首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondrial cytochrome c oxidase subunit I (cox1) was employed to investigate the intraspecific genetic diversity of Gracilaria changii collected from various localities distributed along the west coast of Peninsular Malaysia. Gracilaria changii is an agarophyte with potential for commercialization in Malaysia as it has high yields of good quality agar with high gel strength for the production of food grade agar and agarose. The phylogeographic aspect of G. changii has not been studied despite its abundance and potential commercialization. In this study, six mitochondrial haplotypes (C1–C6) were revealed from 62 specimens varying by 0–3 bp over 923 bp. Results indicate that haplotype C1 is the common ancestor and the most widespread haplotype due to its prevalence in Morib, Gua Tanah, Middle Banks, Batu Besar, Batu Tengah, Sungai Pulai, and Kuala Sungai Merbok. In this study, Morib was suggested as contributing the highest intra-population diversity with the identification of three haplotypes. The mitochondrial marker cox1 is a highly divergent mitochondrial marker and is applicable for studies on species identification and assessment of genetic diversity of G. changii.  相似文献   

2.
The intraspecific genetic diversity of the kelp Undaria pinnatifida (Harvey) Suringar (Laminariales, Phaeophyceae) was investigated using DNA sequences of the mitochondrial cytochrome oxidase subunit 3 (cox3) gene and internal transcribed spacer 1 (ITS1) of nuclear ribosomal DNA in plants collected from 21 localities along the Japanese coast between 2001 and 2003. Morphological variation was also examined and compared with the genetic diversity. Cox3 analyses of 106 plants revealed 9 haplotypes (I–IX) that differed from each other by 1–7 bp (all synonymous substitutions). Haplotype I was distributed in Hokkaido and the northern Pacific coast of Honshu, while haplotype III was found along the Sea of Japan coast of Honshu. Other types were found along the central and southern coast of Honshu. ITS1 analyses of 42 plants revealed 0–1.7% nucleotide differences, but plants from the Sea of Japan coast and northern Japan had similar sequences. The lower genetic differentiation along the Sea of Japan and northern coasts might be due to the recent establishment (after the middle of the last glacial period) of the Sea of Japan flora. The cox3 haplotype of cultivated plants was found in natural populations occurring close to cultivation sites (Naruto, Tokushima Pref., and Hokutan, Hyogo Pref.). This suggests that cultivated plants possibly escaped and spread or crossed with plants of natural populations. Morphological analyses of variation in 10 characters were conducted using 66 plants. The results showed no significant local variation owing to the wide variation in each population and did not support any forma previously described. No correlations between the morphological characters and cox3 haplotypes were detected.  相似文献   

3.
Considering the lack of knowledge on genetic variation on members of the freshwater red algal of the order Batrachospermales in tropical regions, phylogeographic patterns in Sirodotia populations were investigated using two mitochondrial regions: the cox2‐3 spacer and partial cox1 gene (barcode). Individuals identified as Sirodotia delicatula were analyzed from 14 stream segments across its distribution in Brazil. Phylogenetic analyses based on the ribulose‐1,5‐bisphosphate carboxylase/oxygenase large sub‐unit gene showed three clades, one representing S. delicatula, from all locations in southeastern Brazil and other regions from Brazil. The remaining samples formed two clades, which were highly divergent and distantly positioned from those of S. delicatula: 2.5–2.7% and 3.4–3.7%. This level of variation would warrant the species split of these taxa from mid‐western Brazil. A total of eight cox2‐3 spacer and nine cox1 haplotypes were observed among the 122 individuals studied. One location had two cox2‐3 haplotypes and three locations had two cox1 haplotypes; all others had a single dominant haplotype each. The existence of high intraspecific genetic variation among individuals of distinct locations (several haplotypes), but little variation within a location seems to be a pattern for the Batrachospermales. Haplotype networks showed low variation among the haplotypes from southeastern Brazil (10 locations with divergence of 0.3–1.1% for cox2‐3, 0.1–0.3% for cox1) and high variation among the haplotypes from the mid‐west region (four locations, 4.0–9.3% for cox2‐3, 6.2–8.4% for cox1). Thus, the present data clearly suggest the existence of cryptic species in Sirodotia in Brazil.  相似文献   

4.
Colpomenia peregrina is an annual brown macroalga found in temperate waters worldwide. To understand population differentiation and to reconstruct pathways of colonization/introduction, we analyzed variation in two mitochondrial protein-coding genes, cytochrome c oxidase subunit III (cox3) and ATP synthase F0 subunit 6 (atp6), and cp RuBisCO spacer. A total of 359 cox3, 342 atp6, and 38 RuBisCO spacer sequences from Colpomenia peregrina were obtained for samples collected at 28 sites from 12 countries. The combined cox3?+?atp6 sequences (1,231 bp) revealed 99 polymorphic sites and 69 haplotypes. An mt haplotype network revealed four distinct groups, separated by 7 to 26 mutation steps. NW Pacific populations were present in each group (but dominant in one), whereas SW Pacific and the Atlantic populations each were present in one group. The network and phylogenetic analyses, along with patterns of genetic diversity, suggested a NW Pacific center of origin, expanding first to the SW Pacific, then the NE Pacific, and most recently to the north Atlantic. A generalized skyline plot revealed a dramatic population expansion of the species ca. 20 kya.  相似文献   

5.
Phylogeography of B atrachospermum viride‐brasiliense was investigated using two mitochondrial regions: the cox2‐3 spacer and the barcode region of cox1 gene. Eighty‐seven individuals were analyzed from nine stream segments throughout its distribution in Brazil. Ten cox2‐3 spacer and nine cox1 haplotypes were observed among the individuals studied (87 vs. 43, respectively). Divergences among haplotypes were relatively low (≤2.4% for cox2‐3 and ≤1.8% for cox1). Most locations have a single haplotype, whereas only two locations had two haplotypes for both markers. The haplotype network for cox2‐3 showed a phylogeographic trend from the south towards the southeast with haplotypes from the southeast more closely related. For cox1 a trend from the southeast spreading towards the south and north was revealed, with the southern haplotypes more closely associated. Results clearly indicated that B . viride‐brasiliense represents a single species and the phylogeographic pattern consisted of a closely connected group of haplotypes from southern and southeastern Brazil. Levels of intra‐ and inter‐population variation were similar for the two markers with slightly higher values for cox2‐3. The trend observed in this study is similar to that in other members of Batrachospermales with little variation within a stream segment (one or two haplotypes) and more distant haplotypes showing higher divergences. This pattern could be attributed to the fact that colonization of a site might be rare by a single event with subsequent proliferation of the population. The geographic distribution of B . viride‐brasiliense was interpreted according to the biogeographic models proposed for South America being limited to three morpho‐climatic domains or biogeographic provinces: tropical Atlantic rainforest, sub‐tropical rainforest and cerrado (Brazilian savannah).  相似文献   

6.
The commercial importance of carrageenophytes Kappaphycus and Eucheuma is well known, with much interest in terms of cultivation, marketing, and research. Considering the many lucrative prospects, these red seaweeds were introduced into various parts of the world for farming, where merely a few were comprehensively documented. Despite being extensively cultivated throughout Southeast Asia, the genetic diversity of Kappaphycus and Eucheuma is poorly studied, where heavy reliance is placed on the use of local or commercial names for identifications. This study used the mitochondrial-encoded cox1 and cox2–3 spacer genetic markers to investigate the Kappaphycus and Eucheuma haplotypes, cultivated and wild, available throughout Southeast Asia. Concatenated cox1–cox2–3 spacer datasets were also analyzed. The near full-length cox1 gene is preferred at revealing the genetic diversity of Kappaphycus and Eucheuma, provided a larger reference database is available. Both molecular markers were capable of delineating common members of the genus Kappaphycus (i.e., Kappaphycus alvarezii, Kappaphycus striatus, and Kappaphycus cottonii) and Eucheuma denticulatum, and revealed interesting genotypes and new species which may be potential alternatives to the common cultivars as well as materials for research. The relative scarcity of Eucheuma species is discussed and future sites for sampling are recommended.  相似文献   

7.
Sargassum polycystum C. Agardh is one of the most abundant marine brown algae and is distributed widely in warm and temperate waters, particularly in the Indo-west Pacific region and Australia. Although its commercial potential and ecological and evolutionary importance are recognized, many pivotal aspects of its biology remain unexplored. Current knowledge of the historical biogeographical affinities and patterns is limited, but some data are available about its genetics, the genetic variation among populations, and spatial patterns. This study aimed to analyze the genetic population structure and distribution patterns of S. polycystum populations in 13 different locations from Indonesia to Japan using the mitochondrial gene cox3. The seven haplotypes of cox3 identified in this study indicated a low level of genetic diversity. Homogeneity of this haplotype was observed particularly in the Gulf of Thailand, Cambodia, and Japan, whereas higher haplotype diversity was found in Phuket (Thailand), Bali (Indonesia), and Singapore. Those data suggest that S. polycystum is likely to have expanded from the south of Indonesia and the west of the Malay Peninsula towards the northeast of the region. Geological studies showed that Sundaland, now corresponding to the Gulf of Thailand, was submerged due to sea level rises after the last glacial period. Therefore, the decrease in the genetic diversity of S. polycystum populations is interpreted here as a population expansion after the rise in sea levels.  相似文献   

8.
DNA barcoding has been a major advancement in the field of taxonomy, seeing much effort put into the barcoding of wide taxa of organisms, macro and microalgae included. The mitochondrial-encoded cox1 and plastid-encoded rbcL has been proposed as potential DNA barcodes for rhodophytes, but are yet to be tested on the commercially important carrageenophytes Kappaphycus and Eucheuma. This study gauges the effectiveness of four markers, namely the mitochondrial cox1, cox2, cox2-3 spacer and the plastid rbcL in DNA barcoding on selected Kappaphycus and Eucheuma from Southeast Asia. Marker assessments were performed using established distance and tree-based identification criteria from earlier studies. Barcoding patterns on a larger scale were simulated by empirically testing on the commonly used cox2-3 spacer. The phylogeny of these rhodophytes was also briefly described. In this study, the cox2 marker which satisfies the prerequisites of DNA barcodes was found to exhibit moderately high interspecific divergences with no intraspecific variations, thus a promising marker for the DNA barcoding of Kappaphycus and Eucheuma. However, the already extensively used cox2-3 spacer was deemed to be in overall more appropriate as a DNA barcode for these two genera. On a wider scale, cox1 and rbcL were still better DNA barcodes across the rhodophyte taxa when practicality and cost-efficiency were taken into account. The phylogeny of Kappaphycus and Eucheuma were generally similar to those earlier reported. Still, the application of DNA barcoding has demonstrated our relatively poor taxonomic comprehension of these seaweeds, thus suggesting more in-depth efforts in taxonomic restructuring as well as establishment.  相似文献   

9.
Porrocaecum angusticolle is a nematode species mainly parasitic in the birds of Accipitriformes and Strigiformes. However, some aspects of the morphology of P. angusticolle remain insufficiently known. In the present study, the detailed morphology of P. angusticolle was studied using light and, for the first time, scanning electron microscopy, based on newly collected specimens from the common buzzard Buteo buteo (Linnaeus) (Accipitriformes: Accipitridae) in Czech Republic. Some previously unreported morphological features of taxonomic significance were observed. The nuclear and mitochondrial DNA markers, including partial large ribosomal DNA (28S), complete internal transcribed spacer (ITS-1 + 5.8S + ITS-2), cytochrome c oxidase subunit 1 (cox1) and subunit 2 (cox2) of P. angusticolle were sequenced for molecular identification of this species. There was no intraspecific genetic variation detected in the 28S and ITS regions among different individuals of P. angusticolle, but low level of intraspecific nucleotide divergence was found in the cox1 (0.26–0.78%) and cox2 regions (1.0%). The 28S and cox2 of P. angusticolle were sequenced for the first time. Our molecular evidence supported the validity of both P. angusticolle and P. depressum. The newly obtained genetic data are helpful for further studies of DNA-based taxonomy, population genetics and phylogeny of the genus of Porrocaecum.  相似文献   

10.
The genetic diversity and population structure of the foliose lichenized fungus Parmelina tiliacea has been analyzed through its geographical range, including samples from Macaronesia (Canary Islands), the Mediterranean, and Eurosiberia. DNA sequences from the nuclear ribosomal internal transcribed spacer, the mitochondrial large subunit ribosomal RNA gene, and the translation elongation factor 1-α were used as molecular markers. The haplotypes of the three markers and the molecular variance analyses of multilocus haplotypes showed the highest diversity in the Canary Islands, while restricted haplotypes occurred at high frequencies in Mediterranean coastal samples. The multilocus haplotypes formed three unevenly distributed clusters (clusters 1-3). In the Canary Islands all the haplotypes were present in a similar proportion, while the coastal Mediterranean sites had almost exclusively haplotypes of cluster 3; cluster 2 predominated in inland Mediterranean sites; and cluster 1 was more abundant in central and northern Europe (Eurosiberian area). The distribution of clusters is partially explained by climatic factors, and its interaction with local spatial structure, but much of the variation remains unexplained. The high frequency of individuals in the Canary Islands with haplotypes shared with other areas suggests that could be a refugium of genetic diversity, and the high frequency of individuals of the Mediterranean coastal sites with restricted haplotypes indicates that gene flow to contiguous areas may be restricted. This is significant for the selection of areas for conservation purposes, as those with most genetic variation may reflect historical factors and biological properties of the species.  相似文献   

11.
Six intraspecific lineages (Lineages 1–6) of Asparagopsis taxiformis have been previously established based on mitochondrial cox2‐cox3 intergenic spacer and a partial cox1 sequences. ‘Lineage 2’ (L2) was suggested to be a recent introduction to the Mediterranean Sea, but its source population has not yet been identified. In order to clarify the nature of northwestern Pacific populations, we performed extensive sampling in Japan (60 individuals from 16 locations) and molecular phylogenetic analyses based on mitochondrial sequences. Sixteen additional individuals, collected from eight locations in the Indo‐Pacific, Caribbean, and Mediterranean regions, were also analyzed. Combined sequence analyses revealed that the Japanese populations only consisted of L2. Out of 19 combined haplotypes identified within L2, two are shared between Japan and the Mediterranean Sea and the Hawaiian Islands, and 12 were identified as endemic to Japan. Genetic analyses of population differentiation suggested that Japanese populations are genetically isolated from the Mediterranean and the Hawaiian populations. A genetic disjunction appears to separate two subpopulations within Japan: one between Toi and Kagoshima and the other between Ojikajima Island and Kagoshima in the Kyushu area.  相似文献   

12.
Oomycetes are a diverse group of eukaryotes in terrestrial, limnic and marine habitats worldwide and include several devastating plant pathogens, for example Phytophthora infestans (potato late blight). The cytochrome c oxidase subunit 2 gene (cox2) has been widely used for identification, taxonomy and phylogeny of various oomycete groups. However, recently the cox1 gene was proposed as a DNA barcode marker instead, together with ITS rDNA. The cox1 locus has been used in some studies of Pythium and Phytophthora, but has rarely been used for other oomycetes, as amplification success of cox1 varies with different lineages and sample ages. To determine which out of cox1 or cox2 is best suited as a universal oomycete barcode, we compared these two genes in terms of (i) PCR efficiency for 31 representative genera, as well as for historic herbarium specimens, and (ii) sequence polymorphism, intra‐ and interspecific divergence. The primer sets for cox2 successfully amplified all oomycete genera tested, while cox1 failed to amplify three genera. In addition, cox2 exhibited higher PCR efficiency for historic herbarium specimens, providing easier access to barcoding‐type material. Sequence data for several historic type specimens exist for cox2, but there are none for cox1. In addition, cox2 yielded higher species identification success, with higher interspecific and lower intraspecific divergences than cox1. Therefore, cox2 is suggested as a partner DNA barcode along with ITS rDNA instead of cox1. The cox2‐1 spacer could be a useful marker below species level. Improved protocols and universal primers are presented for all genes to facilitate future barcoding efforts.  相似文献   

13.
Sixty‐five accessions of the species‐rich freshwater red algal order Batrachospermales were characterized through DNA sequencing of two regions: the mitochondrial cox1 gene (664 bp), which is proposed as the DNA barcode for red algae, and the UPA (universal plastid amplicon) marker (370 bp), which has been recently identified as a universally amplifying region of the plastid genome. upgma phenograms of both markers were consistent in their species‐level relationships, although levels of sequence divergence were very different. Intraspecific variation of morphologically identified accessions for the cox1 gene ranged from 0 to 67 bp (divergences were highest for the two taxa with the greatest number of accessions; Batrachospermum helminthosum and Batrachospermum macrosporum); while in contrast, the more conserved universal plastid amplicon exhibited much lower intraspecific variation (generally 0–3 bp). Comparisons to previously published mitochondrial cox2–3 spacer sequences for B. helminthosum indicated that the cox1 gene and cox2–3 spacer were characterized by similar levels of sequence divergence, and phylogeographic patterns based on these two markers were consistent. The two taxa represented by the largest numbers of specimens (B. helminthosum and B. macrosporum) have cox1 intraspecific divergence values that are substantially higher than previously reported, but no morphological differences can be discerned at this time among the intraspecific groups revealed in the analyses. DNA barcode data, which are based on a short fragment of an organellar genome, need to be interpreted in conjunction with other taxonomic characters, and additional batrachospermalean taxa need to be analyzed in detail to be able to draw generalities regarding intraspecific variation in this order. Nevertheless, these analyses reveal a number of batrachospermalean taxa worthy of more detailed DNA barcode study, and it is predicted that such research will have a substantial effect on the taxonomy of species within the Batrachospermales in the future.  相似文献   

14.
Gracilaria is a red seaweed that has been cultivated worldwide and is commercially used for food, fertilizers, animal fodder, and phycocolloids. However, the high morphological plasticity of seaweeds often leads to the misidentification in the traditional identification of Gracilaria species. Molecular markers are important especially in the correct identification of Gracilaria species with high economic value. Microsatellite markers were developed from the expressed sequence tags of seaweeds deposited at the National Center for Biotechnology Information database and used for differentiating Gracilaria changii collected at various localities and two other Gracilaria species. Out of 33 primer pairs, only one primer pair gave significant results that can distinguish between three different Gracilaria species as well as G. changii from various localities based on the variation in repeated nucleotides. The unweighted pair group method using arithmetic mean dendrogram analysis grouped Gracilaria species into five main clades: (a) G. changii from Batu Besar (Malacca), Sandakan (Sabah), Bintulu (Sarawak), Batu Tengah (Malacca), Gua Tanah (Malacca), Middle Banks (Penang), Sungai (Sg.) Merbok (Kedah), Teluk Pelandok (Negeri Sembilan), Pantai Dickson (Negeri Sembilan), Sg. Kong-Kong (Johore), and Sg. Pulai (Johore); (b) Gracilaria manilaensis from Cebu, Philippines; (c) G. changii from Morib (Selangor); (d) Gracilaria fisheri from Pattani, Thailand; and (e) G. changii from Pantai Dickson (Negeri Sembilan), Gua Tanah (Malacca), Sg. Merbok (Kedah), Sg. Kong-Kong (Johore), and Sg. Pulai (Johore). This result shows that this primer pair was able to distinguish between three different species, which are G. changii from Morib (Malaysia), G. fisheri from Pattani (Thailand), and G. manilaensis from Cebu (Philippines), and also between different genotypes of G. changii. This suggested that the simple sequence repeat primer we developed was suitable for differentiating between different Gracilaria species due to the polymorphisms caused by the variability in the number of tandem repeats.  相似文献   

15.
Studies of intraspecific genetic diversity of ciliates, such as population genetics and biogeography, are particularly hampered by the lack of suitable DNA markers. For example, sequences of the non-coding ribosomal internal transcribed spacer (ITS) regions are often too conserved for intraspecific analyses. We have therefore identified primers for the mitochondrial cytochrome c oxidase I (COI) gene and applied them for intraspecific investigations in Paramecium caudatum and Paramecium multimicronucleatum. Furthermore, we obtained sequences of the ITS regions from the same strains and carried out comparative sequence analyses of both data sets. The mitochondrial sequences revealed substantially higher variation in both Paramecium species, with intraspecific divergences up to 7% in P. caudatum and 9.5% in P. multimicronucleatum. Moreover, an initial survey of the population structure discovered different mitochondrial haplotypes of P. caudatum in one pond, thereby demonstrating the potential of this genetic marker for population genetic analyses. Our primers successfully amplified the COI gene of other Paramecium. This is the first report of intraspecific variation in free-living protozoans based on mitochondrial sequence data. Our results show that the high variation in mitochondrial DNA makes it a suitable marker for intraspecific and population genetic studies.  相似文献   

16.
Gracilaria vermiculophylla (Ohmi) Papenfuss is an invasive alga that is native to Southeast Asia and has invaded many estuaries in North America and Europe. It is difficult to differentiate G. vermiculophylla from native forms using morphology and therefore molecular techniques are needed. In this study, we used three molecular markers (rbcL, cox2‐cox3 spacer, cox1) to identify G. vermiculophylla at several locations in the western Atlantic. RbcL and cox2‐cox3 spacer markers confirmed the presence of G. vermiculophylla on the east coast of the USA from Massachusetts to South Carolina. We used a 507 base pair region of cox1 mtDNA to (i) verify the widespread distribution of G. vermiculophylla in the Virginia (VA) coastal bays and (ii) determine the intraspecific diversity of these algae. Cox1 haplotype richness in the VA coastal bays was much higher than that previously found in other invaded locations, as well as some native locations. This difference is likely attributed to the more intensive sampling design used in this study, which was able to detect richness created by multiple, diverse introductions. On the basis of our results, we recommend that future studies take differences in sampling design into account when comparing haplotype richness and diversity between native and non‐native studies in the literature.  相似文献   

17.
Data from trnH-psbA intergenic spacer (cpDNA) were analyzed to elucidate molecular evolution within and among Maghrebian species of Medicago. The spacer highlighted a high interspecific variation and a low intraspecific diversity among species. Haplotype and nucleotide diversities revealed high level of variation. Parsimony and median-joining Network methods revealed (1) the segregation into 17 haplotypes; (2) the ancestral behaviour of the annual Medicago minima and (3) the clusters are independent of the geographic origin. The neutral evolution of Wright and Fisher is rejected since the Tajima's D values deviated from 0. Besides, the statistical analyses are in agreement with an evolution into stable populations' size.  相似文献   

18.
Phylogeographic trends in Batrachospermum macrosporum Mont. were investigated using the mitochondrial intergenic spacer between the cytochrome oxidase subunit 2 and 3 genes (cox2‐3). A total of 11 stream segments were sampled with seven in the coastal plain of North America and four in tropical areas of South America. Fifteen thalli were sampled from seven streams, 14 thalli from two streams, and eight thalli from two streams. There were 16 haplotypes detected using 149 individuals. Of the eight haplotypes from locations in North America, all were 334 base pairs (bp) in length, and of those from South America, five were 344 bp, and three were 348 bp. Two individual networks were produced: one for the haplotypes from North America and another for those from South America, and these could not be joined due to the large number of base pair differences. This split between haplotypes from North and South America was confirmed with sequence data of the rbcL gene. There was very little genetic variation among the haplotypes from the North American locations, leading us to hypothesize that these are fairly recent colonization events along the coastal plain. In contrast, there was high variation among haplotypes from South America, and it would appear that the Amazon serves as a center of diversity. We detected considerable variation in haplotypes among streams, but frequently, a single haplotype in an individual stream segment, which is consistent with data from previous studies of other batrachospermalean taxa, may suggest a single colonization event per stream.  相似文献   

19.
The larvae of the diamondback moth, Plutella xylostella, cause major economic losses to cruciferous crops, including cabbage, which is an important vegetable crop in China. In this study, we used the mitochondrial COI gene and 11 ISSR markers to characterize the genetic structure and seasonal migration routes of 23 P. xylostella populations in China. Both the mitochondrial and nuclear markers revealed high haplotype diversity and gene flow among the populations, although some degree of genetic isolation was evident between the populations of Hainan Island and other sampling sites. The dominant haplotypes, LX1 and LX2, differed significantly from all other haplotypes both in terms of the number of individuals with those haplotypes and their distributions. Haplotypes that were shared among populations revealed that P. xylostella migrates from the lower reaches of the Yangtze River to northern China and then to northeastern China. Our results also revealed another potential migration route for P. xylostella, i.e., from southwestern China to both northwestern and southern China.  相似文献   

20.
Restriction fragments from purified mitochondrial DNA can be readily detected following rapid end-labeling with [α-³²]nucleoside triphosphates and separation by gel electrophoresis. Mitochondrial DNA from 12 populations of Meloidogyne species was digested with 12 restriction enzymes producing more than 60 restriction fragments for each species. The mitochondrial genome of M. arenaria is the most genetically distinct of the four species compared. M. arenaria shows approximately 2.1-3.1% nucleotide sequence divergence from the mitochondrial genomes of M. javanica, M. incognita, and M. hapla. Among the latter three species, interspecific estimates of sequence divergence range from 0.7 to 2.3%. Relatively high intraspecific variation in mitochondrial restriction fragment patterns was observed in M. hapla. Intraspecific variation in M. incognita resulted in sequence divergence estimates of 0.5-1.0%. Such polymorphisms can serve as genetic markers for discerning mitochondrial DNA genotypes in nematode populations in the same way that allozymes have been used to discern nuclear DNA genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号