首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously demonstrated that the hydrophobic clusters present in hen lysozyme under denaturing conditions were disrupted by the mutation of Trp62 to Gly (W62G). In order to examine the effects of the structure of the denatured state of W62G lysozyme on folding, we analyzed the early events in the folding of reduced W62G lysozyme in detail. From the exchange measurements of disulfide bonds using the variants containing a pair of cysteine residues (1SS), it was found that the formation of disulfide bond in the W62G1SS lysozyme was not accompanied by a prominent interaction between amino acid residues, indicating that the disruption of the hydrophobic core led to the random folding at the early stages in the process of folding of the reduced lysozyme. On the other hand, analyses of the oxidative-renaturation of reduced W62G lysozymes, as well as measurements of the extent of aggregation of the reduced and carboxy amido methylated W62G lysozyme, indicated that the formation of an aggregate is more prominent in the reduced W62G lysozyme than in the reduced wild-type lysozyme. Moreover, a lag phase was detected in the oxidative-renaturation of reduced W62G lysozyme, as based on observations of the recovery of activity. The simulation of the folding process indicated that intermediates were present at the early stages in the folding of the reduced W62G lysozyme. These results suggest that the presence of the intermediates was derived from the random folding at the early stages in the folding process of reduced W62G lysozyme due to the disruption of the structure of the denatured state. Folding thus appears to have been kinetically delayed by these processes, which then led to the significant aggregation of reduced lysozyme. Moreover, from the analysis of amyloid aggregation of the reduced lysozymes, it was suggested that the disruption of the residual structure in denatured state by W62G mutation deterred the formation of the amyloid fibrils of lysozyme.  相似文献   

2.
Structure formation in two species of the two-disulfide variant of hen lysozyme was investigated by means of CD spectroscopy, disulfide exchange measurement, and 1H-NMR spectroscopy. One species, 2SS [6-127, 30-115], which contained the two disulfide bonds found in the alpha-domain of authentic lysozyme, had amounts of secondary and tertiary structures, and bacteriolytic activity comparable to those of authentic lysozyme, and showed a cooperative thermal unfolding. By contrast, the other species, 2SS [64-80, 76-94], which contained the beta-domain disulfide bond as well as the inter-domain one, had a limited amount of secondary structure and little tertiary structure. Disulfide-exchange did not occur for 2SS [6-127, 30-115], whereas it occurred for 2SS [64-80, 76-94], indicating that the protein main-chain fold coupled with the formation of two disulfide bonds is relatively stable for the former variant, while unstable for the latter. 1H-NMR spectra of 2SS [6-127, 30-115] showed that native-like local environment is present within the region that corresponds to the alpha-domain, while it is absent within the region that corresponds to the beta or inter-domain. These results indicate that the alpha-domain of hen lysozyme can be an independent folding domain at equilibrium. Although the bipartite nature in the structure formation of hen lysozyme is similar to that reported for alpha-lactalbumin, differences exist between the disulfide-intermediates of the two proteins in terms of the structural domain that accomplishes tertiary structure.  相似文献   

3.
To probe the role of individual disulfide bonds in the folding kinetics of hen lysozyme, the variants with two mutations, C30A,C115A, C64A,C80A, and C76A,C94A, were constructed. The corresponding proteins, each lacking one disulfide bond, were produced in Escherichia coli as inclusion bodies and solubilized, purified, and renatured/oxidized using original protocols. Their enzymatic, spectral, and hydrodynamic characteristics confirmed that their conformations were very similar to that of native wild-type (WT) lysozyme. Stopped-flow studies on the renaturation of these guanidine-unfolded proteins with their three disulfides intact showed that, for the three variants, the native far-UV ellipticity was regained in a burst phase within the 4-ms instrument dead-time. The transient overshoots of far-UV ellipticity and tryptophan fluorescence that follow the burst phase, as well as the kinetics of transient 8-anilino-1-naphthalene-sulfonic acid (ANS) binding, were diversely affected depending on the variant. Together with previous reports on the folding kinetics of WT lysozyme carboxymethylated on cysteines 6 and 127, detailed analysis of the kinetics showed that (1) none of the disulfide bonds were indispensable for the rapid formation (<4 ms) of the native-like secondary structure; (2) the two intra-alpha-domain disulfides (C6-C127 and C30-C115) must be simultaneously present to generate the trapped intermediate responsible for the slow folding population observed in WT lysozyme; and (3) the intra-beta-domain (C64-C80) and the inter-alphabeta-domains (C76-C94) disulfides do not affect the kinetics of formation of the trapped intermediate but are involved in its stability.  相似文献   

4.
Catalytic properties of hen egg white lysozyme were analyzed during the renaturation of the enzyme from completely reduced and denatured material. The formation of intermediate folding products and the generation of native lysozyme was monitored by acetic acid/urea electrophoresis. The results showed that during the beginning of renaturation almost all reduced and denatured lysozyme is converted to forms possessing lower compactness than native lysozyme, probably as a result of formation of only one or two disulfide bonds. Kinetic analysis of lysozyme during renaturation showed that the generation of lysozyme with four disulfide bonds was not necessarily equivalent to the formation lysozyme with native-like catalytic properties. It appeared that the formation rate of the structures of the structures of the substrate binding site and of the catalytic site were limited by the generation of four disulfide bonds containing lysozyme. The catalytic properties of intermediate folding products made it evident that the final structures of the substrate binding site and of the catalytic site were formed after the generation of all disulfide bonds.  相似文献   

5.
Previous studies have shown that reduced hen egg white lysozyme refolds and oxidizes according to a linear model, in which the number of disulfide bonds increases sequentially. In this study, we describe the kinetics of native tertiary structure formation during the oxidative-renaturation of reduced hen egg white lysozyme, as monitored using an immunochemical pulsed-labeling method based on enzyme-linked immunosorbent assay (ELISA) in conjunction with two monoclonal antibodies (mAb). Each of these antibodies recognizes a separate face of the native lysozyme surface and, more importantly, each epitope is composed of discontinuous regions of the polypeptide chain. Renaturation kinetics were studied under the same refolding conditions as previous investigations of the kinetics of the regain of far-UV CD, fluorescence, enzymatic activity, and disulfide bonds. Comparison of our results with the results from those studies showed that the immunoreactivity (i.e., the native fold) of the alpha-domain appeared in intermediates containing two SS bonds only (C6-C127 and C30-C115), while the immunoreactivity of the beta-domain appeared together with the formation of the third SS bond (C64-C80). Thus, the alpha-domain folds before the beta-domain during the oxidative folding of reduced lysozyme.  相似文献   

6.
The role of the two disulfide bonds (Cys4-Cys60 and Cys18-Cys29) in the activity and stability of goose-type (G-type) lysozyme was investigated using ostrich egg-white lysozyme as a model. Each of the two disulfide bonds was deleted separately or simultaneously by substituting both Cys residues with either Ser or Ala. No remarkable differences in secondary structure or catalytic activity were observed between the wild-type and mutant proteins. However, thermal and guanidine hydrochloride unfolding experiments revealed that the stabilities of mutants lacking one or both of the disulfide bonds were significantly decreased relative to those of the wild-type. The destabilization energies of mutant proteins agreed well with those predicted from entropic effects in the denatured state. The effects of deleting each disulfide bond on protein stability were found to be approximately additive, indicating that the individual disulfide bonds contribute to the stability of G-type lysozyme in an independent manner. Under reducing conditions, the thermal stability of the wild-type was decreased to a level nearly equivalent to that of a Cys-free mutant (C4S/C18S/C29S/C60S) in which all Cys residues were replaced by Ser. Moreover, the optimum temperature of the catalytic activity for the Cys-free mutant was downshifted by about 20 degrees C as compared with that of the wild-type. These results indicate that the formation of the two disulfide bonds is not essential for the correct folding into the catalytically active conformation, but is crucial for the structural stability of G-type lysozyme.  相似文献   

7.
Proteins in the alpha-lactalbumin and c-type lysozyme family have been studied extensively as model systems in protein folding. Early formation of the alpha-helical domain is observed in both alpha-lactalbumin and c-type lysozyme; however, the details of the kinetic folding pathways are significantly different. The major folding intermediate of hen egg-white lysozyme has a cooperatively formed tertiary structure, whereas the intermediate of alpha-lactalbumin exhibits the characteristics of a molten globule. In this study, we have designed and constructed an isolated alpha-helical domain of hen egg-white lysozyme, called Lyso-alpha, as a model of the lysozyme folding intermediate that is stable at equilibrium. Disulfide-exchange studies show that under native conditions, the cysteine residues in Lyso-alpha prefer to form the same set of disulfide bonds as in the alpha-helical domain of full-length lysozyme. Under denaturing conditions, formation of the nearest-neighbor disulfide bonds is strongly preferred. In contrast to the isolated alpha-helical domain of alpha-lactalbumin, Lyso-alpha with two native disulfide bonds exhibits a well-defined tertiary structure, as indicated by cooperative thermal unfolding and a well-dispersed NMR spectrum. Thus, the determinants for formation of the cooperative side-chain interactions are located mainly in the alpha-helical domain. Our studies suggest that the difference in kinetic folding pathways between alpha-lactalbumin and lysozyme can be explained by the difference in packing density between secondary structural elements and support the hypothesis that the structured regions in a protein folding intermediate may correspond to regions that can fold independently.  相似文献   

8.
Our previous results using the Saccharomyces cerevisiae secretion system suggest that intramolecular exchange of disulfide bonds occurs in the folding pathway of human lysozyme in vivo (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 265, 7570-7575). Here we report on the results of introducing an artificial disulfide bond in mutants with 2 cysteine residues substituting for Ala83 and Asp91. The mutant (C83/91) protein was not detected in the culture medium of the yeast, probably because of incorrect folding. Thereupon, 2 cysteine residues Cys77 and Cys95 were replaced with Ala in the mutant C83/91, because a native disulfide bond Cys77-Cys95 was found not necessary for correct folding in vivo (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). The resultant mutant (AC83/91) was secreted as two proteins (AC83/91-a and AC83/91-b) with different specific activities. Amino acid and peptide mapping analyses showed that two glutathiones appeared to be attached to the thiol groups of the cysteine residues introduced into AC83/91-a and that four disulfide bonds including an artificial disulfide bond existed in the AC83/91-b molecule. The presence of cysteine residues modified with glutathione may indicate that the non-native disulfide bond Cys83-Cys91 is not so easily formed as a native disulfide bond. These results suggest that the introduction of Cys83 and Cys91 may act to suppress the process of native disulfide bond formation through disulfide bond interchange in the folding of human lysozyme.  相似文献   

9.
Equilibrium and kinetic effects on the folding of T4 lysozyme were investigated by fluorescence emission spectroscopy in cryosolvent. To study the role of disulfide cross-links in stability and folding, a comparison was made with a mutant containing an engineered disulfide bond between Cys-3 (Ile-3 in the wild type) and Cys-97, which links the C-terminal domain to the N terminus of the protein [Perry & Wetzel (1984) Science 226, 555]. In our experimental system, stability toward thermal and denaturant unfolding was increased slightly as a result of the cross-link. The corresponding reduced protein was significantly less stable than the wild type. Unfolding and refolding kinetics were carried out in 35% methanol, pH 6.8 at -15 degrees C, with guanidine hydrochloride as the denaturant. Unfolding/refolding of the wild-type and reduced enzyme showed biphasic kinetics both within and outside the denaturant-induced transition region and were consistent with the presence of a populated intermediate in folding. Double-jump refolding experiments eliminated proline isomerization as a possible cause for the biphasicity. The disulfide mutant protein, however, showed monophasic kinetics in all guanidine concentrations studied.  相似文献   

10.
To assess the respective roles of local and long-range interactions during protein folding, the influence of the native disulfide bonds on the early formation of secondary structure was investigated using continuous-flow circular dichroism. Within the first 4 ms of folding, lysozyme with intact disulfide bonds already had a far-UV CD spectrum reflecting large amounts of secondary structure. Conversely, reduced lysozyme remained essentially unfolded at this early folding time. Thus, native disulfide bonds not only stabilize the cfinal conformation of lysozyme but also provide, in early folding intermediates, the necessary stabilization that favors the formation of secondary structure.  相似文献   

11.
Horsegram protease inhibitor belongs to the Bowman-Birk class (BBIs) of low molecular weight (8-10 kDa), disulfide-rich, "dual" inhibitors, which can bind and inhibit trypsin and chymotrypsin either independently or simultaneously. They have seven conserved disulfide bonds. Horsegram BBI exhibits remarkable stability against denaturants like urea, guanidine hydrochloride (GdmCl) and heat, which can be attributed to these conserved disulfide bonds. On reductive denaturation, horsegram BBI follows the "two-state" mode of unfolding where all the disulfide bonds are reduced simultaneously resulting in the fully reduced protein without any accumulation of partially reduced intermediates. Reduction with dithiothreitol (DTT) followed apparent first-order kinetics and the rate constants (k(r)) indicated that the disulfide bonds were "hyperreactive" in nature. Oxidative refolding of the fully reduced and denatured inhibitor was possible at very low protein concentration in the presence of "redox" combination of reduced and oxidized glutathiones. Simultaneous recovery of trypsin and chymotryptic inhibitory activities indicated the concomitant folding of both the inhibitory subdomains. Folding efficiency decreased in the absence of the glutathiones and in the presence of denaturants (6 M urea and 4 M GdmCl), indicating the importance of disulfide shuffling and the formation of noncovalent interactions and secondary structural elements, respectively, for folding efficiency. Folding rate was significantly improved in the presence of protein disulfide isomerase (PDI). A 3-fold enhancement of rate was observed in the presence of PDI at molar ratio of 1:20 (PDI/inhibitor), indicating that disulfide bond formation and isomerization to be rate limiting in folding. Peptide prolyl cis-trans isomerase (PPI) did not affect rate at low concentrations, but at molar ratios of 1:1.5 (PPI/inhibitor), there was 1.4-fold enhancement of the folding rate, indicating that the prolyl imidic bond isomerizations may be slowing down the folding reaction but were not rate limiting.  相似文献   

12.
The mutant h-lysozyme, W64CC65A, with Trp64 and Cys65 replaced by Cys and Ala, respectively, was secreted by yeast and purified. Peptide mapping confirmed that W64CC65A contained a nonnative Cys64-Cys81 bond and three native disulfide bonds. The mutant had 2% of the lytic activity of the wild-type lysozyme. The midpoint concentration of the guanidine hydrochloride denaturation curve, the [D]1/2, was 2.7 M for W64CC65A at pH 3.0 and 25 degrees C, whereas the [D]1/2 for the wild-type h-lysozyme was 2.9 M. These results show that the W64CC65A protein is a compactly folded molecule. Our previous results, using the mutant C81A, indicate that Cys81 is not required for correct folding and activity, whereas Cys65 is indispensable (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 65, 7570-7575). Cys64 substituted for Cys65 in W64CC65A, even though the distance between the alpha-carbons at positions 64 and 81 in the wild-type h-lysozyme is not favorable for forming a disulfide bond. Unlike C81A, the mutant W64CC65/81A, which has the additional substitution of Ala for Cys81, did not fold. These results suggest that the absence of both the Cys64-Cys81 bond and the amino acid residue Trp64 caused the misfolding or destabilization of W64CC65/81A in vivo. It is proposed that the formation of the alternative bond, Cys64-Cys81 is important for the folding of W64CC65A in vivo.  相似文献   

13.
The recovery of proteins following denaturation is optimal at low protein concentrations. The decrease in yield at high concentrations has been explained by the kinetic competition of folding and "wrong aggregation". In the present study, the renaturation-reoxidation of hen and turkey egg white lysozyme was used as a model system to analyze the committed step in aggregate formation. The yield of renatured protein for both enzymes decreased with increasing concentration in the folding process. In addition, the yield decreased with increasing concentrations of the enzyme in the denatured state (i.e., prior to its dilution in the renaturation buffer). The kinetics of renaturation of turkey lysozyme were shown to be very similar to those of hen lysozyme, with a half-time of about 4.5 min at 20 degrees C. The rate of formation of molecular species that lead to formation of aggregates (and therefore fail to renature) was shown to be rapid. Most of the reaction occurred in less than 5 s after the transfer to renaturation buffer, and after 1 min, the reaction was essentially completed. Yet, by observing the effects of the delayed addition of denatured hen lysozyme to refolding turkey lysozyme, it was shown that folding intermediates become resistant to aggregation only much more slowly, with kinetics indistinguishable from those observed for the appearance of native molecules. The interactions leading to the formation of aggregates were nonspecific and do not involve disulfide bonds. These observations are discussed in terms of possible kinetic and structural aspects of the folding pathway.  相似文献   

14.
A New technique for the rapid measurement of ultrasonic absorption with a sampling interval of 5 msec has been developed and applied to the kinetic study of denaturation and subsequant redution of hen egg-white lysozyme. The lysozyme is denatured by guanidine hydrochloride (GuHCl) orLiBr, and afetr denaturation by GuHCl, its disulfide bonds are reduced by dithiothreitol (DTT). The ultrasonic adsorption coefficient at 9 MHz increases with denaturation but decreases with reduction. The rate constant of denaturation by GuHCl obtained from the rime variance of ultasonic agrees well with that from uv absorption and optical rotation. The time variance if absorption after GuHCl and Dtt have been simultaneously added exhibits two rate constants. Analysis of the constants as functions of regeant concentrations indicates that the intermediates state between native and reduced states is not necessarily the completely denatured state but depends on the concentartions of GuHCl and DTT.  相似文献   

15.
Human lysozyme is made up of 130 amino acid residues and has four disulfide bonds at Cys6-Cys128, Cys30-Cys116, Cys65-Cys81, and Cys77-Cys95. Our previous results using the Saccharomyces cerevisiae secretion system indicate that the individual disulfide bonds of human lysozyme have different functions in the correct in vivo folding and enzymatic activity of the protein (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). In this paper, we report the results of experiments that were focused on the roles of Cys65 and Cys81 in the folding of human lysozyme protein in yeast. A mutant protein (C81A), in which Cys81 was replaced with Ala, had almost the same enzymatic activity and conformation as those of the native enzyme. On the other hand, another mutant (C65A), in which Cys65 was replaced with Ala, was not found to fold correctly. These results indicate that Cys81 is not a requisite for both correct folding and activity, whereas Cys65 is indispensable. The mutant protein C81A is seen to contain a new, non-native disulfide bond at Cys65-Cys77. The possible occurrence of disulfide bond interchange during our mapping experiments cannot be ruled out by the experimental techniques presently available, but characterization of other mutant proteins and computer analysis suggest that the intramolecular exchange of disulfide bonds is present in the folding pathway of human lysozyme in vivo.  相似文献   

16.
The effects of several variables on the refolding of hen egg white lysozyme have been studied. Lysozyme was denatured in both urea, and guanidine hydrochloride (GuHCl), and batch refolded by dilution (100 to 1000 fold) into 0.1M Tris-HCl, pH 8.2, 1 mM EDTA, 3 mM reduced glutathione and 0.3 mM oxidised glutathione. Refolding was found to be sensitive to temperature, with the highest refolding yield obtained at 50°C. The apparent activation energy for lysozyme refolding was found to be 56 kJ/mol. Refolding by dilution results in low concentrations of both denaturant and reducing agent species. It was found that the residual concentrations obtained during dilution (100-fold dilution: [GuHCl]=0.06 mM, [DTT]=0.15 mM) were significant and could inhibit lysozyme refolding. This study has also shown that the initial protein concentration (1–10 mg/mL) that is refolded is an important parameter. In the presence of residual GuHCl and DTT, higher refolding yields were obtained when starting from higher initial lysozyme concentrations. This trend was reversed when residual denaturant components were removed from the refolding buffer.  相似文献   

17.
The formation of amyloid fibrils is an intractable problem in which normally soluble protein polymerizes and forms insoluble ordered aggregates. Such aggregates can range from being a nuisance in vitro to being toxic in vivo. The latter is true for lysozyme, which has been shown to form toxic deposits in humans. In the present study, the effects of partial denaturation of hen egg-white lysozyme via incubation in a concentrated solution of the denaturant guanidine hydrochloride are investigated. Results show that when lysozyme is incubated under moderate guanidine hydrochloride concentrations (i.e., 2-5 M), where lysozyme is partially unfolded, fibrils form rapidly. Thioflavin T, Congo red, X-ray diffraction, transmission electron microscopy, atomic force microscopy, and circular dichroism spectroscopy are all used to verify the production of fibrils under these conditions. Incubation at very low or very high guanidine hydrochloride concentrations fails to produce fibrils. At very low denaturant concentrations, the structure of lysozyme is fully native and very stable. On the other hand, at very high denaturant concentrations, guanidine hydrochloride is capable of dissolving and dis-aggregating fibrils that are formed. Raising the temperature and/or concentration of lysozyme accelerates fibril formation by further adding to the concentration of partially unfolded species. The addition of preformed fibrils also accelerates fibril formation but only under partially unfolding conditions. The results presented here provide further evidence that partial unfolding is a prerequisite to fibril formation. Partial denaturation can accelerate fibril formation in much the same way that mutations have been shown to accelerate fibril formation.  相似文献   

18.
Sasahara K  Nitta K 《Proteins》2006,63(1):127-135
The equilibrium and kinetics of folding of hen egg-white lysozyme were studied by means of CD spectroscopy in the presence of varying concentrations of ethanol under acidic condition. The equilibrium transition curves of guanidine hydrochloride-induced unfolding in 13 and 26% (v/v) ethanol have shown that the unfolding significantly deviates from a two-state mechanism. The kinetics of denaturant-induced refolding and unfolding of hen egg-white lysozyme were investigated by stopped-flow CD at three ethanol concentrations: 0, 13, and 26% (v/v). Immediately after dilution of the denaturant, the refolding curves showed a biphasic time course in the far-UV region, with a burst phase with a significant secondary structure and a slower observable phase. However, when monitored by the near-UV CD, the burst phase was not observed and all refolding kinetics were monophasic. To clarify the effect of nonnative secondary structure induced by the addition of ethanol on the folding/unfolding kinetics, the kinetic m values were estimated from the chevron plots obtained for the three ethanol concentrations. The data indicated that the folding/unfolding kinetics of hen lysozyme in the presence of varying concentrations of ethanol under acidic condition is explained by a model with both on-pathway and off-pathway intermediates of protein folding.  相似文献   

19.
We examined folding and secretion of human lysozyme using four mutants each lacking two cysteines expressed in a yeast secretion system. Our results have revealed that the formation of the disulfide bond Cys6/Cys128 in human lysozyme is a prerequisite for correct folding in vivo in yeast. Substitution of Ala for Cys77 and Cys95 gave eight-fold greater secretion of a molecule with almost the same specific activity as that of the native enzyme. Substitutions of the other cysteines gave molecules that were secreted at a lower rate and had lower specific activities than the native enzyme. These are the first findings that the individual disulfide bonds of human lysozyme have different functions in folding and secretion in vivo.  相似文献   

20.
A systematic study of the oxidative folding of murine prion protein mPrP(23-231) is reported here. Folding of mPrP(23-231) involves formation of a single disulfide bond, Cys179-Cys214. Despite this simplicity, reduced mPrP(23-231) exhibits numerous unusual folding properties. In the absence of denaturant, folding of mPrP(23-231) is extremely sluggish, regardless of pH. The optimal pH for mPrP(23-231) folding was found to be 4-5. At pH 8.0, a condition that typically favors disulfide formation, folding of mPrP(23-231) hardly occurs, and it not facilitated by inclusion of redox agent. In the presence of denaturant (4 M urea or 2 M guanidine hydrochloride) and basic pH (8.0), reduced mPrP(23-231) refolds to the native structure quantitatively. The efficiency of folding can be further promoted by the presence of oxidized glutathione. At pH 4.0 and in the presence of 4 M urea, reduced mPrP(23-231) converts to three distinctive conformational isomers, unable to form the native structure. These unusual properties lead us to the following conclusions. The reduced mPrP(23-231) adopts a highly rigid structure with the two cysteines buried or situated apart. The presence of denaturant or low pH disrupts this rigid structure and lowers the energy barrier, which permits oxidation and refolding of the reduced mPrP(23-231). Under selected conditions, reduced mPrP(23-231) is capable of taking on multiple forms of stable conformational isomer that are segregated by energy barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号