of the replicator. In an attempt to identify proteins involved in initiation of replication, yeast mutants that show an enhanced ability to replicate minichromosomes with defective ARSS have been isolated.  相似文献   

4.
5.
A model for replication of the ends of linear chromosomes   总被引:3,自引:1,他引:2       下载免费PDF全文
Linear chromosomes possessing internal repeats of their terminal sequences can form intramolecular crossed-strand exchanges that allow replication of the chromosome ends. Evidence is discussed that such a mechanism may be utilized during replication of herpes simplex virus DNA and during replication of macronuclear DNA from the hypotrichous ciliate Oxytricha.  相似文献   

6.
7.
8.
Passage through mitosis resets cells for a new round of chromosomal DNA replication [1]. In late mitosis, the pre-replication complex - which includes the origin recognition complex (ORC), Cdc6 and the minichromosome maintenance (MCM) proteins - binds chromatin as a pre-requisite for DNA replication. S-phase-promoting cyclin-dependent kinases (Cdks) and the kinase Dbf4-Cdc7 then act to initiate replication. Before the onset of replication Cdc6 dissociates from chromatin. S-phase and M-phase Cdks block the formation of a new pre-replication complex, preventing DNA over-replication during the S, G2 and M phases of the cell cycle [1]. The nuclear membrane also contributes to limit genome replication to once per cell cycle [2]. Thus, at the end of M phase, nuclear membrane breakdown and the collapse of Cdk activity reset cells for a new round of chromosomal replication. We showed previously that protein kinase A (PKA) activity oscillates during the cell cycle in Xenopus egg extracts, peaking in late mitosis. The oscillations are induced by the M-phase-promoting Cdk [3] [4]. Here, we found that PKA oscillation was required for the following phase of DNA replication. PKA activity was needed from mitosis exit to the formation of the nuclear envelope. PKA was not required for the assembly of ORC2, Cdc6 and MCM3 onto chromatin. Inhibition of PKA activity, however, blocked the release of Cdc6 from chromatin and subsequent DNA replication. These data suggest that PKA activation in late M phase is required for the following S phase.  相似文献   

9.
On ordered DNA replication in polytene chromosomes   总被引:4,自引:1,他引:3       下载免费PDF全文
W Plaut 《Genetics》1969,61(1):Suppl:239-Suppl:244
  相似文献   

10.
11.
12.
13.
DNA replication in polytene chromosomes of Rhynchosciara angelae   总被引:1,自引:0,他引:1  
  相似文献   

14.
C Yang  J F Theis  C S Newlon 《Genetics》1999,152(3):933-941
DNA replication origins, specified by ARS elements in Saccharomyces cerevisiae, play an essential role in the stable transmission of chromosomes. Little is known about the evolution of ARS elements. We have isolated and characterized ARS elements from a chromosome III recovered from an alloploid Carlsberg brewing yeast that has diverged from its S. cerevisiae homeologue. The positions of seven ARS elements identified in this S. carlsbergensis chromosome are conserved: they are located in intergenic regions flanked by open reading frames homologous to those that flank seven ARS elements of the S. cerevisiae chromosome. The S. carlsbergensis ARS elements were active both in S. cerevisiae and S. monacensis, which has been proposed to be the source of the diverged genome present in brewing yeast. Moreover, their function as chromosomal replication origins correlated strongly with the activity of S. cerevisiae ARS elements, demonstrating the conservation of ARS activity and replication origin function in these two species.  相似文献   

15.
Intermediates of chromosomal DNA replication in Escherichia coli   总被引:2,自引:0,他引:2  
The product of bacteriophage T4 gene 63 has two activities, one which catalyzes the attachment of tail fibers to base plates during morphogenesis (TFA) and one which catalyzes the joining of single-stranded polynucleotides (RNA ligase). The only phenotype attributed to mutations in gene 63 is a defect in attachment of tail fibers leading to fiberless T4 particles. However, it is suspected that TFA and RNA ligase are unrelated activities of the same protein since they have very different requirements in vitro.We have isolated new mutants which have lost the RNA ligase but have retained the TFA activity of the product of gene 63. These mutants exhibit defects in T4 DNA replication and late gene expression in some strains of Escherichia coli. This work allows us to draw three conclusions: (1) the TFA and RNA ligase activities are unrelated functions of the gene 63 product making this the prototype for a protein which has more than one unrelated function; (2) the RNA ligase is probably involved in DNA metabolism rather than RNA processing as has been proposed: (3) the RNA ligase and polynucleotide 5′ kinase 3′ phosphatase of T4 perform intimately related functions.  相似文献   

16.
The initiation of chromosomal DNA replication in eukaryotes   总被引:9,自引:0,他引:9  
Eukaryotic DNA replication initiates at many sites on each chromosome during the S phase of the cell cycle. Each origin of replication lies in a unique chromosomal environment and can be regulated in different cell types both at the level of utilization and the time of initiation during S phase. In this review, we examine the control and the mechanism of eukaryotic origin function.  相似文献   

17.
Summary A replication map of human fibroblast chromosomes from two diploid human female fibroblast lines, 46,XX and 46,X, del (X)(q13), was determined using the fluorescent plus Giemsa (FPG) technique. Each chromosome was found to stain homogeneously dark when thymidine was incorporated for the entire S phase of that particular cell. As the duration of exposure to thymidine progressively decreased by increasing the incubation time in bromodeoxyuridine, the staining intensity of chromosomes decreased and, concurrently, gaps in the staining began to appear. These gaps coincide with R bands and represent the earliest areas to complete DNA synthesis. As these areas widen and increase in frequency, first Q and G bands appear, and finally C bands.Homologous X chromosomes were easily differentiated by either a comparison of the bands present or their staining intensity. The replication kinetics of the structurally abnormal heterocyclic X chromosome were very similar to those of the normal heterocyclic X chromosome. The X chromosome with deletion of a portion of the long arm was consistently late in replication.  相似文献   

18.
19.
When the patterns of replicating chromosome bands of homologous chromosomes within a diploid cell during DNA synthesis phase are compared, the frequency of disparity (i.e. a band present on only one homologue) is less than expected on the basis of chance. This could be taken as implying some “link” between homologues which constrains their programmes of replication to keep in step.This paper develops a model showing that the observed disparities can be accommodated within a framework of homologue independence. Differences between cells in the time of appearance of bands lead in any sample to the summation of an infinitude of binomial distributions and hence to over-dispersion.The model fits observed data for bands replicating in euchromatic and heterochromatic chromosome regions obtained from Syrian hamster fibroblast cells growing in vitro.  相似文献   

20.
Seedlings of Luzula purpurea (2n=6) were placed in contact with H3-thymidine for 30 minutes. After removal of the isotope the roots and leaf primordia were fixed at intervals between 0 and 14 hours. The percentage of labelled mitoses follows a very close curve in roots and leaf primordia. In both tissues the value of G2 is approximately 3 to 4 hours and of S circa 8 hours. DNA replication in the chromosomes of L. purpurea is asynchronous. The discontinuous DNA synthesis discloses that Luzula chromosomes are composed of many segments replicating independently of each other. The results support a polycentric rather than a completely diffuse kinetochore system in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号