首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schizosaccharomyces pombe has two paralogues of 3-methyladenine DNA glycosylase, Mag1p and Mag2p, which share homology with Escherichia coli AlkA. To clarify the function of these redundant enzymes in base excision repair (BER) of alkylation damage, we performed several genetic analyses. The mag1 and mag2 single mutants as well as the double mutant showed no obvious methyl methanesulfonate (MMS) sensitivity. Deletion of mag1 or mag2 from an nth1 mutant resulted in tolerance to MMS damage, indicating that both enzymes generate AP sites in vivo by removal of methylated bases. A rad16 mutant that is deficient in nucleotide excision repair (NER) exhibited moderate MMS sensitivity. Deletion of mag1 from the rad16 mutant greatly enhanced MMS sensitivity, and the mag2 deletion also weakened the resistance to MMS of the rad16 mutant. A mag1/mag2/rad16 triple mutant was most sensitive to MMS. These results suggest that the NER pathway obscures the mag1 and mag2 functions in MMS resistance and that both paralogues initiate the BER pathway of MMS-induced DNA damage at the same level in NER-deficient cells or that Mag2p tends to make a little lower contribution than Mag1p. Mag1p and Mag2p functioned additively in vivo. Expression of mag1 and mag2 in the triple mutant confirmed the contribution of Mag1p and Mag2p to BER of MMS resistance.  相似文献   

2.
3.
The bifunctional alkylating anticancer drug nitrogen mustard forms a variety of DNA lesions, including monoadducts and intrastrand and interstrand crosslinks. Although it is known that nucleotide excision repair (NER) is important in processing these adducts, the role of the other principal excision repair pathway, base excision repair (BER) is less well defined. Using isogenic Saccharomyces cerevisiae strains disrupted for a variety of NER and BER genes we have examined the relative importance of the two pathways in the repair of nitrogen mustard adducts. As expected, NER defective cells (rad4 and rad14 strains) are extremely sensitive to the drug. One of the BER mutants, a 3-methyladenine glycosylase defective (mag1) strain also shows significant hypersensitivity. Using a rad4/mag1 double mutant it is shown that the two excision repair pathways are epistatic to each other for nitrogen mustard sensitivity. Furthermore, both rad14 and mag1 disruptants show elevated levels of nitrogen mustard-induced forward mutation. Measurements of repair rates of nitrogen mustard N-alkylpurine adducts in the highly transcribed RPB2 gene demonstrate defects in the processing of mono-adducts in rad4, rad14 and mag1 strains. However, there are differences in the kinetics of adduct removal in the NER mutants compared to the mag1 strain. In the mag1 strain significant repair occurs within 1 h with evidence of enhanced repair on the transcribed strand. Adducts however accumulate at later times in this strain. In contrast, in the NER mutants repair is only evident at times greater than 1 h. In a mag1/rad4 double mutant damage accumulates with no evidence of repair. Comparison of the rates of repair in this gene with those in a different genomic region indicate that the contributions of NER and BER to the repair of nitrogen mustard adducts may not be the same genome wide.  相似文献   

4.
Base excision repair (BER) and nucleotide excision repair (NER) are two main cellular responses to DNA damage induced by various physical and chemical factors. After exposure of the strain that carries the NER-blocking rad2 mutation to UV light, several mutants hypersensitive to the UV light lethal action and simultaneously sensitive to methylmethanesulphonate (MMS) were isolated. Two of these mutants (Uvs64 and Uvs212) were examined in detail. The mutants were found to carry recessive, monogenically inherited lesions that had pleiotropic, though different, phenotypes: both mutants were also sensitive to nitrous acid (HNO2), whereas Uvs212 was sensitive to hydrogen peroxide as well. Moreover, the homozygote for the uvs212 mutation, but not for uvs64, blocks the sporulation. Since the mutations examined were not allelic to any of the known rad mutations that cause MMS sensitivity or to each other, it is concluded that two new genes involved in the control of yeast DNA repair were detected. Furthermore, these genes were mapped to different regions of the right arm of chromosome 2 where repair genes were not found. Thus, two new genes, designated RAD29(UVS64) and RAD31(UVS212) and probably involved in base excision repair, were identified.  相似文献   

5.
In Saccharomyces cerevisiae, the base excision DNA repair (BER) pathway has been thought to involve only a multinucleotide (long-patch) mechanism (LP-BER), in contrast to most known cases that include a major single-nucleotide pathway (SN-BER). The key step in mammalian SN-BER, removal of the 5'-terminal abasic residue generated by AP endonuclease incision, is effected by DNA polymerase beta (Polbeta). Computational analysis indicates that yeast Trf4 protein, with roles in sister chromatin cohesion and RNA quality control, is a new member of the X family of DNA polymerases that includes Polbeta. Previous studies of yeast trf4Delta mutants revealed hypersensitivity to methylmethane sulfonate (MMS) but not UV light, a characteristic of BER mutants in other organisms. We found that, like mammalian Polbeta, Trf4 is able to form a Schiff base intermediate with a 5'-deoxyribose-5-phosphate substrate and to excise the abasic residue through a dRP lyase activity. Also like Polbeta, Trf4 forms stable cross-links in vitro to 5'-incised 2-deoxyribonolactone residues in DNA. We determined the sensitivity to MMS of strains with a trf4Delta mutation in a rad27Delta background, in an AP lyase-deficient background (ogg1 ntg1 ntg2), or in a pol4Delta background. Only a RAD27 genetic interaction was detected: there was higher sensitivity for strains mutated in both TRF4 and RAD27 than either single mutant, and overexpression of Trf4 in a rad27Delta background partially suppressed MMS sensitivity. The data strongly suggest a role for Trf4 in a pathway parallel to the Rad27-dependent LP-BER in yeast. Finally, we demonstrate that Trf5 significantly affects MMS sensitivity and thus probably BER efficiency in cells expressing either wild-type Trf4 or a C-terminus-deleted form.  相似文献   

6.
Nucleotide excision repair (NER) is the primary pathway for the removal of DNA adducts that distort the double helix. In the yeast Saccharomyces cerevisiae the RAD6 epistasis group defines a more poorly characterized set of DNA damage response pathways, believed to be distinct from NER. Here we show that the elimination of the DNA minor groove adducts formed by an important class of anticancer antibiotic (CC-1065 family) requires NER factors in S. cerevisiae. We also demonstrate that the elimination of this class of minor groove adduct from the active MFA2 gene depends upon functional Rad18 and Rad6. This is most clear for the repair of adducts on the transcribed strand, where an absolute requirement for Rad6 and Rad18 was seen. Further experiments revealed that a specific RAD6-RAD18-controlled subpathway, the RAD5 branch, mediates these events. Cells disrupted for rad5 are highly sensitive to this minor groove binding agent, and rad5 cells exhibit an in vivo adduct elimination defect indistinguishable from that seen in rad6 and rad18 cells as well as in NER-defective cells. Our results indicate that the RAD5 subpathway may interact with NER factors during the repair of certain DNA adducts.  相似文献   

7.
DNA damage is unavoidable, and organisms across the evolutionary spectrum possess DNA repair pathways that are critical for cell viability and genomic stability. To understand the role of base excision repair (BER) in protecting eukaryotic cells against alkylating agents, we generated Schizosaccharomyces pombe strains mutant for the mag1 3-methyladenine DNA glycosylase gene. We report that S. pombe mag1 mutants have only a slightly increased sensitivity to methylation damage, suggesting that Mag1-initiated BER plays a surprisingly minor role in alkylation resistance in this organism. We go on to show that other DNA repair pathways play a larger role than BER in alkylation resistance. Mutations in genes involved in nucleotide excision repair (rad13) and recombinational repair (rhp51) are much more alkylation sensitive than mag1 mutants. In addition, S. pombe mutant for the flap endonuclease rad2 gene, whose precise function in DNA repair is unclear, were also more alkylation sensitive than mag1 mutants. Further, mag1 and rad13 interact synergistically for alkylation resistance, and mag1 and rhp51 display a surprisingly complex genetic interaction. A model for the role of BER in the generation of alkylation-induced DNA strand breaks in S. pombe is discussed.  相似文献   

8.
Using a yeast shuttle vector system, we have previously reported on the toxicity and mutagenicity of Me-lex, [1-methyl-4-[1-methyl-4-[3-(methoxysulfonyl)propanamido]pyrrole-2-carboxamido]pyrrole-2-carboxamido]propane, a compound that selectively generates 3-methyladenine (3-MeA). We observed that a mutant strain defective in Mag1, the glycosylase that excises 3-MeA in the initial step of base excision repair (BER) to generate an abasic site, is significantly more sensitive to the toxicity of Me-lex with respect to wild type but shows only a marginal increase in mutagenicity. A strain defective in AP endonuclease activity (Deltaapn1apn2), also required for functional BER, is equally sensitive to the toxicity as the Deltamag1 mutant but showed a significantly higher mutation frequency. In the present work, we have explored the role of nucleotide excision repair (NER) in Me-lex-induced toxicity and mutagenicity since it is known that NER acts on abasic sites in vivo in yeast and in vitro assays. To accomplish this, we have deleted one of the genes essential for NER in yeast, namely, RAD14, both in the context of an otherwise DNA repair-proficient strain (Deltarad14) and in a BER-defective isogenic derivative lacking the MAG1 gene (Deltamag1rad14). Interestingly, no sensitivity to the treatment with Me-lex was conferred by the simple deletion of RAD14. However, a significant enhancement in toxicity and mutagenicity was observed when cells lacked both Rad14 and Mag1. The mutation spectrum induced by Me-lex in the Deltamag1rad14 strain is indistinguishable from that observed in the Deltaapn1/Deltaapn2 or in the Deltamag1 strains. The results indicate that in yeast NER can play a protective role against 3-MeA-mediated toxicity and mutagenicity; however, the role of NER is appreciable only in a BER-defective background.  相似文献   

9.
10.
Xie Z  Liu S  Zhang Y  Wang Z 《Nucleic acids research》2004,32(20):5981-5990
Nucleotide excision repair (NER) removes many different types of DNA lesions. Most NER proteins are indispensable for repair. In contrast, the yeast Rad23 represents a class of accessory NER proteins, without which NER activity is reduced but not eliminated. In mammals, the complex of HR23B (Rad23 homolog) and XPC (yeast Rad4 homolog) has been suggested to function in the damage recognition step of NER. However, the precise function of Rad23 or HR23B in NER remains unknown. Recently, it was suggested that the primary function of RAD23 protein in NER is its stabilization of XPC protein. Here, we tested the significance of Rad23-mediated Rad4 stabilization in NER, and analyzed the repair and biochemical activities of purified yeast Rad23 protein. Cellular Rad4 was indeed stabilized by Rad23 in the absence of DNA damage. Persistent overexpression of Rad4 in rad23 mutant cells, however, largely failed to complement the ultraviolet sensitivity of the mutant. Consistently, deficient NER in rad23 mutant cell extracts could not be complemented by purified Rad4 protein in vitro. In contrast, partial complementation was observed with purified Rad23 protein. Specific complementation to the level of wild-type repair was achieved by adding purified Rad23 together with small amounts of Rad4 protein to rad23 mutant cell extracts. Purified Rad23 protein was unable to bind to DNA, but stimulated the binding activity of purified Rad4 protein to N-acetyl-2-aminofluorene-damaged DNA. These results support two roles of Rad23 protein in NER: (i) its direct participation in the repair biochemistry, possibly due to its stimulatory activity on Rad4-mediated damage binding/recognition; and (ii) its stabilization of cellular Rad4 protein.  相似文献   

11.
12.
13.
14.
An alternative eukaryotic DNA excision repair pathway.   总被引:7,自引:2,他引:5       下载免费PDF全文
DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe.  相似文献   

15.
The repair of psoralen interstrand cross-links in the yeast Saccharomyces cerevisiae involves the DNA repair groups nucleotide excision repair (NER), homologous recombination (HR), and post-replication repair (PRR). In repair-proficient yeast cells cross-links induce double-strand breaks, in an NER-dependent process; the double-strand breaks are then repaired by HR. An alternate error-prone repair pathway generates mutations at cross-link sites. We have characterized the repair of plasmid molecules carrying a single psoralen cross-link, psoralen monoadduct, or double-strand break in yeast cells with deficiencies in NER, HR, or PRR genes, measuring the repair efficiencies and the levels of gene conversions, crossing over, and mutations. Strains with deficiencies in the NER genes RAD1, RAD3, RAD4, and RAD10 had low levels of cross-link-induced recombination but higher mutation frequencies than repair-proficient cells. Deletion of the HR genes RAD51, RAD52, RAD54, RAD55, and RAD57 also decreased induced recombination and increased mutation frequencies above those of NER-deficient yeast. Strains lacking the PRR genes RAD5, RAD6, and RAD18 did not have any cross-link-induced mutations but showed increased levels of recombination; rad5 and rad6 cells also had altered patterns of cross-link-induced gene conversion in comparison with repair-proficient yeast. Our observations suggest that psoralen cross-links can be repaired by three pathways: an error-free recombinational pathway requiring NER and HR and two PRR-dependent error-prone pathways, one NER-dependent and one NER-independent.  相似文献   

16.
17.
18.
19.
Wu X  Braithwaite E  Wang Z 《Biochemistry》1999,38(9):2628-2635
Excision repair of DNA is an important cellular response to DNA damage induced by radiation and many chemicals. In eukaryotes, base excision repair (BER) and nucleotide excision repair (NER) are two major excision repair pathways which are completed by a DNA ligation step. Using a cell-free system, we have determined the DNA ligase requirement during BER and NER of the yeast S. cerevisiae. Under nonpermissive conditions in extracts of the cdc9-2 temperature-sensitive mutant, DNA ligation in both BER and NER pathways was defective, and the repair patches were enlarged. At the permissive temperature (23 degrees C), DNA ligation during excision repair was only partially functional in the mutant extracts. In contrast, deleting the DNA ligase IV gene did not affect DNA ligation of BER or NER. Defective DNA ligation of BER and NER in cdc9-2 mutant extracts was complemented in vitro by purified yeast Cdc9 protein, but not by DNA ligase IV even when overexpressed. These results demonstrate that the ligation step of excision repair in yeast cell-free extracts is catalyzed specifically by the Cdc9 protein, the homologue of mammalian DNA ligase I.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号