首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Prostate-specific membrane antigen (PSMA) is a 100-kDa transmembrane glycoprotein identified by the monoclonal antibody 7E11-C5.3 from the human prostate tumor cell line LNCaP. Because of its significant upregulation in androgen refractory and metastatic prostate cancers, PSMA may be a useful prognostic biomarker and a target for developing novel therapeutic strategies. However, the lack of abundant pure PSMA protein and the low efficacy in immunoaffinity isolation from LNCaP cells have hampered the development of clinical assays. In order to obtain a renewable and reliable source of pure antigen, we used the baculovirus/insect cell system to express and purify a recombinant PSMA. A recombinant baculovirus containing a 6x histidine-tagged PSMA gene was generated, from which rPSMA was expressed and purified using cobalt-chelating affinity chromatography. The purity and correct molecular size of rPSMA were demonstrated by gel electrophoresis and mass spectrometry. Glycosidase digestions showed that the oligosaccharides on rPSMA are primarily N-linked high-mannose type. Although the glycosylation is different from the native PSMA, it did not affect the immunoreactivity of rPSMA to antibodies specific for either the intra- or the extracellular domains of PSMA. Finally, the purified rPSMA was successfully used to develop a quantitative PSMA immunoassay using the novel ProteinChip surface-enhanced laser desorption/ionization mass spectrometry technology.  相似文献   

2.
Hormone-refractory prostate carcinomas as well as the neovasculature of different tumours express high levels of PSMA (prostate-specific membrane antigen). PSMA is a type II-transmembrane glycoprotein and a potential tumour marker for both diagnosis and passive immunotherapy. Here, we report on the association of PSMA with DRMs (detergent-resistant membranes) at different stages of the protein maturation pathway in human prostate carcinoma LNCaP cells. At least three PSMA glycoforms were biochemically identified based on their extractability behaviour in different non-ionic detergents. In particular, one precursor glycoform of PSMA is associated with Tween 20-insoluble DRMs, whereas the complex glycosylated protein segregates into membrane structures that are insoluble in Lubrol WX and display a different lipid composition. Association of PSMA with these membranes occurs in the Golgi compartment together with the acquisition of a native conformation. PSMA homodimers reach the plasma membrane of LNCaP cells in Lubrol WX-insoluble lipid/protein complexes. At the steady state, the majority of PSMA remains within these membrane microdomains at the cell surface. We conclude that the intracellular transport of PSMA occurs through populations of DRMs distinct for each biosynthetic form and cellular compartment.  相似文献   

3.
Prostate-specific membrane antigen (PSMA), which is overexpressed in malignant prostate cancer (PCa), is an ideal target for imaging and therapy of PCa. We previously reported a PSMA imaging probe, 800CW-SCE, based on succinimidyl-Cys-C(O)-Glu (SCE) for optical imaging of PCa. In this study, we investigated the structure–activity relationships of novel SCE derivatives with five different near-infrared (NIR) fluorophores (IRDye 680LT, IRDye 750, Indocyanine Green, Cyanine 5.5, and Cyanine 7) as optical imaging probes targeting PSMA. An in vitro binding assay revealed that 800CW-SCE, 680LT-SCE, and 750-SCE exhibited higher binding affinity than 2-PMPA, which is known as a PSMA inhibitor. These three SCE derivatives were internalized into PSMA-positive cells (LNCaP cells) but not into PSMA-negative cells (PC-3 cells). In the in vivo imaging study, 800CW-SCE and 750-SCE were highly accumulated in LNCaP tumors but not in PC-3 tumors, and the ratio of LNCaP/PC-3 accumulation of 800CW-SCE was higher than that of 750-SCE. The present study may provide valuable molecular design information for the future development of new PSMA imaging probes based on the SCE scaffold.  相似文献   

4.
The biosynthesis of thyroid hormone from thyroglobulin is catalysed by thyroid peroxidase (TPO), an integral membrane protein. TPO is also a major autoantigen in autoimmune thyroid disease and autoantibodies to TPO are markers for disease activity. Large quantities of purified TPO are essential for elucidating its structure and understanding its role in disease activity. We describe the high yield purification of full-length recombinant human TPO from baculovirus infected insect cells and compare it to purified native TPO from human thyroid glands. In contrast to native human TPO, the human TPO produced in insect cells as a recombinant protein was insoluble and resistant to solubilisation in detergents. Reversible substitution of lysine residues with citraconic anhydride led to increased solubility of the recombinant TPO, allowing high-yield purification by monoclonal antibody chromatography. The purified enzyme preparation was shown to be TPO by its reactivity with monoclonal and polyclonal antibodies by enzyme linked immunosorbent assay and Western blotting. Both the human and recombinant purified TPO preparations also react with sera from patients with autoimmune thyroid disease, although the binding of conformational dependent autoantibodies was considerably lower to the recombinant TPO than to the native TPO. This suggests that the recombinant TPO may differ in some aspects of its tertiary structure. The purified recombinant TPO was devoid of enzyme activity, in contrast to the enzymatically active, purified human TPO preparations. Both preparations contained comparable amounts of haem (R(z)=0.269), but a shift in the Soret band of recombinant TPO (402 nm) from that of natural TPO (409 nm) indicates that the lack of enzymatic activity of the recombinant enzyme may be due to changes in the protein backbone surrounding the haem. Both the purified native and recombinant TPO, under non-denaturing conditions, show evidence of high molecular mass oligomers, although the latter preparation is prone to a greater degree of aggregation. In conclusion, our studies indicate that recombinant TPO generated in insect cells is conformationally distinct from the native TPO, is insoluble and enzymatically inactive, consistent with the difficulties associated with its purification and crystallisation.  相似文献   

5.
Recombinant protein purification is facilitated using high expression systems which produce larger quantities of streptokinase protein as inclusion bodies. As the accumulation of active streptokinase is toxic to the host cells, we have optimized the conditions to achieve large amounts of streptokinase in the form of inclusion bodies. The solubility and yield of pure protein are highly dependent on various combinations of chemical additives, ionic and non-ionic detergents and salts, with solubilizing agents followed by refolding of denatured protein into active form. As the extraction of the purified streptokinase from inclusion bodies requires denaturation and a subsequent refolding step, careful balancing steps were needed to develop under different controlled conditions. Here the purified fragments of refolded proteins were screened to select the conditions that yield the active streptokinase having native conformation. The maximum specific activity of the purified streptokinase was achieved by these methods. The refolded recombinant streptokinase was analyzed by RP-HPLC showing a purity of 99%. Size exclusion chromatography profile shows that there are minimal aggregates in the active streptokinase protein and the percentage of renaturation is around 99%.  相似文献   

6.
7.
Granulocyte-colony stimulating factor (G-CSF) is a pleiotropic cytokine that stimulates the development of committed hematopoietic progenitor cells and enhances the functional activity of mature cells. Here, we report a simplified method for fed-batch culture as well as the purification of recombinant human (rh) G-CSF. The new system for rhG-CSF purification was performed using not only temperature shift strategy without isopropyl-l-thio-β-d-galactoside (IPTG) induction but also the purification method by a single step of prep-HPLC after the pH precipitation of the refolded samples. Through these processes, the final cell density and overall yield of homogenous rhG-CSF were obtained 42.8 g as dry cell weights, 1.75 g as purified active proteins, from 1 L culture broth, respectively. The purity of rhG-CSF was finally 99% since the isoforms of rhG-CSF could be separated through the prep-HPLC step. The result of biological activity indicated that purified rhG-CSF has a similar profile to the World Health Organization (WHO) 2nd International Standard for G-CSF. Taken together, our results demonstrate that the simple purification through a single step of prep-HPLC may be valuable for the industrial-scale production of biologically active proteins.  相似文献   

8.
A method is described for a rapid two-step purification of the membrane receptor for epidermal growth factor (EGF) from cultured human A-431 cells. After solubilization of the cells with Triton X-100, the receptor is immobilized on an immunoaffinity column containing a monoclonal antibody directed against the receptor. In the second step of purification, the receptor, eluted from the antibody column, is adsorbed and specifically eluted from a lectin-agarose column. The molecular species obtained is mainly the 170,000-dalton EGF receptor polypeptide. The activity of the pure receptor depends on the conditions used for the desorption from the immunoaffinity beads. High-yield elution is obtained with acidic buffer and the receptor so purified specifically binds EGF, but is devoid of the kinase activity. When the elution is done with alkaline buffers or with buffer containing urea, a fully active receptor kinase is purified (yield of 10%). The pure receptor binds 125I-EGF with a Kd of 4 X 10(-8) M and retains EGF-sensitive protein kinase activity which phosphorylates tyrosine residues on the receptor itself. An additional protocol is described for large-scale purification (yield of 55%) of EGF receptor for the analysis of its primary structure. In this procedure, the EGF receptor is first purified by immunoaffinity chromatography which is followed by preparative gel electrophoresis of the 32P internally labeled receptor to remove minor protein contaminants.  相似文献   

9.
A highly active and soluble glucose-6-phosphatase has been purified to near homogeneity from rat liver. Successful purification has been initiated by covalent labeling of the enzyme in native rat liver microsomes with pyridoxal 5'-phosphate and NaBH4, followed by solubilization of the microsomes with Triton X-100, chromatography on phenyl-Sepharose, hydroxyapatite, DEAE-Sephacel and a second chromatography step on hydroxyapatite. The final enzyme preparation obtained was approximately 700-fold purified over the activity of starting microsomes. As judged by SDS/PAGE the purified glucose-6-phosphatase is composed of a single protein with a molecular mass of 35 kDa. The present work demonstrates that the purified glucose-6-phosphatase must be arranged in the native microsomal membrane so that it is accessible to pyridoxal 5'-phosphate from the cytoplasmic side.  相似文献   

10.
During the progression of prostate cancer from androgen-dependence or sensitivity to androgen-independence, the overall expression of prostate specific membrane antigen (PSMA) increases with its appearance in plasma membrane. However, surprisingly some androgen-independent metastatic prostate cancer cell lines do not express this protein. Estradiol (E2) and basic fibroblast growth factor (bFGF) due to their recognized and strong involvement in prostate growth, development, and pathology were selected with the aim of restoring the expression of PSMA in markedly dedifferentiated prostate cancer PC-3 cells and in Du 145. E2 (10(-7)-10(-11)M) and bFGF (10ng/ml) stimulated the expression of mRNAs for PSMA (2- to 4-fold increase) that apparently were further translated and processed to its membrane form in LNCaP, PC-3, and Du 145 cells. The values of interaction force between the same anti-PSMA antibodies and all studied cells were almost identical (45-64pN), indicating antigenic similarity of the membrane form of PSMA expressed in LNCaP, PC-3, and Du 145 cells.  相似文献   

11.
Prostate-specific membrane antigen (PSMA) is a type-II membrane glycoprotein that was initially identified in LNCaP cells. It is expressed at elevated levels in prostate cancer. In view of the correlation between the expression levels of PSMA and disease grade and stage, PSMA is considered to be one of the most promising biomarkers in the diagnosis and treatment of prostate cancer. In LNCaP cells PSMA undergoes internalization via clathrin-coated pits followed by accumulation in the endosomes. PSMA associates with different types of detergent-resistant membranes (DRMs) along the secretory pathway. Its mature form is mainly insoluble in Lubrol WX, but does not associate with Triton X-100-DRMs. To understand the mechanism of PSMA internalization we investigated its association during internalization with DRMs. For this purpose, internalization was induced by antibody cross-linking. We demonstrate at the biochemical and cell biological levels that: [i] exclusively homodimers of PSMA are associated with Lubrol WX-DRMs, [ii] antibody-induced cross-linking of PSMA molecules results in a time-dependent partitioning into another DRMs type, namely Triton X-100-DRMs, and [iii] concomitant with its association with Triton-X-100-DRMs internalization of PSMA occurs along tubulin filaments. In a previous work (Colombatti et al. (2009) PLoS One 4: e4608) we demonstrated that the small GTPases RAS and RAC1 and the MAPKs p38 and ERK1/2 are activated during antibody cross-linking. As downstream effects of this activation we observed a strong induction of NF-kB associated with an increased expression of IL-6 and CCL5 genes and that IL-6 and CCL5 enhanced the proliferative potential of LNCaP cells synergistically. These observations together with findings reported here hypothesize a fundamental role of DRMs during activation of PSMA as platforms for trafficking, endocytosis and signalling. Understanding these mechanisms constitutes an essential prerequisite for utilization of PSMA as a therapeutically suitable target in prostate cancer.  相似文献   

12.
13.
To identify inhibitors of the intrinsic N-acetylated alpha-linked acidic dipeptidase (NAALADase) activity of prostate specific membrane antigen (PSMA) that may be useful for targeting imaging agents or chemotherapeutic drugs to disseminated prostate cancer, analogs of the tetrahedral transition state for hydrolysis of the natural substrate, N-acetylaspartylglutamate (NAAG), were synthesized. These compounds were assayed for their ability to inhibit the membrane-associated enzyme isolated from LNCaP prostate cancer cells. Active inhibitors were further assayed for their cytotoxicity and membrane binding. We have identified nine compounds, including fluorescent and iodine-labeled conjugates, which inhibit NAALADase enzyme activity with IC(50)s at, or below, 120nM. The binding of these compounds to the cell surface of viable LNCaP prostate tumor cells appears to be specific and saturable, and none of the compounds alter the cell cycle kinetics or induce apoptosis in LNCaP cells, suggesting that they are relatively innocuous and are suitable for targeting imaging agents or cytotoxic drugs to disseminated prostate cancer.  相似文献   

14.
15.
Urea-based inhibitors of the prostate-specific membrane antigen (PSMA) represent low-molecular-weight pepidomimetics showing the ability to image PSMA-expressing prostate tumors. The highly efficient, acyclic Ga(III) chelator N,N'-bis [2-hydroxy-5-(carboxyethyl)benzyl] ethylenediamine-N,N'- diacetic acid (HBED-CC) was introduced as a lipophilic side chain into the hydrophilic pharmacophore Glu-NH-CO-NH-Lys which was found favorable to interact with the PSMA "active binding site". This report describes the syntheses, in vitro binding analyses, and biodistribution data of the radiogallium labeled PSMA inhibitor Glu-NH-CO-NH-Lys(Ahx)-HBED-CC in comparison to the corresponding DOTA conjugate. The binding properties were analyzed using competitive cell binding and enzyme-based assays followed by internalization experiments. Compared to the DOTA-conjugate, the HBED-CC derivative showed reduced unspecific binding and considerable higher specific internalization in LNCaP cells. The (68)Ga complex of the HBED-CC ligand exhibited higher specificity for PSMA expressing tumor cells resulting in improved in vivo properties. (68)Ga labeled Glu-NH-CO-NH-Lys(Ahx)-HBED-CC showed fast blood and organ clearances, low liver accumulation, and high specific uptake in PSMA expressing organs and tumor. It could be demonstrated that the PET-imaging property of a urea-based PSMA inhibitor could significantly be improved with HBED-CC.  相似文献   

16.
The enzymes of glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) were purified from rat kidney in one chromatographic step consisting of the use of the 2',5'-ADP Sepharose 4B by using different elution buffers. This purification procedure was accomplished with the preparation of the homogenate and affinity chromatography on 2',5'-ADP Sepharose 4B. The purity and subunit molecular weights of the enzymes were checked on SDS-PAGE and purified enzymes showed a single band on the gel. The native molecular weights of the enzymes were found with Sephadex G-150 gel filtration chromatography. Using this procedure, G6PG, having the specific activity of 32 EU/mg protein, was purified 531-fold with a yield of 88%; 6PGD, having the specific activity of 25 EU/mg protein, was purified 494-fold with a yield of 73%; and GR, having the specific activity of 33 EU/mg protein, was purified 477-fold with a yield of 76%. Their native molecular masses were estimated to be 144 kDa for G6PD, 110 kDa for 6PGD, and 121 kDa for GR and the subunit molecular weights were found to be 68, 56, and 61 kDa, respectively. A new modified method to purify G6PD, 6PGD, and GR, namely one chromatographic step using the 2',5'-ADP Sepharose 4B, is described for the first time in this study. This procedure has several advantages for purification of enzymes, such as, rapid purification, produces high yield, and uses less chemical materials.  相似文献   

17.
The present paper reports a modified method for isolation of lysostaphin—a bacteriolytic agent with specific affinity for staphylococcal cell wall. The proposed purification scheme includes three steps. The first procedure is ultrafiltration through a membrane filter giving a yield of 75.6 %. The result of ultrafiltration is a concentrated, 10-times purified preparation of lysostaphin with specific activity 0.62 U/mg which can be used for digestion ofS. aureus cells. Further step, performed by ion-exchange chromatography on DEAE-cellulose, yields a 60-times purified preparation containing a mixture of enzyme components of lysostaphin. The yield of this step is 47.2 %, the preparation contains 3.54 U/mg protein. Using gel filtration on Sephadex G-50 a component with hexosaminidase activity was separated from the endopeptidase component on the basis of molar mass difference. A 270-times purified preparation of lysostaphin-endopeptidase with minimum of contaminating substances was obtained in this step. The yield of gel filtration was 22.1 %, specific activity increased up to 16.3 U/mg protein.  相似文献   

18.
Glutamate Carboxypeptidase II (also known as Prostate Specific Membrane Antigen—PSMA) is an important marker in the diagnosis of prostate cancer, however, relatively little is known about its biochemical and structure-function characteristics. We have expressed mutant forms of PSMA and have started to address the roles of three putative domains of PSMA in its cellular localization and peptidase activity. Three mutants, a full-length recombinant PSMA (rPSMA-FL), one expressing only the proposed extracellular domain of PSMA (rPSMA-ECD) and one form omitting the proposed transmembrane domain (rPSMA-ΔTMD) have been produced in human cells via a mammalian expression vector system. We show that rPSMA-FL is associated with the cell surface membrane; so too is rPSMA-ΔTMD even though it lacks the proposed transmembrane domain, whereas rPSMA-ECD has a cytosolic localization. Only rPSMA-FL retains functional hydrolytic activity and is similarly glycosylated to PSMA found in the cultured prostate cancer cell line LNCaP.  相似文献   

19.
Prostate cancer cells express prostate-specific membrane antigen (PSMA). We developed an IgM type monoclonal antibody against PSMA. The antibody was coupled to poly-L-lysine and thereafter this conjugate was mixed with cationic liposomes containing plasmid DNA. The antibody-liposome complex was tested whether it could deliver the gene of interest selectively to the PSMA positive cells. As assessed by beta-galactosidase reporter gene, the transfection efficiency was 13.2% with anti-PSMA-liposome complex as compared to 4% with control IgM liposome complex. In contrast, no such differences were observed in PSMA negative PC-3, DU145 and T24 cells. Furthermore, in the suicide gene therapy in vitro with thymidine kinase gene plus ganciclovir system, anti-PSMA liposome complex demonstrated a selective growth inhibitory effect on PSMA positive LNCaP cells but not on PSMA negative cell lines.  相似文献   

20.
The method is suggested to isolate simultaneously microsomes and plasma membranes of neuroblastoma S 1300 N 18 cells by means of differential centrifugation in the step density gradient of Percoll/Ficoll with a high degree of purification determined from the activity of marker enzymes (acetyl cholinesterase Na+,K+-ATPase, alkali phosphatase, glucose-6-phosphatase, succinate-dehydrogenase, acid phosphatase) as well as from the content of DNA and RNA and with a sufficiently high protein yield. The purified fractions of microsomes and plasma membranes are established to contain no phosphatidyl glycerol and cardiolipin--safety markers of mitochondrial membrane purification. A degree of separation of microsomes, plasma membranes and proteins dissolved in cytosol may be estimated by the activity of the cholesterol-synthesizing system of enzymes with the use of sterol-transferring protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号