首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carone BR  Rando OJ 《Cell》2012,149(7):1422-1423
  相似文献   

2.
The ability of some organisms to regenerate parts of their body has fascinated scientists for decades. The process of regeneration depends on the potential of certain cells to proliferate and contribute to the formation of new tissue. Organisms have evolved two strategies by which to achieve this: the maintenance of adult stem cells and the induction of stem-cell properties in differentiated cells. In both cases, cells must undergo extensive epigenetic reprogramming to attain the specialized functions of the new tissue. Ultimately, the regenerative capacity of a tissue might depend on the plasticity of the cellular epigenome, which determines the ability of the cell to respond to injury-related signals. Understanding this epigenetic plasticity will allow the development of strategies to stimulate the regeneration of damaged tissues and organs in humans.  相似文献   

3.
4.
《Epigenetics》2013,8(8):557-563
The patterns of DNA methylation, referred to as the “methylome”, must be faithfully propagated for proper development of plants and mammals. However, it has been unclear to which extent transgenerational epigenetic inheritance will be affected after DNA methylation distribution has been altered. Recently, three reports have addressed this issue in the model plant Arabidopsis thaliana. Here we revisit the results of these experiments addressing the stability of epigenetic inheritance within two populations of epigenetic recombinant inbred lines (epiRILs), in which mosaic epigenomes were subjected to inbreeding for multiple generations. The manner in which the epigenetic variation was induced differed between the two populations, one by adversely affecting chromatin remodeling and the second by impairing the maintenance of DNA methylation, yet the comparison of the results provides a broader view of transgenerational epigenetic inheritance that may find parallels in other organisms.  相似文献   

5.
6.
《Epigenetics》2013,8(5):539-543
Cellular pathways must be synergized, controlled and organized to manage homeostasis. To achieve high selectivity within the crowded cellular milieu the cell utilizes scaffolding complexes whose role is to bring molecules in proximity thereby controlling and enhancing intermolecular interactions and signaling events. To date, scaffolds have been shown to be composed of proteinaceous units; however, recent evidence has supported the idea that non-coding RNAs may also play a similar role. In this point of view article we discuss recent data on ncRNA scaffolds, with particular focus on ncRNA HOTAIR. Using our current knowledge of signaling networks we discuss the role that RNA may play in writing and regulating histone modifications and the information needed for correct gene expression. Further, we speculate on additional, yet undiscovered roles that ncRNAs may be playing as molecular scaffolds.  相似文献   

7.
8.
The mammalian epigenome   总被引:41,自引:0,他引:41  
Bernstein BE  Meissner A  Lander ES 《Cell》2007,128(4):669-681
  相似文献   

9.
10.
Parental effects are a major source of phenotypic plasticity. Moreover, there is evidence from studies with a wide range of species that the relevant parental signals are influenced by the quality of the parental environment. The link between the quality of the environment and the nature of the parental signal is consistent with the idea that parental effects, whether direct or indirect, might serve to influence the phenotype of the offspring in a manner that is consistent with the prevailing environmental demands. In this review we explore recent studies from the field of 'environmental epigenetics' that suggest that (1) DNA methylation states are far more variable than once thought and that, at least within specific regions of the genome, there is evidence for both demethylation and remethylation in post-mitotic cells and (2) that such remodeling of DNA methylation can occur in response to environmentally-driven, intracellular signaling pathways. Thus, studies of variation in mother-offspring interactions in rodents suggest that parental signals operate during pre- and/or post-natal life to influence the DNA methylation state at specific regions of the genome leading to sustained changes in gene expression and function. We suggest that DNA methylation is a candidate mechanism for parental effects on phenotypic variation.  相似文献   

11.
Tackling the epigenome in the pluripotent stem cells   总被引:2,自引:0,他引:2  
Embryonic stem cells are unique in their abilities of self-renewal and to differentiate into many, if not all, cellular lineages. Transcrip- tional regulation, epigenetic modifications and chromatin structures are the key modulators in controlling such pluripotency nature of embryonic stem cell genomes, particularly in the developmental decisions and the maintenance of cell fates. Among them, epigenetic regulation of gene expression is mediated partly by covalent modifications of core histone proteins including methylation, phosphoryla- tion and acetylation. Moreover, the chromatins in stem cell genome appear as a highly organized structure containing distinct functional domains. Recent rapid progress of new technologies enables us to take a global, unbiased and comprehensive view of the epigenetic modifications and chromatin structures that contribute to gene expression regulation and cell identity during diverse developmental stages. Here, we summarized the latest advances made by high throughput approaches in profiling epigenetic modifications and chromatin con- formations, with an emphasis on genome-wide analysis of histone modifications and their implications in pluripotency nature of embry- onic stem cells.  相似文献   

12.
Stability and function of eukaryotic genomes are closely linked to chromatin structure and organization. During cell division the entire genome must be accurately replicated and the chromatin landscape reproduced on new DNA. Chromatin and nuclear structure influence where and when DNA replication initiates, whereas the replication process itself disrupts chromatin and challenges established patterns of genome regulation. Specialized replication-coupled mechanisms assemble new DNA into chromatin, but epigenome maintenance is a continuous process taking place throughout the cell cycle. If DNA synthesis is perturbed, cells can suffer loss of both genome and epigenome integrity with severe consequences for the organism.  相似文献   

13.
Several lines of evidence point to the early origin of adult onset disease. A key question is: what are the mechanisms that mediate the effects of the early environment on our health? Another important question is: what is the impact of the environment during adulthood and how reversible are the effects of early life later in life? The genome is programmed by the epigenome, which is comprised of chromatin, a covalent modification of DNA by methylation and noncoding RNAs. The epigenome is sculpted during gestation, resulting in the diversity of gene expression programs in the distinct cell types of the organism. Recent data suggest that epigenetic programming of gene expression profiles is sensitive to the early-life environment and that both the chemical and social environment early in life could affect the manner by which the genome is programmed by the epigenome. We propose that epigenetic alterations early in life can have a life-long lasting impact on gene expression and thus on the phenotype, including susceptibility to disease. We will discuss data from animal models as well as recent data from human studies supporting the hypothesis that early life social-adversity leaves its marks on our epigenome and affects stress responsivity, health, and mental health later in life.  相似文献   

14.
Clocks, metabolism, and the epigenome   总被引:1,自引:0,他引:1  
D Feng  MA Lazar 《Molecular cell》2012,47(2):158-167
  相似文献   

15.
16.
Comparative analysis of epigenomes offers new opportunities to understand cellular differentiation, mutation effects and disease processes. But the scale and heterogeneity of epigenetic data present numerous computational challenges.  相似文献   

17.
《Epigenetics》2013,8(8):526-531
World-wide, research initiatives are in progress to establish the role of the epigenome in human disease. Empirical data are still scarce, but particularly studies investigating how the epigenome links early developmental and adult disease may rapidly change this situation. Recently, several reports showed that prenatal environmental conditions are associated with persistent changes of the human epigenome. The evaluation of candidate loci among individuals prenatally exposed to the Dutch Famine indicated that such changes may be common but individually relatively small and greatly depend on the timing of the exposure during gestation. These first findings suggest that the epigenomic contribution to disease risk may entail the combination of multiple changes especially when adaptive responses are involved to cope with environmental conditions. Well-designed epigenome-wide studies will be crucial in creating a catalogue of epigenomic regions that are sensitive to the prenatal environment to appreciate developmental influences on common human disease.  相似文献   

18.
Gene silencing by DNA methylation and small RNAs is globally reconfigured during gametogenesis in Arabidopsis, affecting transposon activity, gene regulation and development.  相似文献   

19.
20.
Even though the majority of knowledge about phospholipids comes from their cytoplasmic functions, in the last decade, it has been shown that nuclear phospholipids and their building blocks, inositol phosphates, have many important roles in the cell nucleus. There are clear connections of phospholipids with the regulation of gene expression and chromatin biology, however, this review focuses on less known functions of nuclear phospholipids in connection with the epigenome regulation. In particular, we highlight the roles of nuclear phospholipids and inositol phosphates that involve histone modifications, such as acetylation or methylation, tightly connected with the cell physiology. This demonstrates the importance of nuclear phospholipids in the regulation of cellular processes, and should encourage further research of nuclear phospholipids and inositol phosphates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号