首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
不同脂肪源对泥鳅稚鱼生长性能及脂肪酸组成的影响   总被引:1,自引:0,他引:1  
为研究饲料不同脂肪源对泥鳅稚鱼生长性能及鱼体脂肪酸组成的影响, 实验选择初始体重为(10.002.00) mg的健康泥鳅稚鱼1500尾, 随机分为5组, 每组3个重复, 每个水箱100尾鱼, 分别投喂5种含有鱼油(FO)、大豆油(SO)、玉米油(CO)、花生油(PeO)和棕榈油(PaO)的配合饲料, 每种饲料3个重复, 饲养期为40d。结果显示, 摄食不同脂肪源饲料的泥鳅稚鱼在增重率、成活率、饲料系数等生长性能指标和体成分上没有显著差异(P0.05), 但是, 摄食FO组鱼体极性脂肪含量显著高于其他植物油组(P0.05)。鱼油组鱼体中性和极性脂肪中总n-3系脂肪酸含量和EPA+DHA含量显著高于其他植物油组(P0.05)。植物油组鱼体极性脂肪中20:4n-6含量显著高于鱼油组(P0.05), 表明泥鳅稚鱼具有将C18转换为C20的能力。研究表明, 在饲料中添加足量磷脂, 鱼油、大豆油、玉米油、花生油、棕榈油都可以用作泥鳅稚鱼期专用饲料脂肪源。  相似文献   

2.
The purpose of the study was to investigate the effect of flaxseed oil (FO), rich in alpha-linolenic acid (ALA) (18:3 n-3) on growth parameters and lipid metabolism of rats fed with high fat diet. High fat diet (HFD) resulted in significant alterations in hepatic lipids, increase in body weight gain and negative effect on lipoprotein metabolism. FO supplementation significantly lowered the increase in body weight gain, liver weight, plasma cholesterol, triglycerides, phospholipids, free fatty acids, high-density lipoprotein (HDL), low-density lipoprotein-cholesterol (LDL-C), very low-density lipoprotein (VLDL), LDL/HDL and TC/HDL ratio in HFD fed rats. FO significantly reduced the hepatic and plasma lipid levels indicating its hypolipidemic activity. On the other hand, oral administration of FO exhibited lower plasma lipoprotein profile as compared to HFD rats. Hepatic protection by FO is further substantiated by the normal liver histological findings in HFD fed rats. These data suggest that FO participate in the normal regulation of plasma lipid concentration and cholesterol metabolism in liver. No adverse effect of FO on growth parameters and plasma lipids in rats fed with fat-free diet. The results of the present study demonstrate that FO may be developed as a useful therapy for hyperlipidemia through reducing hepatic lipids, thereby proving its hypolipidemic activity.  相似文献   

3.
Hypertension is associated with greater than normal lipoperoxidation and an imbalance in antioxidant status, suggesting that oxidative stress is important in the pathogenesis of this disease. Although many studies have examined the effect of antioxidants in the diet on hypertensión and other disorders, less attention has been given to the evaluation of the role of specific dietary lipids in modulating endogenous antioxidant enzyme status. Previously, we have described that liver antioxidant enzyme activities may be modulated by consumption of different oils in normotensive rats. The purpose of the present study was to examine the effects of feeding different lipidic diets (olive oil, OO, high-oleic-acid sunflower oil, HOSO, and fish oil, FO) on liver antioxidant enzyme activities of spontaneously hypertensive rats (SHR). Plasma and liver lipid composition was also studied. Total triacylglycerol concentration increases in plasma and liver of animals fed on the HOSO and OO diets and decreases in those fed on the FO diet, relative to rats fed the control diet. The animals fed on the oil-enriched diet show similar hepatic cholesterol and phospholipid contents, which are higher than the control group. Consumption of the FO diet results in a decrease in the total cholesterol and phospholipid concentration in plasma, compared with the high-oleic-acid diets. In liver, the FO group show higher levels of polyunsaturated fatty acids (PUFA) of the (n-3) series, in relation to the animals fed on the diets enriched in oleic acid. Livers of FO-fed rats, compared with those of OO- and HOSO-fed rats showed: (i) significantly higher activities of catalase, glutathione peroxidase and Cu/Zn superoxide dismutase; (ii) no differences in the NADPH-cytochrome c reductase activity. The HOSO diet had a similar effect on liver antioxidant enzyme activities as the OO diet. In conclusion, it appears that changes in the liver fatty acid composition due mainly to n-3 lipids may enhance the efficiency of the antioxidant defence system and may yield a benefit in the hypertension status. The two monounsaturated fatty acids oils studied (OO and HOSO), with the same high content of oleic acid, but different content of natural antioxidants, had similar effects on the antioxidant enzyme activities studied.  相似文献   

4.
Inflammatory Bowel Diseases (IBD), including Crohn''s Disease and Ulcerative Colitis, have long been associated with a genetic basis, and more recently host immune responses to microbial and environmental agents. Dinitrobenzene sulfonic acid (DNBS)-induced colitis allows one to study the pathogenesis of IBD associated environmental triggers such as stress and diet, the effects of potential therapies, and the mechanisms underlying intestinal inflammation and mucosal injury. In this paper, we investigated the effects of dietary n-3 and n-6 fatty acids on the colonic mucosal inflammatory response to DNBS-induced colitis in rats. All rats were fed identical diets with the exception of different types of fatty acids [safflower oil (SO), canola oil (CO), or fish oil (FO)] for three weeks prior to exposure to intrarectal DNBS. Control rats given intrarectal ethanol continued gaining weight over the 5 day study, whereas, DNBS-treated rats fed lipid diets all lost weight with FO and CO fed rats demonstrating significant weight loss by 48 hr and rats fed SO by 72 hr. Weight gain resumed after 72 hr post DNBS, and by 5 days post DNBS, the FO group had a higher body weight than SO or CO groups. Colonic sections collected 5 days post DNBS-treatment showed focal ulceration, crypt destruction, goblet cell depletion, and mucosal infiltration of both acute and chronic inflammatory cells that differed in severity among diet groups. The SO fed group showed the most severe damage followed by the CO, and FO fed groups that showed the mildest degree of tissue injury. Similarly, colonic myeloperoxidase (MPO) activity, a marker of neutrophil activity was significantly higher in SO followed by CO fed rats, with FO fed rats having significantly lower MPO activity. These results demonstrate the use of DNBS-induced colitis, as outlined in this protocol, to determine the impact of diet in the pathogenesis of IBD.  相似文献   

5.
For aquaculture of marine species to continue to expand, dietary fish oil (FO) must be replaced with more sustainable vegetable oil (VO) alternatives. Most VO are rich in n-6 polyunsaturated fatty acids (PUFA) and few are rich in n-3 PUFA but Camelina oil (CO) is unique in that, besides high 18:3n-3 and n-3/n-6 PUFA ratio, it also contains substantial long-chain monoenes, commonly found in FO. Cod (initial mass ~ 1.4 g) were fed for 12 weeks diets in which FO was replaced with CO. Growth performance, feed efficiency and biometric indices were not affected but lipid levels in liver and intestine tended to increase and those of flesh, decrease, with increasing dietary CO although only significantly for intestine. Reflecting diet, tissue n-3 long-chain PUFA levels decreased whereas 18:3n-3 and 18:2n-6 increased with inclusion of dietary CO. Dietary replacement of FO by CO did not induce major metabolic changes in intestine, but affected genes with potential to alter cellular proliferation and death as well as change structural properties of intestinal muscle. Although the biological effects of these changes are unclear, given the important role of intestine in nutrient absorption and health, further attention should be given to this organ in future.  相似文献   

6.
Triplicate groups of European sea bass (Dicentrarchus labrax L.), of initial mass 5 g, were fed one of three practical type diets for 64 weeks. The three diets differed only in the added oil and were 100% fish oil (FO; diet A), 40% FO/60% vegetable oil blend (VO; diet B) where the VO blend was rapeseed oil, linseed oil and palm oil in the ratio 10/35/15 by weight and 40% FO/60% VO blend (diet C) where the ratio was 24/24/12 by weight. After final sample collection the remaining fish were switched to a 100% FO finishing diet for a further 20 weeks. After 64 weeks fish fed 60% VO diet B had significantly lower live mass and liver mass than fish fed diets A and C although SGR, FCR and length were not different between groups. There were no differences in any of the above parameters after either 14 or 20 weeks on the FO finishing diet. Fatty acid compositions of flesh were correlated to dietary fatty acids although there was selective retention of docosahexaenoic acid (22:6n-3; DHA) regardless of dietary input. Inclusion of dietary VO resulted in significantly reduced flesh levels of DHA and eicosapentaenoic acid (20:5n-3; EPA) while 18:1n-9, 18:2n-6 and 18:3n-3 were all significantly increased in fish fed the 60% VO diets. Fatty acid compositions of liver showed broadly similar changes, as a result of dietary fatty acid composition, as was seen in flesh. However, the response of flesh and liver to feeding a FO finishing diet was different. In flesh, DHA and EPA values were not restored after 14 or 20 weeks of feeding a FO finishing diet with the values in fish fed the two 60% VO diets being around 70% of the values seen in fish fed FO throughout. Conversely, and despite liver DHA and EPA levels being reduced to only 40% of the value seen in fish fed 100% FO after 64 weeks, the levels of liver DHA and EPA were not significantly different between treatments after feeding the FO finishing diet for 14 weeks. However, a 200 g portion of sea bass flesh, after feeding the experimental diets for 64 weeks followed by a FO diet for 14 weeks, contained 1.22 and 0.95 g of EPA + DHA for fish fed FO or 60% VO, respectively. Therefore, sea bass grown for most of the production cycle using diets containing 60% VO can still contribute a significant quantity of healthy n-3 HUFA to the human consumer.  相似文献   

7.
This study was carried out to evaluate the effects of dietary lipid sources on growth performance, fatty acids composition and cold tolerance of Nile tilapia (Oreochromis niloticus) fingerlings (7.00 ± 0.50 g/fish). The fish were fed four isonitrogenous (28% crude protein), isocaloric (500 kcal/100 g) diets containing four lipid sources; fish oil (FO), corn oil (CO), coconut oil (COCO) or fish oil/ corn oil mixture (1:1 ratio) (oil mix). The diets were offered to the fish at a daily rate of 3% of their body weights (BW), twice a day for two months. After the feeding trial, the fish were exposed to decreasing water temperature from 25 °C until the appearance of death symptoms. The results revealed that FO-based diets (FO and oil mix) produced the best growth rates and feed efficiency, followed by corn oil diet, while COCO resulted in the lowest performance. Fish fed on CO and oil mix showed higher body unsaturated fatty acids (UFA) and lower lethal temperature than those fed on FO- or COCO-based diets. These results indicate that cold shock can modify the lipid metabolism in Nile tilapia by lowering total body saturated fatty acids and raising n-6 and n-3 UFA. This finding suggests that the inclusion of high levels of plant oils in Nile tilapia feeds can enhance their cold tolerance.  相似文献   

8.
The predominant polyunsaturated fatty acids of the n-6 family found in corn oil (CO) are crucial for normal mammary duct formation when fed to animals. However, as shown here, not all polyunsaturated fatty acids are equally effective in stimulating mammary gland development. The n-3 fatty acids in a 10% menhaden oil (MO) diet fed to mice effectively reduced both the diameter and the length of the growing mammary ducts. Previously, we demonstrated a similar reduction in duct growth by feeding a 10% fat diet high in those saturated fats found in hydrogenated cotton seed oil. The inhibited rate of duct maturation caused by hydrogenated cotton seed oil was reversed when the mice were allowed to mature on a diet containing n-6 fatty acids prior to feeding the saturated fat diet. The addition of 1% CO to a 9% hydrogenated cotton seed oil diet fed to immature mice was also sufficient to restore duct growth. Mice fed menhaden oil diets, on the other hand, continued to show impaired ductal growth well into adulthood. Examination of the ovaries from MO-fed mice as compared with CO-fed mice revealed significantly fewer corpora lutea. When exogenous progesterone was given to MO-fed mice, ductal growth was partially restored, but not to the extent seen in mice fed corn oil diets. Investigation of the fatty acid contents of livers of these mice revealed reduced amounts of arachidonate (20:4) in MO-fed mice when compared with CO-fed animals. The addition of 1% CO to the 9% MO diets did not alter the arachidonate content, indicating a block in the conversion of linoleate (18:2) to 20:4 by the n-3 fatty acids. Hence, dietary n-6 fatty acids are essential for normal mammary ductal development when fed prior to maturation. Although saturated rats are ineffective, n-3 fatty acids can partially substitute for the required n-6 fatty acids in both ductal and ovarian development.  相似文献   

9.
配制4种含有鱼油(FO)、菜籽油(CO)、棕榈油(PaO)和大豆油(SO)的饲料投喂初始体重为(22.19±1.10) g的细鳞鲑幼鱼52d, 探讨不同脂肪源对细鳞鲑(Brachymystax lenok)幼鱼生长、脂质代谢及抗氧化性能的影响。结果显示, 增重率、特定生长率和饲料效率均以鱼油和大豆油组最高, 棕榈油组次之, 菜籽油组最低, 其中大豆油组与鱼油组无显著差异(P>0.05)。不同脂肪源对细鳞鲑幼鱼肌肉粗成分无显著影响(P>0.05)。摄食大豆油的细鳞鲑可以明显提升肌肉中的22:6n-3含量, 表明细鳞鲑具有将18:3n-3转化为22:6n-3的能力, n-3 系列脂肪酸是细鳞鲑起主要作用的必需脂肪酸。与鱼油相比, 植物油脂导致了细鳞鲑血清中甘油三酯含量的显著升高以及胆固醇含量的显著降低, 肝脏中ACC1和FAS的mRNA表达量明显下调, 以及Δ6 Fad的mRNA表达量的明显上调(P<0.05)。投喂不同脂肪源饲料的细鳞鲑肝脏ROS、MDA、GPx含量以及TBARS值发生明显变化(P<0.05)。研究结果表明鱼油和大豆油可作为细鳞鲑幼鱼饲料的脂肪源, 而棕榈油和菜籽油不适宜作为细鳞鲑幼鱼的单一脂肪源。  相似文献   

10.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

11.
The influences of diets having different fatty acid compositions on the fatty-acid content, desaturase activities, and membrane fluidity of rat liver microsomes have been analyzed. Weanling male rats (35–45 g) were fed a fat-free semisynthetic diet supplemented with 10% (by weight) marine fish oil (FO, 12.7% docosahexaenoic acid and 13.8% eicosapentaenoic acid), evening primrose oil (EPO, 7.8% γ-linolenic acid and 70.8% linoleic acid) or a mixture of 5% FO-5% EPO. After 12 weeks on the respective diets, animals fed higher proportions of (n-3) polyunsaturated fatty acids (FO group) consistently contained higher levels of 20:3(n-6), 20:5(n-3), 22:5(n-3), and 22:6(n-3), and lower levels of 18:2(n-6) and 20:4(n-6), than those of the EPO (a rich source of (n-6) polyunsaturated fatty acids) or the FO + EPO groups. Membrane fluidity, as estimated by the reciprocal of the order parameter SDPH, was higher in the FO than in the EPO or the FO + EPO groups, and the n-6 fatty-acid desaturation system was markedly affected.  相似文献   

12.
Here we investigated the effect of lifelong supplementation of the diet with coconut fat (CO, rich in saturated fatty acids) or fish oil (FO, rich in n-3 polyunsaturated fatty acids) on tumor growth and lactate production from glucose in Walker 256 tumor cells, peritoneal macrophages, spleen, and gut-associated lymphocytes. Female Wistar rats were supplemented with CO or FO prior to mating and then throughout pregnancy and gestation and then the male offspring were supplemented from weaning until 90 days of age. Then they were inoculated subcutaneously with Walker 256 tumor cells. Tumor weight at 14 days in control rats (those fed standard chow) and CO supplemented was approximately 30 g. Supplementation of the diet with FO significantly reduced tumor growth by 76%. Lactate production (nmol h(-1) mg(-1) protein) from glucose by Walker 256 cells in the group fed regular chow (W) was 381.8 +/- 14.9. Supplementation with coconut fat (WCO) caused a significant reduction in lactate production by 1.6-fold and with fish oil (WFO) by 3.8-fold. Spleen lymphocytes obtained from W and WCO groups had markedly increased lactate production (553 +/- 70 and 635 +/- 150) when compared to non-tumor-bearing rats ( approximately 260 +/- 30). FO supplementation reduced significantly the lactate production (297 +/- 50). Gut-associated lymphocytes obtained from W and WCO groups increased lactate production markedly (280 +/- 31 and 276 +/- 25) when compared to non-tumor-bearing rats ( approximately 90 +/- 18). FO supplementation reduced significantly the lactate production (168 +/- 14). Lactate production by peritoneal macrophages was increased by tumor burden but there was no difference between the groups fed the various diets. Lifelong consumption of FO protects against tumor growth and modifies glucose metabolism in Walker tumor cells and lymphocytes but not in macrophages.  相似文献   

13.
为研究植物油替代鱼油对瓦氏黄颡鱼(Pelteobagrus vachelli)生长及肌肉脂肪组成的影响及重投喂鱼油对瓦氏黄颡鱼肌肉脂肪酸组成的影响,实验以大豆油分别替代饲料中的0(FO)、50(S1)、75(S2)和100%(SO)的鱼油配制等氮、等能的颗粒饲料,每组设置3个平行,养殖80d后,再投喂鱼油30d。结果表明,饲料中添加豆油不会显著影响瓦氏黄颡鱼的增重率、肝体指数和体成分(P>0.05)。随着饲料中大豆油含量的增加,S2和SO组肌肉中C18:1n-9、C18:2n-6和单不饱和脂肪酸比例显著增加(P < 0.05),而C20:5n-3,C22:5n-3及n-3/n-6比例显著下降(P < 0.05)。再投喂鱼油30d后,SO组肌肉中C18:3n-6、C20:4n-6、Σ n-9、Σ n-6和S2组中C18:1n-9、Σ n-6比例显著下降(P < 0.05),而S2和SO组肌肉中Σn-3多不饱和脂肪酸、C20:5n-3和C22:5n-3比例显著增加(P < 0.05)。在生产中,可采用先植物油饲料、后鱼油饲料的养殖方式提高瓦氏黄颡鱼肌肉品质(增加有益人类健康的多不饱和脂肪酸)。  相似文献   

14.
配制了十种等氮等能的饲料饲喂3.53 g的异育银鲫幼鱼12周, 探讨异育银鲫对不同脂肪源的利用效果。十种饲料中分别添加8%的鱼油(FO)、椰子油(CNO)、玉米油(CO)、亚麻油(LO)、大豆油(SO)、菜籽油(RO)、1∶1鱼油-椰子油(FCNO)、1∶1鱼油-玉米油(FCO)、1∶1鱼油-亚麻油(FLO)和1∶1∶1∶1鱼油-椰子油-玉米油-亚麻油混合油(MIX)。每组饲料三个平行, 每个平行30尾。实验在循环水养殖系统中进行, 水温控制在(241)℃。结果表明, 在单一脂肪源中, 豆油组和椰子油组的增重率最高, 其次是菜籽油组, 鱼油、玉米油和亚麻油组的增重率最低。与相应的单一脂肪源相比, 饲料中鱼油与椰子油、玉米油或亚麻油1∶1混合后使用提高了异育银鲫的生长。摄食不同脂肪源饲料的异育银鲫血清生化指标、各组织的水分和脂肪含量差异不明显(P0.05)。肌肉脂肪酸与饲料脂肪源呈明显正相关。摄食豆油和菜籽油饲料的鱼体肌肉中20:4n-6较高, 而摄食亚麻油饲料的鱼则含有较高的20:5n-3和22:6n-3, 表明异育银鲫具有转化18:2n-6和 18:3n-3为高不饱和脂肪酸的能力。从实验可以看出, 豆油、椰子油和菜籽油是异育银鲫饲料中良好的脂肪源。    相似文献   

15.
Dietary fats affect macrophage-mediated cytotoxicity towards tumour cells   总被引:2,自引:0,他引:2  
In the present study, the effects of feeding mice diets of different fatty acid compositions on the production of TNF-alpha and nitric oxide by lipopolysaccharide-stimulated peritoneal macrophages and on macrophage-mediated cytotoxicity towards L929 and P815 cells were investigated. C57Bl6 mice were fed on a low-fat (LF) diet or on high-fat diets (21% fat by weight), which included coconut oil (CO), olive oil (OO), safflower oil (SO) or fish oil (FO) as the principal fat source. The fatty acid composition of the macrophages was markedly influenced by that of the diet fed. Lipopolysaccharide (LPS)-stimulated macrophages from FO-fed mice showed significantly lower production (up to 80%) of PGE2 than those from mice fed on each of the other diets. There was a significant positive linear correlation between the proportion of arachidonic acid in macrophage lipids and the ability of macrophages, to produce PGE2. Lipopolysaccharide-stimulated TNF-alpha production by macrophages decreased with increasing unsaturated fatty acid content of the diet (i.e. FO < SO < OO < CO < LF). Macrophages from FO-fed mice showed significantly lower production of TNF-alpha than those from mice fed on each of the other diets. Nitrite production was highest for LPS-stimulated macrophages from mice fed on the LF diet. Macrophages from FO-fed mice showed significantly higher production of nitrite than those from mice fed on the OO and SO diets. Compared with feeding the LF diet, feeding the CO, OO or SO diets significantly decreased macrophage- mediated killing of P815 cells (killed by nitric oxide). Fish oil feeding did not alter killing of P815 cells by macrophages, compared with feeding the LF diet; killing of P815 cells was greater after FO feeding than after feeding the other high fat diets. Compared with feeding the LF diet, feeding the OO or SO diets significantly decreased macrophage-mediated killing of L929 cells (killed by TNF). Coconut oil or FO feeding did not alter killing of L929 cells by macrophages, compared with feeding the LF diet. It is concluded that the type of fat in the diet affects macrophage composition and alters the ability of macrophages to produce cytotoxic and immunoregulatory mediators and to kill target tumour cells.  相似文献   

16.
为研究亚麻油替代不同水平的鱼油后对杂交鲟(Acipenser baeri Brandt♀×A. schrenckii Brandt♂)幼鱼[初均重(70.8±0.5) g]生长、脂肪酸组成、肝脏及肌肉脂肪沉积以及脂肪代谢的影响, 在油脂添加量为8%的饲料中用亚麻油分别替代0(LO0)、25%(LO25)、50%(LO50)、75%(LO75)和100%(LO100)的鱼油, 配制5种等氮(38.7%CP)等脂(10%CF)饲料。每组饲料随机设3个重复, 养殖周期为12周。结果表明,亚麻油替代100%的鱼油对杂交鲟幼鱼的生长没有显著影响, 而且随着饲料中亚麻油含量的上升, 饲料效率有所提高, 100%鱼油替代组的饲料效率明显高于100%鱼油组的(P<0.05); 但用亚麻油替代鱼油后, 肌肉和肝脏的粗脂肪含量以及血清中谷草转氨酶、谷丙转氨酶和乳酸脱氢酶活性明显升高(P<0.05); 肌肉亚麻酸和n-3多不饱和脂肪酸的含量与饲料中相应脂肪酸组成呈明显的线性相关关系(R2>0.69; P<0.05)。对于杂交鲟的脂肪代谢而言, 亚麻油的添加对血清中的游离脂肪酸、甘油三酯、高、低密度脂蛋白胆固醇的变化产生明显影响, 但亚麻油对血清总胆固醇和酮体影响不显著。考虑到亚麻油完全替代鱼油后, 肌肉中的EPA和DHA这两种长链高不饱和脂肪酸的含量仅下降了不到30%, 因此亚麻油应该是一种比较优质的鱼油替代品。  相似文献   

17.
The newly hatched chick obtains its fatty acids almost completely from the lipids of the egg yolk as these are transferred to the developing embryo during its 21-day period of incubation. Since the diet of the laying hen greatly influences the fatty acid composition of the egg lipids, and presumably also the fatty acid composition of the resulting chick, we tested how quickly and to what extent varying the amount of n-3 fatty acids in the diet of the hen would modulate the level of n-3 fatty acids in the brain and retina of the newly hatched chick. White Leghorn hens were fed commercial or semi-purified diets supplemented with 10% fish oil, linseed oil, soy oil, or safflower oil. Eggs, together with the brain, retina, and serum of newly hatched chicks, were then analyzed for fatty acid composition. The fatty acids of egg yolk responded quickly to the hen's diet with most of the change occurring by 4 weeks. There was a linear relationship between the linolenic acid content of the diets and levels of this fatty acid in egg yolk and chick serum. In chicks from hens fed the fish oil diet, the total n-3 fatty acids, including 22:6(n-3), were elevated twofold in the brain and retina and sevenfold in serum relative to commercial diet controls. The safflower oil diet led to a very low n-3 fatty acid content in egg yolks and only 25% of the control n-3 fatty acid content in the brain and retina of chicks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Repeated critical swimming performance trials (Ucrit) were performed on Atlantic salmon (Salmo salar) to test the null hypothesis that the source of dietary lipids (fish-based, poultry-based, and plant-based) does not influence exercise and recovery performance. Four diets were prepared by extensively replacing supplemental lipid from anchovy oil (AO; 100% AO at 150 g/kg) with cold pressed flaxseed oil (FO; 25% AO, 75% FO), sunflower oil (SO; 25% AO, 75% SO), or poultry fat (PF; 25% AO, 75% PF). These diets had equivalent protein and energy concentrations, but due to the different supplemental lipid sources, varied widely in their fatty acid composition. Fish fed AO had a significantly higher (P<0.05) first Ucrit (2.62+/-0.07 body lenght s(-1)) than those fed PF (2.22+/-0.12 body lenght s(-1)) that had low muscle ratios of n-3 highly unsaturated fatty acids (n-3 HUFA) to saturated fatty acids (SFA) and arachidonic acid (AA), and high levels of oleic acid. Fish in the FO and SO diet groups swam as well as AO-fed fish in both swimming trials. The performance of fish fed AO decreased significantly (P<0.05) during the second swimming trial (i.e. Ucrit2/Ucrit1=0.92+/-0.02). No significant differences occurred between diet groups for the second swim trial. There was a positive correlation between both n-3 HUFA/SFA and n-3 HUFA/AA ratios, and Ucrit1. A negative correlation was found between dietary AA and oleic acids, and Ucrit1. The present study suggests that low dietary n-3 HUFA/ SFA and n-3 HUFA/AA ratios may negatively affect swimming performance. The former possibly can be offset by increasing linoleic acid in the presence of nutritionally adequate n-3 HUFA (e.g. SO diet). Lipid supplements consisting largely of vegetable oils did not compromise fish cardiorespiratory physiology under the conditions of this study.  相似文献   

19.
The effect of dietary n-6/n-3 fatty acid ratio on alpha-tocopherol homeostasis was investigated in rats. Animals were fed diets containing fat (17% w/w) in which the n-6/n-3 ratio varied from 50 to 0.8. This was achieved by combining corn oil, fish oil, and lard. The polyunsaturated to saturated ratio and total alpha-tocopherol remained constant in all diets. Results showed that enrichment of n-3 polyunsaturated fatty acids in the diet, even at a low amount (3.9% w/w), resulted in a dramatic reduction of blood alpha-tocopherol concentration, which, in fact, is the result of a decrease in plasma lipids, since the alpha-tocopherol to total lipids ratio was not significantly altered. The most striking effect observed was a considerable alpha-tocopherol enrichment (x 4) of the heart as its membranes became enriched with n-3 polyunsaturated fatty acids. This process appeared even with a low amount of fish oil (3.9% w/w) added to the diet. Accordingly, a strong positive correlation was found between heart alpha-tocopherol and docosahexaenoic acid (r = 0.86) or docosahexaenoic acid plus eicosapentaenoic acid levels (r = 0.84). Conversely, the liver alpha-tocopherol level dropped dramatically when n-3 polyunsaturated fatty acids were gradually added to the diet. It is concluded that fish oil intake dramatically alters the alpha-tocopherol homeostasis in rats.  相似文献   

20.
The effects of dietary linoleic acid, gamma-linolenic acid and marine fatty acids on the development of aspirin-induced gastric hemorrhage and the distribution of liver glycerophospholipid fatty acids in fat-deficient growing rats were studied. Aspirin (100 mg/day)-treated and nontreated rats were fed for 7 days, a mixed diet of 2.5% safflower oil and 7.5% hydrogenated coconut oil (SFO/HCO) or 7.5% fish oil (SFO/FO), or 2.5% gamma-linolenate concentrate and 7.5% fish oil (GLA/FO). Gastric hemorrhage was induced in animals by aspirin treatment to various extents. It was not affected by FO feeding, but was significantly alleviated by GLA feeding. Aspirin treatment reduced the proportions of 20:4n-6 in liver phosphatidylcholine. FO feeding (in SFO/FO and GLA/FO rats) further reduced the 20:4n-6 level and replaced it by n-3 fatty acids. GLA feeding, on the other hand, elevated the proportion of 20:4n-6. As a result, the reduction of 20:4n-6 by fish oil feeding, was less significant in GLA/FO rats than in SFO/FO rats. The degree of gastric hemorrhage appeared to relate negatively to the levels of 20:4n-6 in liver phosphatidylcholine, and to the sum of 20:4n-6 and 20:5n-3 when FO was included in the diet. It is suggested that long-chain polyunsaturated fatty acids (20:4n-6 and 20:5n-3) per se in addition to being precursors of prostaglandins, may also affect the development of gastric hemorrhage, possibly by modulating the permeability of cell membranes in the gastric mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号