首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
bHLH转录因子家族是植物转录因子中最大的家族之一。bHLH转录因子在真核生物的生长发育和调控中起到重要作用,其功能研究在动物中进展较快,而植物bHLH转录因子家族的功能只有部分得到解析。本文综述了bHLH转录因子家族在植物抗逆反应和生长发育中功能研究的最新进展,以期为进一步深入分析该家族基因在植物逆境胁迫应答中的作用提供帮助。  相似文献   

2.
3.
土壤中的高含盐量严重限制了植物的生长和作物的产量。植物的许多转录因子在植物逆境胁迫中发挥着重要的作用,但仍有很多转录因子的分子机制目前尚不清楚。WRKY转录因子作为高等植物中最大的转录因子家族之一,参与并影响着植物生长发育的多个方面,在盐胁迫的多种不同响应途径中发挥重要作用。WRKY蛋白对基因表达的调控主要是通过与DNA特定顺式调控元件——W-box元件(TTGACC)的结合来实现的。近年来,从模式植物拟南芥(Arabidopsis)到农作物,已经有许多研究揭示了WRKY家族成员的作用和机制。本文综述了WRKY转录因子在应对盐胁迫方面的最新研究进展,探讨了WRKY转录因子研究目前存在的问题和未来的展望。  相似文献   

4.
植物在遭受外界逆境胁迫时,体内的信号传导系统能够感知、传递逆境胁迫信号,并引起各种生理生化反应以适应环境。植物蛋白激酶在信号感知、传导以及基因的表达调控中起重要的作用。蛋白激酶在信号传导过程的功能是磷酸化修饰目的蛋白,而磷酸化的实现需要蛋白质之间相互作用。本文从植物蛋白激酶的结构、分类、与激素信号传导之间的关系等方面进行了系统的阐述,对蛋白激酶介导的植物抗性与发育的最新研究进展进行了系统的总结,为解析蛋白激酶在植物生长发育中的抗逆机理提供依据。  相似文献   

5.
Cloning the first avirulence ( avr ) gene has led not only to a deeper understanding of gene-for-gene interactions in plant disease, but also to fundamental insights into the suppression of basal defences against microbial attack. This article (focusing on Pseudomonas syringae ) charts the development of ideas and research progress over the 25 years following the breakthrough achieved by Staskawicz and coworkers. Advances in gene cloning technology underpinned the identification of both avr and hrp genes, the latter being required for the activation of the defensive hypersensitive reaction (HR) and pathogenicity. The delivery of Avr proteins through the type III secretion machinery encoded by hrp gene clusters was demonstrated, and the activity of the proteins inside plant cells as elicitors of the HR was confirmed. Key roles for avr genes in pathogenic fitness have now been established. The rebranding of Avr proteins as effectors, proteins that suppress the HR and cell wall-based defences, has led to the ongoing search for their targets, and is generating new insights into the co-ordination of plant resistance against diverse microbes. Bioinformatics-led analysis of effector gene distribution in genomes has provided a remarkable view of the interchange of effectors and also their functional domains, as the arms race of attack and defence drives the evolution of microbial pathogenicity. The application of our accrued knowledge for the development of disease control strategies is considered.  相似文献   

6.
7.
快速碱化因子类基因在茄科植物中的研究进展   总被引:1,自引:0,他引:1  
植物在调控生长发育、响应外界胁迫时,细胞内外的pH变化是及时、重要的反应之一。快速碱化因子类基因(RALF)属于植物多肽类信号分子,是一类大的家族基因,它的活动引起胞外pH值快速升高,有关RALF类基因的研究在几种茄科植物中开展的较多,包括RALF蛋白信号分子的结构及加工、基因表达、受体研究以及功能等方面。最近我们在白菜和紫菜薹中的研究发现有一些脚类基因与植物的育性有关,本文就茄科植物中的这些研究进展进行介绍,为RALF的进一步研究提供参考。  相似文献   

8.
植物MADS-box基因家族的不同成员在植物生长发育过程中起着非常重要的作用。拟南芥MADS-box 基因FRUITFULL(FUL) 在控制拟南芥开花时间、花分生组织分化、茎生叶形态以及心皮和果实的发育中起到重要作用。其他植物中,FUL的同源基因也在调控花发育,果实发育以及叶片发育等方面各自起到重要作用。本文综述了FUL基因及其同源基因的表达模式和功能,并就其在农作物及果树育种上的潜在应用价值进行了讨论。  相似文献   

9.
WRKY转录因子功能研究进展   总被引:5,自引:0,他引:5  
植物各种诱导型基因的表达主要受特定的转录因子在转录水平上的调控.转录因子结构和功能的研究近年来成为植物分子生物学、细胞分子生物学和分子遗传学研究领域的重要内容.WRKY转录因子在拟南芥中有74个成员,水稻中有100多个成员,在生物胁迫及非生物胁迫方面发挥着非常重要的作用.该文就近年来国内外关于WRKY转录因子家族的结构与起源进化和在植物损伤、衰老、发育及代谢等过程中参与的调控功能,以及在植物防御反应中对防御相关基因表达的调控及参与的植物激素类信号途径等方面的研究进展进行了综述,为全面解析WRKY转录因子家族的结构与功能提供了新的视点.  相似文献   

10.
植物miRNA是广泛分布于植物基因组的非编码小分子RNA.是真核生物基因表达的一类负调控因子,主要通过指导靶基因的切割或降低靶基因的翻译从转录后水平上来抑制植物基因表达.从而影响植物形态发生、发育过程和适应环境的能力。本文综述了植物miRNA形成、作用机理、功能等方面研究的最新进展,总结了现有miRNA研究方法的优缺点,提出了miRNA在植物适应养分和元素毒害胁迫过程中的调节作用.拓宽了该领域研究的思路。  相似文献   

11.
Glycosyltransferases are members of the multigene superfamily in plants that can transfer single or multiple activated sugars to a range of plant molecules,resulting in the glycosylation of plant compounds.Although the activities of many glycosyltransferases and their products have been recognized for a long time,only in recent years were some glycosyltransferase genes identified and a few functionally characterized in detail.Glycosylation is thought to be one of the most important modification reactions towards plant secondary metabolites,and plays a key role in maintaining cell homeostasis,thus likely participating in the regulation of plant growth,development and in defense responses to stress environments.With advances in plant genome projects and the development of novel technologies in analyzing gene function,significant progress could be made in gaining new insights into the properties and precise biological roles of plant secondary product glycosyltransferases,and the new knowledge will have extensive application prospects in the catalytic synthesis of glycoconjugates and metabolic engineering of crops.In this review,we summarize the current research,highlighting the possible biological roles,of plant secondary metabolite glycosyltransferases and discuss their potential applications as well as aspects to be further studied in the near future.  相似文献   

12.
Glycosyltransferases are members of the multigene superfamily in plants that can transfer single or multiple activated sugars to a range of plant molecules, resulting in the glycosylation of plant compounds. Although the activities of many glycosyltransferases and their products have been recognized for a long time, only in recent years were some glycosyltransferase genes identified and a few functionally characterized in detail. Glycosylation is thought to be one of the most important modification reactions towards plant secondary metabolites, and plays a key role in maintaining cell homeostasis, thus likely participating in the regulation of plant growth, development and in defense responses to stress environments. With advances in plant genome projects and the development of novel technologies in analyzing gene function, significant progress could be made in gaining new insights into the properties and precise biological roles of plant secondary product glycosyltransferases, and the new knowledge will have extensive application prospects in the catalytic synthesis of glycoconjugates and metabolic engineering of crops. In this review, we summarize the current research, highlighting the possible biological roles, of plant secondary metabolite glycosyltransferases and discuss their potential applications as well as aspects to be further studied in the near future.  相似文献   

13.
色彩是评价园艺植物观赏性状的重要指标,而植物色素是影响植物色彩表型的关键因子。植物色素及其代谢产物在植物观赏器官颜色形成、植株生长发育调节及对逆境胁迫的响应等方面发挥着重要的作用,是植物研究领域长期关注的热点问题。病毒诱导基因沉默(virus-induced gene silencing,VIGS)是利用植物同源依赖性防御机制,特异性降低宿主内源性基因表达的一种重要基因组学工具,能够通过快速诱导植物基因沉默表型的产生,表征基因的功能,为缺乏遗传转化体系的植物的基因功能鉴定提供高效可行的替代方案。本文综述了VIGS技术在植物色素的生物合成、降解和调控机制上的应用现状,并探讨了VIGS技术在探究色素调控机制上的潜力和未来前景,以期进一步完善对不同植物色素的代谢过程和调控机制的理解,为改良植物色彩性状提供参考依据。  相似文献   

14.
Emerging evidence suggests that plant cell-wall-modifying enzymes induced by root-parasitic nematodes play important roles in feeding cell formation. We previously identified a tobacco endo-β-1,4-glucanase (cellulase) gene, NtCel7 , that was strongly induced in both root-knot and cyst nematode feeding cells. To characterize further the developmental and nematode-responsive regulation of NtCel7 , we isolated the NtCel7 promoter and analysed its expression over a time course of nematode infection and in response to auxin, gibberellin, ethylene and sucrose in soybean and tomato hairy roots and in Arabidopsis containing the NtCel7 promoter fused to the β-glucuronidase (GUS) reporter gene. Histochemical analyses of transgenic plant materials revealed that the NtCel7 promoter exhibited a unique organ-specific expression pattern during plant development suggestive of important roles for NtCel7 in both vegetative and reproductive growth. In all plant species tested, strong GUS expression was observed in root tips and lateral root primordia of uninfected roots with weaker expression in the root vasculature. Further analyses of transgenic Arabidopsis plants revealed expression in shoot and root meristems and the vasculature of most organs during plant development. We also determined that the NtCel7 promoter was induced by auxin, but not gibberellin, ethylene or sucrose. Moreover, strong GUS activity was observed in both cyst and root-knot nematode-induced feeding sites in transgenic roots of soybean, tomato and Arabidopsis. The conserved developmental and nematode-responsive expression of the NtCel7 promoter in heterologous plants indicates that motifs of this regulatory element play a fundamental role in regulating NtCel7 gene expression within nematode feeding sites and that this regulation may be mediated by auxin.  相似文献   

15.
MicroRNAs (miRNAs) are negative regulators of gene expression in eukaryotic organisms, whereas small interfering RNAs (siRNAs) guide host-cell defence against viruses, transposons and transgenes. A key issue in plant biology is whether miRNAs act only in cells in which they are formed, or if, like siRNAs, they also function after passive diffusion or active transportation into other cells. Recent reports show that miRNAs are indeed able to move between plant cells to direct developmental programming of gene expression. In both leaf and root development, miRNAs establish intercellular gradients of gene expression that are essential for cell and tissue differentiation. Gradients in gene expression also play crucial roles in animal development, and there is strong evidence for intercellular movement of miRNAs in animals. Thus, intercellular movement of miRNAs may be crucial to animal developmental biology as well as plants.  相似文献   

16.
蛋白质的O-GlcNAc糖基化现象发现迄今已有30多年历史.动物中,O-GlcNAc糖基化在调控细胞信号转导、基因转录、表观遗传和新陈代谢等方面发挥重要作用.而植物中,O-GlcNAc糖基化在近几年才得到关注并进行初步研究.本文对植物中O-GlcNAc修饰的糖供体合成途径、O-GlcNAc修饰关键酶、O-GlcNAc修饰蛋白的检测及功能等方面的研究工作进行归纳总结,发现O-GlcNAc糖基化在植物的生长发育、激素网络调控、信号转导、植物病毒侵染等过程均发挥重要作用,为进一步研究植物中O-GlcNAc糖基化的生物学功能提供参考.  相似文献   

17.
Sterols are important not only for structural components of eukaryotic cell membranes but also for biosynthetic precursors of steroid hormones. In plants, the diverse functions of sterol-derived brassinosteroids (BRs) in growth and development have been investigated rigorously, yet little is known about the regulatory roles of other phytosterols. Recent analysis of Arabidopsis fackel (fk) mutants and cloning of the FK gene that encodes a sterol C-14 reductase have indicated that sterols play a crucial role in plant cell division, embryogenesis, and development. Nevertheless, the molecular mechanism underlying the regulatory role of sterols in plant development has not been revealed. In this report, we demonstrate that both sterols and BR are active regulators of plant development and gene expression. Similar to BR, both typical (sitosterol and stigmasterol) and atypical (8, 14-diene sterols accumulated in fk mutants) sterols affect the expression of genes involved in cell expansion and cell division. The regulatory function of sterols in plant development is further supported by a phenocopy of the fk mutant using a sterol C-14 reductase inhibitor, fenpropimorph. Although fenpropimorph impairs cell expansion and affects gene expression in a dose-dependent manner, neither effect can be corrected by applying exogenous BR. These results provide strong evidence that sterols are essential for normal plant growth and development and that there is likely a BR-independent sterol response pathway in plants. On the basis of the expression of endogenous FK and a reporter gene FK::beta-glucuronidase, we have found that FK is up-regulated by several growth-promoting hormones including brassinolide and auxin, implicating a possible hormone crosstalk between sterol and other hormone-signaling pathways.  相似文献   

18.

Background

Germin-like superfamily members are ubiquitously expressed in various plant species and play important roles in plant development and defense. Although several GLPs have been identified in peanut (Arachis hypogaea L.), their roles in development and defense remain unknown. In this research, we study the spatiotemporal expression of AhGLPs in peanut and their functions in plant defense.

Results

We have identified three new AhGLP members (AhGLP3b, AhGLP5b and AhGLP7b) that have distinct but very closely related DNA sequences. The spatial and temporal expression profiles revealed that each peanut GLP gene has its distinct expression pattern in various tissues and developmental stages. This suggests that these genes all have their distinct roles in peanut development. Subcellular location analysis demonstrated that AhGLP2 and 5 undergo a protein transport process after synthesis. The expression of all AhGLPs increased in responding to Aspergillus flavus infection, suggesting AhGLPs'' ubiquitous roles in defense to A. flavus. Each AhGLP gene had its unique response to various abiotic stresses (including salt, H2O2 stress and wound), biotic stresses (including leaf spot, mosaic and rust) and plant hormone stimulations (including SA and ABA treatments). These results indicate that AhGLPs have their distinct roles in plant defense. Moreover, in vivo study of AhGLP transgenic Arabidopsis showed that both AhGLP2 and 3 had salt tolerance, which made transgenic Arabidopsis grow well under 100 mM NaCl stress.

Conclusions

For the first time, our study analyzes the AhGLP gene expression profiles in peanut and reveals their roles under various stresses. These results provide an insight into the developmental and defensive roles of GLP gene family in peanut.  相似文献   

19.
茉莉酸生物合成的调控及其信号通路   总被引:1,自引:0,他引:1  
茉莉酸类化合物作为一种细胞信号分子,在植物的生长发育、机械损伤、代谢调节及诱导防御相关基因表达等方面起着重要的作用。本文概述了茉莉酸的生物合成调控以及人们目前对茉莉酸信号通路的认识,并对该研究领域存在的问题及今后可能的研究方向进行展望。  相似文献   

20.

Background  

Brassinosteroids (BRs) play crucial roles in plant development and also promote tolerance to a range of abiotic stresses. Although much has been learned about their roles in plant development, the mechanisms by which BRs control plant stress responses and regulate stress-responsive gene expression are not fully known. Since BR interacts with other plant hormones, it is likely that the stress tolerance conferring ability of BR lies in part in its interactions with other stress hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号