首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Type I procollagen was purified from cultured fibroblasts of a proband with a lethal variant of osteogenesis imperfecta. The protein was a mixture of normal procollagen and mutated procollagens containing a substitution of cysteine for glycine in either one pro alpha 1(I) chain or both pro alpha 1(I) chains, some or all of which were disulfide-linked through the cysteine at position alpha 1-748. The procollagen was then examined in a system for generating collagen fibrils de novo by cleavage of the pCcollagen to collagen with procollagen C-proteinase [Kadler et al. (1987) J. Biol. Chem. 262, 15696-15701]. The mutated collagens and normal collagens were found to form copolymers under a variety of experimental conditions. With two preparations of the protein that had a high content of alpha 1(I) chains disulfide-linked through the cysteine alpha 1-748, all the large structures formed had a distinctive, highly branched morphology that met one of the formal criteria for a fractal. Preparations with a lower content of disulfide-linked alpha 1(I) chains formed fibrils that were 4 times the diameter of control fibrils. The formation of copolymers was also demonstrated by the observation that the presence of mutated collagens decreased the rate of incorporation of normal collagen into fibrils. In addition, the solution-phase concentration at equilibrium of mixtures of mutated and normal collagens was 5-10-fold greater than that of normal collagen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Affected individuals from two apparently distinct, mild osteogenesis imperfecta families were heterozygous for a G to T transition in the COL1A2 gene that resulted in cysteine for glycine substitutions at position 646 in the alpha 2(I) chain of type I collagen. A child with a moderately severe form of osteogenesis imperfecta was heterozygous for a G to T transition that resulted in a substitution of cysteine for glycine at position 259 in the COL1A2 gene. Type I collagen molecules containing an alpha 2(I) chain with cysteine at position 259 denaturated at a lower temperature than molecules containing an alpha 2(I) chain with cysteine at position 646. In contrast to cysteine for glycine substitutions in the alpha 1(I) chain, the severity of the osteogenesis imperfecta phenotype is not directly proportional to the distance of the mutation from the amino-terminal end of the triple helix. These findings could be explained if the type I collagen triple helix contains discontinuous domains that differ in their contributions to maintaining helix stability.  相似文献   

3.
Cultured dermal fibroblasts from an infant with the lethal perinatal form of osteogenesis imperfecta (type II) synthesize normal and abnormal forms of type I procollagen. The abnormal type I procollagen molecules are excessively modified during their intracellular stay, have a lower than normal melting transition temperature, are secreted at a reduced rate, and form abnormally thin collagen fibrils in the extracellular matrix in vitro. Overmodification of the abnormal type I procollagen molecules was limited to the NH2-terminal three-fourths of the triple helical domain. Two-dimensional mapping of modified and unmodified alpha chains of type I collagen demonstrated neither charge alterations nor large insertions or deletions in the region of alpha 1(I) and alpha 2(I) in which overmodification begins. Both the structure and function of type I procollagen synthesized by cells from the parents of this infant were normal. The simplest interpretation of the results of this study is that the osteogenesis imperfecta phenotype arose from a new dominant mutation in one of the genes encoding the chains of type I procollagen. Given the requirement for glycine in every third position of the triple helical domain, the mutation may represent a single amino acid substitution for a glycine residue. These findings demonstrate further heterogeneity in the biochemical basis of osteogenesis imperfecta type II and suggest that the nature and location of mutations in type I procollagen may determine phenotypic variation.  相似文献   

4.
We have characterized a mutation that produces mild, dominantly inherited osteogenesis imperfecta. Half of the alpha 1 (I) chains of type I collagen synthesized by cells from an affected individual contain a cysteine residue in the 196-residue carboxyl-terminal cyanogen bromide peptide of the triple-helical domain (Steinmann, B., Nicholls, A., and Pope, F. M. (1986) J. Biol. Chem. 261, 8958-8964). Unexpectedly, sequence determined from a proteolytic fragment of the alpha 1 (I) chain derived from procollagen molecules synthesized in the presence of both [3H]proline and [35S]cysteine indicated that the cysteine is located at the third residue carboxyl-terminal to the triple-helical domain, normally a glycine. The nucleotide sequence of a fragment amplified from genomic DNA confirmed the location of the cysteine residue and showed that the mutation was a single nucleotide change in one COL1A1 allele. This represents a new class of mutations, point mutations outside the triple-helical domain of the chains of type I collagen, that produce the osteogenesis imperfecta phenotype.  相似文献   

5.
We have examined the collagenous proteins extracted from skin and produced by skin fibroblast cultures from the members of a family with mild dominant osteogenesis imperfecta (OI type I). The two affected patients, mother and son, produce two populations of alpha 1(I) chains of type I collagen, one chain being normal, the other containing a cysteine within the triple-helical domain. Both forms can be incorporated into triple-helical molecules with an alpha 2(I) chain. When two mutant alpha (I) chains are incorporated into the same molecule, a disulfide bonded dimer is produced. We have characterized these chains by sodium dodecyl sulfate-gel electrophoresis and CNBr-peptide mapping and by measuring a number of biosynthetic and physical variables. The cysteine was localized to the COOH-terminal peptide alpha (I) CB6. Molecules containing the mutant chains are stable, have a normal denaturation temperature, are secreted normally, and have normal levels of post-translational modification of lysyl residues and intracellular degradation. We have compared and contrasted these observations with those made in a patient with lethal osteogenesis imperfecta in which there was a cysteine substitution in alpha 1(I) CB6 (Steinmann, B., Rao, V. H., Vogel, A., Bruckner, P., Gitzelmann, R., and Byers, P. H. (1984) J. Biol. Chem 259, 11129-11138) and have concluded that the mutation in the present family occurs in the X or Y position of a Gly-X-Y repeating unit of collagen and not in the glycine position shown for the previous patient (Cohn, D. H., Byers, P. H., Steinmann, B, and Gelinas, R. E. (1986) Proc. Natl. Acad. Sci. U. S. A., in press.  相似文献   

6.
7.
Synthesis of procollagen was examined in skin fibroblasts from a patient with a moderately severe autosomal dominant form of osteogenesis imperfecta. Proteolytic removal of the propeptide regions of newly synthesized procollagen, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, revealed the presence of type I collagen in which two alpha 1(I) chains were linked through interchain disulfide bonds. Fragmentation of the disulfide-bonded alpha 1(I) dimers with vertebrate collagenase and cyanogen bromide demonstrated the presence of a cysteine residue in alpha 1(I)CB8, a fragment containing amino acid residues 124-402 of the alpha 1(I) collagen chain. Cysteine residues are not normally found in the triple-helical domain of type I collagen chains. The heterozygous nature of the molecular defect resulted in the formation of three kinds of type I trimers: a normal type with normal pro-alpha(I) chains, a type I trimer with one mutant pro-alpha 1(I) chain and two normal chains, and a type I trimer containing two mutant pro-alpha 1(I) chains and one normal pro-alpha 2(I) chain. The presence of one or two mutant pro-alpha 1(I) chains in trimers of type I procollagen was found to reduce the thermal stability of the protein by 2.5 and 1 degree C, respectively. In addition to post-translational overmodification, procollagen containing one mutant pro-alpha 1(I) chain was also cleared more slowly from cultured fibroblasts. The most likely explanation for these disruptive changes in the physical stability and secretion of the mutant procollagen is that a cysteine residue is substituted for a glycine in half of the pro-alpha 1(I) chains synthesized by the patient's fibroblasts.  相似文献   

8.
Cultured fibroblasts from a patient affected with a moderate form of osteogenesis imperfecta were defective for the synthesis of type I collagen molecules; about half of the alpha 1(I) chains contained a cysteine residue in the triple helical domain and a disulfide link formed when two mutant alpha 1(I) chains were incorporated into a type I collagen heterotrimer. The proband's parents were clinically and biochemically normal. The cysteine was localized within peptide alpha 1(I)CB8 between residues 170 and 200 of the triple helical domain using a chemical procedure with 2-nitro-5-thiocyanobenzoic acid (Tenni, R., Rossi, A., Valli, M., Mottes, M., Pignatti, P. F., and Cetta, G. (1990) Matrix 10, 20-26). Type I procollagen heterotrimers containing either one or two mutant chains showed (i) a slight abnormality in secretion from cells; (ii) a low degree of post-translational overmodifications; (iii) the same, but lower than normal, thermal stability. Total RNA was isolated from the proband's dermal fibroblast cultures, and cDNAs for pro-alpha 1(I) were prepared d using total RNA. A portion of cDNA, coding for the region encompassing residues 119-193 of alpha 1(I) triple helical domain, was amplified by polymerase chain reaction. A single base pair mismatch was identified by chemical cleavage of DNA.DNA heteroduplexes, indicating a possible substitution of a guanine in the triplet coding for glycine 178 or 181. The same unique mismatch was detected by chemical cleavage in about one-half of the molecules in heteroduplexes formed between patient's pro-alpha 1(I) mRNAs and a normal cDNA probe. The amplified products were cloned and sequenced, confirming the heterozygous nature of the patient and demonstrating the presence and the location of a missense mutation; a single T for G substitution was found in the first base of the triplet coding for residue 178 of alpha 1(I) triple helical domain, leading to a cysteine for glycine substitution. Allele-specific oligonucleotide hybridization to amplified DNA confirmed a de novo point mutation in the proband's genome. The findings in this patient are in accord with the phenotypic gradient model, which correlates the localization of the structural defect with the clinical outcome of osteogenesis imperfecta. The mutant protein has some properties that differ from the caused by the cysteine for glycine 175 substitution, suggesting a direct influence of the neighboring amino acids on the effects of the mutation.  相似文献   

9.
Classical Ehlers-Danlos syndrome (EDS) is characterized by skin hyperelasticity, joint hypermobility, increased tendency to bruise, and abnormal scarring. Mutations in type V collagen, a regulator of type I collagen fibrillogenesis, have been shown to underlie this type of EDS. However, to date, mutations have been found in only a limited number of patients, which suggests genetic heterogeneity. In this article, we report two unrelated patients with typical features of classical EDS, including excessive skin fragility, in whom we found an identical arginine-->cysteine substitution in type I collagen, localized at position 134 of the alpha1(I) collagen chain. The arginine residue is highly conserved and localized in the X position of the Gly-X-Y triplet. As a consequence, intermolecular disulfide bridges are formed, resulting in type I collagen aggregates, which are retained in the cells. Whereas substitutions of glycine residues in type I collagen invariably result in osteogenesis imperfecta, substitutions of nonglycine residues in type I collagen have not yet been associated with a human disease. In contrast, arginine-->cysteine substitutions in type II collagen have been identified in a variety of chondrodysplasias. Our findings show that mutations in other fibrillar collagens can be causally involved in classical EDS and point to genetic heterogeneity of this disorder.  相似文献   

10.
Recent reports have demonstrated that a series of probands with severe osteogenesis imperfecta had single base mutations in one of the two structural genes for type I procollagen that substituted amino acids with bulkier side chains for glycine residues and decreased the melting temperature of the triple helix. Here we demonstrate that the type I procollagen synthesized by cultured fibroblasts from a proband with a severe form of osteogenesis imperfecta consisted of normal molecules and molecules over-modified by post-translational reactions. The thermal stability of the intact type I collagen was normal as assayed by protease digestion under conditions in which a decrease in thermal stability was previously observed with eight other substitutions for glycine in the alpha 1(I) chain. In contrast, the thermal stability of the one-quarter length B fragment generated by digestion with vertebrate collagenase was decreased by 2-3 degrees C under the same conditions. Nucleotide sequencing of cDNAs and genomic DNA established that the proband had a substitution of A for G in one allele of the pro alpha 1(I) gene that converted the codon for alpha 1-glycine 844 to a codon for serine. The results also established that the alpha 1-serine 844 was the only mutation that could account for the decrease in thermal stability of the collagenase B fragment. There are at least two possible explanations for the failure of the alpha 1-serine 844 substitution to decrease the thermal stability of the collagen molecule whereas eight similar mutations decreased the melting temperature. One possibility is that the effects of glycine substitutions are position specific because not all glycine residues make equivalent contributions to cooperative blocks of the triple helix that unfold in the predenaturation range of temperatures. A second possible explanation is that substitutions of glycine by serine have much less effect on the stability of protein than the substitutions by arginine, cysteine, and aspartate previously studied.  相似文献   

11.
We have identified a point mutation in one alpha 1(I) collagen allele (COL1A1) of a child with the type IV osteogenesis imperfecta phenotype. When compared to parental and control samples, skin fibroblasts of the proband synthesized two populations of type I collagen molecules. One population was normal; the other was delayed in secretion and electrophoretic migration due to post-translational overmodification. Two-dimensional gel electrophoresis of the CNBr peptides demonstrated a gradient of overmodification beginning near the carboxyl-terminal CB peptides. This predicts that the mutation delaying helix formation is near the carboxyl-terminal end of one of the component chains of type I collagen. The mRNA of the patient was probed with overlapping antisense riboprobes to type I collagen cDNA. Cleavage of a mismatch in RNA/RNA hybrids of RNase A allowed the location of the mutation to a 225-base pair region of alpha 1(I) cDNA. The mismatch was not present in RNA/RNA hybrids from either parent. This region of both alpha 1(I) alleles of the patient was isolated by screening a lambda ZAP cDNA library. Sequence determination of both alleles demonstrated a single nucleotide change, G----A, resulting in the substitution of a serine for a glycine at amino acid residue 832. This point mutation occurs in the coding region for alpha 1(I) CB6 and is concordant with the protein data. The finding of a glycine substitution in an alpha 1(I) chain of a patient with the milder type IV osteogenesis imperfecta phenotype requires modification of current molecular models for types II and IV osteogenesis imperfecta.  相似文献   

12.
Hudson DM  Kim LS  Weis M  Cohn DH  Eyre DR 《Biochemistry》2012,51(12):2417-2424
Proline residues in collagens are extensively hydroxylated post-translationally. A rare form of this modification, (3S,2S)-l-hydroxyproline (3Hyp), remains without a clear function. Disruption of the enzyme complex responsible for prolyl 3-hydroxylation results in severe forms of recessive osteogenesis imperfecta (OI). These OI types exhibit a loss of or reduction in the level of 3-hydroxylation at two proline residues, α1(I) Pro986 and α2(I) Pro707. Whether the resulting brittle bone phenotype is caused by the lack of the 3-hydroxyl addition or by another function of the enzyme complex is unknown. We have speculated that the most efficient mechanism for explaining the chemistry of collagen intermolecular cross-linking is for pairs of collagen molecules in register to be the subunit that assembles into fibrils. In this concept, the exposed hydroxyls from 3Hyp are positioned within mutually interactive binding motifs on adjacent collagen molecules that contribute through hydrogen bonding to the process of fibril supramolecular assembly. Here we report observations on the physical binding properties of 3Hyp in collagen chains from experiments designed to explore the potential for interaction using synthetic collagen-like peptides containing 3Hyp. Evidence of self-association was observed between a synthetic peptide containing 3Hyp and the CB6 domain of the α1(I) chain, which contains the single fully 3-hydroxylated proline. Using collagen from a case of severe recessive OI with a CRTAP defect, in which Pro986 was minimally 3-hydroxylated, such binding was not observed. Further study of the role of 3Hyp in supramolecular assembly is warranted for understanding the evolution of tissue-specific variations in collagen fibril organization.  相似文献   

13.
To examine mechanisms by which reduced type V collagen causes weakened connective tissues in the Ehlers-Danlos syndrome (EDS), we examined matrix deposition and collagen fibril morphology in long-term dermal fibroblast cultures. EDS cells with COL5A1 haplo-insufficiency deposited less than one-half of hydroxyproline as collagen compared to control fibroblasts, though total collagen synthesis rates are near-normal because type V collagen represents a small fraction of collagen synthesized. Cells from patients with osteogenesis imperfecta (OI) and haplo-insufficiency for proalpha1(I) chains of type I collagen also incorporated about one-half the collagen as controls, but this amount was proportional to their reduced rates of total collagen synthesis. Collagen fibril diameter was inversely proportional to type V/type I collagen ratios (EDS > control > OI). However, a reduction of type V collagen, in the EDS derived cells, was associated with the assembly of significantly fewer fibrils compared to control and OI cells. These data indicate that in cell culture, the quantity of collagen fibrils deposited in matrix is highly sensitive to reduction in type V collagen, far out of proportion to type V collagen's contribution to collagen mass.  相似文献   

14.
We studied tissue and cultured skin fibroblasts from a newborn with the lethal perinatal form of osteogenesis imperfecta born to a mother with the Marfan syndrome and her unrelated husband. Dermis from the infant was thinner and fibril diameter smaller than control; dermal fibroblastic cells had dilated endoplasmic reticulum. His fibroblasts in culture synthesized two different species of pro alpha 1(I) chains in about equal quantity. One chain was normal, the other contained cysteine within the triple-helical portion of the COOH-terminal cyanogen bromide peptide alpha 1(I)CB6. Molecules which contained two copies of the mutant chain formed alpha 1(I)-dimers linked through interchain disulfide bonds. Molecules which contained either one or two mutant chains were delayed in secretion and underwent excessive lysyl hydroxylation and hydroxylysyl glycosylation of all chains in the molecule, probably as a result of delayed triple-helix formation. Molecules containing either one or two copies of the mutant chain melted at 38 degrees C instead of 41 degrees C. The most likely explanation for these findings is that a cysteine is substituted for a glycine in the triple-helical domain of the products of one of the alpha 1(I) alleles. Such a substitution would interfere with triple-helix formation and stability and thus explain 1) the decreased melting temperature, 2) the increased post-translational modification, 3) the altered rate of secretion and accumulation of intracellular material, 4) the increased intracellular degradation of newly synthesized collagen, and 5) the decreased collagen production. Since neither parental cell strain produced the same mutant chain, the findings are best explained by a new mutation in one of the alpha 1(I) genes. The role of the uncharacterized "Marfan" gene in modifying the phenotype in this patient is unclear.  相似文献   

15.
The distribution, supramolecular form, and arrangement of collagen types I and V in the chicken embryo corneal stroma were studied using electron microscopy, collagen type-specific monoclonal antibodies, and a preembedding immunogold method. Double-label immunoelectron microscopy with colloidal gold-tagged monoclonal antibodies was used to simultaneously localize collagen type I and type V within the chick corneal stroma. The results definitively demonstrate, for the first time, that both collagens are codistributed within the same fibril. Type I collagen was localized to striated fibrils throughout the corneal stroma homogeneously. Type V collagen could be localized only after pretreatment of the tissue to partially disrupt collagen fibril structure. After such pretreatments the type V collagen was found in regions where fibrils were partially dissociated and not in regions where fibril structure was intact. When pretreated tissues were double labeled with antibodies against types I and V collagen coupled to different size gold particles, the two collagens colocalized in areas where fibril structure was partially disrupted. Antibodies against type IV collagen were used as a control and were nonreactive with fibrils. These results indicate that collagen types I and V are assembled together within single fibrils in the corneal stroma such that the interaction of these collagen types within heterotypic fibrils masks the epitopes on the type V collagen molecule. One consequence of the formation of such heterotypic fibrils may be the regulation of corneal fibril diameter, a condition essential for corneal transparency.  相似文献   

16.
17.
Synthesis of type I procollagen was examined in fibroblasts from a proband with a lethal perinatal variant of osteogenesis imperfecta. After trypsin digestion of the type I procollagen, a portion of the alpha 1 (I) chains was recovered as disulfide-linked dimers. Digestion of the protein with vertebrate collagenase and mapping of cyanogen bromide peptides suggested that a new cysteine residue was present between residues 551 and 775 of the alpha 1 (I) chain. Sequencing of cloned cDNAs prepared using mRNA from the proband's fibroblasts demonstrated that some of the clones contained a single base mutation that converted the glycine codon in amino acid position 748 of the alpha 1 (I) chain to a cysteine codon. About 80% of the type I procollagen synthesized by the proband's fibroblasts had a decreased thermal stability. The results, therefore, were consistent with the conclusion that normal pro-alpha 1 (I) chains and pro-alpha 1 (I) chains containing a cysteine residue in the alpha chain domain were synthesized in about equal amounts and incorporated randomly into type I procollagen. However, only about 10% of the alpha 1 (I) chains generated by trypsin digestion were disulfide-linked. Further studies demonstrated a decreased rate of secretion of type I procollagen containing the new cysteine residue and decreased processing of the protein by procollagen N-proteinase in cultures of postconfluent fibroblasts. Both parents were phenotypically normal and their fibroblasts synthesized only normal type I procollagen. Therefore, the mutation in the proband was a sporadic one and is very likely to have caused the connective tissue fragility that produced the lethal phenotype.  相似文献   

18.
In the integrin family, the collagen receptors form a structurally and functionally distinct subgroup. Two members of this subgroup, alpha(1)beta(1) and alpha(2)beta(1) integrins, are known to bind to monomeric form of type I collagen. However, in tissues type I collagen monomers are organized into large fibrils immediately after they are released from cells. Here, we studied collagen fibril recognition by integrins. By an immunoelectron microscopy method we showed that integrin alpha(2)I domain is able to bind to classical D-banded type I collagen fibrils. However, according to the solid phase binding assay, the collagen fibril formation appeared to reduce integrin alpha(1)I and alpha(2)I domain avidity to collagen and to lower the number of putative alphaI domain binding sites on it. Respectively, cellular alpha(1)beta(1) integrin was able to mediate cell spreading significantly better on monomeric than on fibrillar type I collagen matrix, whereas alpha(2)beta(1) integrin appeared still to facilitate both cell spreading on fibrillar type I collagen matrix and also the contraction of fibrillar type I collagen gel. Additionally, alpha(2)beta(1) integrin promoted the integrin-mediated formation of long cellular projections typically induced by fibrillar collagen. Thus, these findings suggest that alpha(2)beta(1) integrin is a functional cellular receptor for type I collagen fibrils, whereas alpha(1)beta(1) integrin may only effectively bind type I collagen monomers. Furthermore, when the effect of soluble alphaI domains on type I collagen fibril formation was tested in vitro, the observations suggest that integrin type collagen receptors might guide or even promote pericellular collagen fibrillogenesis.  相似文献   

19.
Type I procollagen was purified from the medium of dermal fibroblasts cultured from four individuals with osteogenesis imperfecta (OI) type II who had mutations in the COL1A1 gene of type I procollagen. The procollagens were mixtures of normal molecules and molecules that contained substitutions of aspartate for glycine 97, arginine for glycine 550, cysteine for glycine 718, and aspartate for glycine 883 in one or both of the alpha 1 (I) chains of the molecule. The procollagens were cleaved more slowly than control type I procollagen by procollagen N-proteinase. Double-reciprocal plots of initial relative velocities and initial substrate concentrations indicated that the OI procollagens were all cleaved slowly by N-proteinase because of decreased Vmax, rather than increased Km. This suggested that slow cleavage of the OI procollagens by N-proteinase was the result of slow conversion of the N-proteinase-procollagen complex. Further experiments showed that the vertebrate collagenase A fragment of the aspartate for glycine alpha 1(I) 883 OI procollagen that contained the N-proteinase cleavage site but not the site of the substitution was also cleaved more slowly by N-proteinase than the normal vertebrate collagenase A fragments in the samples. These data show, for the first time, that an altered triple-helical structure is propagated from the site of a substitution of a bulky residue for glycine to the amino-terminal end of the procollagen molecule and disrupts the conformation of the N-proteinase cleavage site. Rotary shadowing electron microscopy of molecules in the preparation of cysteine for glycine alpha 1(I)-718 showed the presence of a kink in approximately 5% of a population of molecules in which 60% were abnormal and 20% contained a disulfide bond. In contrast, procollagens containing aspartate and arginine for glycine were indistinguishable by rotary shadowing electron microscopy from those in control samples. The results here confirm previous suggestions that substitution of cysteine for glycine in the alpha 1(I) chain of type I collagen can introduce a kink near the site of the substitution. However, the presence of a kink is not a prerequisite for delayed cleavage of abnormal procollagens by N-proteinase.  相似文献   

20.
Collagen defects in lethal perinatal osteogenesis imperfecta.   总被引:15,自引:3,他引:12       下载免费PDF全文
Quantitative and qualitative abnormalities of collagen were observed in tissues and fibroblast cultures from 17 consecutive cases of lethal perinatal osteogenesis imperfecta (OI). The content of type I collagen was reduced in OI dermis and bone and the content of type III collagen was also reduced in the dermis. Normal bone contained 99.3% type I and 0.7% type V collagen whereas OI bone contained a lower proportion of type I, a greater proportion of type V and a significant amount of type III collagen. The type III and V collagens appeared to be structurally normal. In contrast, abnormal type I collagen chains, which migrated slowly on electrophoresis, were observed in all babies with OI. Cultured fibroblasts from five babies produced a mixture of normal and abnormal type I collagens; the abnormal collagen was not secreted in two cases and was slowly secreted in the others. Fibroblasts from 12 babies produced only abnormal type I collagens and they were also secreted slowly. The slower electrophoretic migration of the abnormal chains was due to enzymic overmodification of the lysine residues. The distribution of the cyanogen bromide peptides containing the overmodified residues was used to localize the underlying structural abnormalities to three regions of the type I procollagen chains. These regions included the carboxy-propeptide of the pro alpha 1(I)-chain, the helical alpha 1(I) CB7 peptide and the helical alpha 1(I) CB8 and CB3 peptides. In one baby a basic charge mutation was observed in the alpha 1(I) CB7 peptide and in another baby a basic charge mutation was observed in the alpha 1(I) CB8 peptide. The primary defects in lethal perinatal OI appear to reside in the type I collagen chains. Type III and V collagens did not appear to compensate for the deficiency of type I collagen in the tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号