首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthesis and light O2-uptake of the aerial portion of the CAM plant Ananas comosus (L.) merr. were studied by CO2 and O2 gas exchange measurements. The amount of CO2 which was fixed during a complete day-night cycle was equal to the amount of total net O2 evolved. This finding justifies the assumption that in each time interval of the light period, the difference between the rates of net O2-evolution and of net light atmospheric CO2-uptake give the rates of malate-decarboxylation-dependent CO2 assimilation. Based upon this hypothesis, the following photosynthetic characteristics were observed: (a) From the onset of the light to midphase IV of CAM, the photosynthetic quotient (net O2 evolved/net CO2 fixed) was higher than 1. This indicates that malate-decarboxylation supplied CO2 for the photosynthetic carbon reduction cycle during this period. (b) In phase III and early phase IV, the rate of CO2 assimilation deduced from net O2-evolution was 3 times higher than the maximum rate of atmospheric CO2-fixation during phase IV. A conceivable explanation for this stimulation of photosynthesis is that the intracellular CO2-concentration was high because of malate decarboxylation. (c) During the final hours of the light period, the photosynthetic quotient decreased below 1. This may be the result of CO2-fixation by phosphoenolpyruvate-carboxylase activity and malate accumulation. Based upon this hypothesis, the gas exchange data indicates that at least 50% of the CO2 fixed during the last hour of the light period was stored as malate. Light O2-uptake determined with 18O2 showed two remarkable characteristics: from the onset of the light until midphase IV the rate of O2-uptake increased progressively; during the following part of the light period, the rate of O2-uptake was 3.5 times higher than the maximum rate of CO2-uptake. When malate decarboxylation was reduced or suppressed after a night in a CO2-free atmosphere or in continuous illumination, the rate of O2-uptake was higher than in the control. This supports the hypothesis that the low rate of O2-uptake in the first part of the light period is due to the inhibition of photorespiration by increased intracellular CO2 concentration because of malate decarboxylation. In view of the law of gas diffusion and the kinetic properties of the ribulose-1,5-bisphosphate carboxylase/oxygenase, O2 and CO2 gas exchange suggest that at the end of the light period the intracellular CO2 concentration was very low. We propose that the high ratio of O2-uptake/CO2-fixation is principally caused by the stimulation of photorespiration during this period.  相似文献   

2.
The effect of leaf dehydration on photosynthetic O2 exchange of potato (Solanum tuberosum L., cv. Haig) leaf discs was examined using 18O2 as a tracer and mass spectrometry. In normal air (350 μl·l?1CO2) and under an irradiance of 390 μmol photons·m?2·s1, a relative water deficit (RWD) of about 30% severely decreased net O2 evolution and increased O2 uptake by about 50%, thus indicating an enhancement of photorespiration. Increasing CO2 concentrations diminished O2 uptake and stimulated net O2 evolution both in well-hydrated and in dehydrated (RWD of about 30%) leaves. Much higher CO2 concentrations (up to 4%) were required to observe a complete effect of CO2 in dehydrated leaves. The chloroplastic CO2 concentration at the ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) level (Cc) was calculated from O2-exchange data in both well-hydrated and dehydrated leaves, assuming that the specificity factor of Rubisco was unaffected by desiccation. When plotting net O2 photosynthesis as a function of Cc, a similar relationship was obtained for well-hydrated and waterstressed leaf discs, thus showing that the main effect of water deficit is a decrease of the chloroplastic CO2 concentration. At saturating CO2 levels, the non-cyclic electron-transport rate, measured either as gross O2 photosynthesis or as the chlorophyll fluorescence ratio (Fm -Fs)/Fm, was insensitive to water deficit, provided RWD was below 40%. In this range of RWD, the decrease in gross O2 photosynthesis observed in normal air was attributed to the inability of oxidative processes to sustain the maximal electron-flow rate at low chloroplastic CO2 concentration. The maximal efficiency of photosystem II, estimated as the chlorophyll fluorescence ratio (Fm -F0)/Fm measured in dark-adapted leaves, was not affected by water deficits up to 60%.  相似文献   

3.
The 18O-enrichment of CO2 produced in the light or during the post-illumination burst was measured by mass spectrometry when a photoautotrophic cell suspension of Euphorbia characias L. was placed in photorespiratory conditions in the presence of molecular 18O2. The only 18O-labeled species produced was C18O16O; no C18O18O could be detected. Production of C18O16O ceased after addition of two inhibitors of the photosynthetic carbon-oxidation cycle, aminooxyacetate or aminoacetonitrile, and was inhibited by high levels of CO2. The average enrichment during the post-illumination burst was estimated to be 46 ± 15% of the enrichment of the O2 present during the preceding light period. Addition of exogenous carbonic anhydrase, by catalyzing the exchange between CO2 and H2O, drastically diminished the 18O-enrichment of the produced CO2. The very low carbonio-anhydrase level of the photoautotrophic cell suspension probably explains why the 18O labeling of photorespiratory CO2 could be observed for the first time. These data allow the establishment of a direct link between O2 consumption and CO2 production in the light, and the conclusion that CO2 produced in the light results, at least partially, from the mitochondrial decarboxylation of the glycine pool synthesized through the photosynthetic carbon-oxidation cycle. Analysis of the C18O16O and CO2 kinetics provides a direct and reliable way to assess in vivo the real contribution of photorespiratory metabolism to CO2 production in the light.  相似文献   

4.
G. J. Collatz 《Planta》1977,134(2):127-132
The response of net photosynthesis and apparent light respiration to changes in [O2], light intensity, and drought stress was determined by analysis of net photosynthetic CO2 response curves. Low [O2] treatment resulted in a large reduction in the rate of photorespiratory CO2 evolution. Lightintensity levels influenced the maximum net photosynthetic rate at saturating [CO2]. These results indicate that [CO2], [O2] and light intensity affect the levels of substrates involved in the enzymatic reactions of photosynthesis and photorespiration. Intracellular resistance to CO2 uptake decreased in low [O2] and increased at low leaf water potentials. This response reflects changes in the efficiency with which photosynthetic and photorespiratory substrates are formed and utilized. Water stress had no effect on the CO2 compensation point or the [CO2] at which net photosynthesis began to saturate at high light intensity. The relationship between these data and recently published in-vitro kinetic measurements with ribulose-diphosphate carboxylase is discussed.Abbreviations C w intracellular CO2 concentration - F gross gross photosynthesis - F net net photosynthesis - I light intensity - R L light respiration rate - r c carboxylation resistance - r 8 leaf gas-phase resistance - r i intracellular resistance; to CO2 uptake - r t resistance to CO2 flux between the intercellular spaces and the carboxylation sites - T L leaf temperature - t leaf water potential - CO2 compensation point  相似文献   

5.
The exchange of O2 and CO2 by photoautotrophic cells of Euphorbia characias L. was measured using a mass-spectrometry technique. During a dark-tolight transition the O2 uptake rate was little affected whereas CO2 efflux was decreased by 40%. In order to differentiate eventual superimposed O2-uptake processes, the kinetics of O2 exchange resulting from brief illuminations were measured with a highly sensitive device. When the cells were exposed to a saturating light for short periods, the rate of O2 uptake passed through a series of transients: there was first a stimulation occurring 2–3 s after the appearance of O2 from water-splitting, followed 30 s later by an inhibition. These two transients were reduced 80% by 3-(3,4-dichlorophenyl)1, 1-dimethylurea (DCMU), indicating that they relied on the linear transport of electrons in the chloroplasts. The first transient (stimulation of an O2 uptake) was little affected by mitochondrial inhibitors such as antimycin A and oligomycin or the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) but was increased in presence of KCN. When spaced flashes (2 us duration; 100-ms intervals) were used instead of continuous light, this transient was almost suppressed indicating that it was dependent on the saturation of some component of the chloroplastic chain. The second transient (inhibition of O2 uptake) was present when spaced flashes were used instead of continuous light. It was markedly decreased by addition of CCCP and mitochondrial inhibitors (antimycin A, oligomycin, KCN) which strongly indicates that it relied on mitochondrial respiration. It is concluded from these experiments that illumination of the cells resulted in an inhibition of mitochondrial respiration, but the resulting inhibition of O2 uptake was hidden by the appearance of an O2-uptake process of extramitochondrial origin, presumably located in the chloroplast.Abbreviations CCCP carbonylcyanide mchlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Rubisco ri-bulose-1,5-bisphosphate carboxylase/oxygenase The authors thank Drs A. Vermeglio, P. Thibault and P. Gans for helpful discussions.  相似文献   

6.
Carbonic anhydrase activity of intactCommelina communis L. leaves was measured using mass spectrometry, by following the18O-exchange kinetics between18O-enriched carbon dioxide and water. A gas-diffusion model (Gerster, 1971, Planta97, 155–172) was used to interpret the18O-exchange kinetics and to determine two constants, one (k) related to the hydration of CO2 and the other (ke), related to the diffusion of CO2. Both constants were determined inCommelina communis L. leaves after stripping the lower epidermis to remove any stomatal influence. The hydration constant (k) was 17200 +2200 ·min–1 (mean±SD, 12 experiments), i.e., about 8 600 times the uncatalyzed hydration of CO2 in pure water, and was specifically inhibited by ethoxyzolamide, a powerful inhibitor of carbonic anhydrases, half-inhibition occurring around 10–5 Methoxyzolamide. The diffusion constant (ke) was 1.18±0.28·min–1 (mean±SD, 12 experiments) and was only slightly inhibited (about 20%) by ethoxyzolamide. Carbonic anhydrase activity of stripped leaves was not affected by the leaf water status (up to 50% relative water deficits), was strongly inhibited by monovalent anions such as Cl or NO 3 , and decreased by about 50% when the photon flux density during growth was increased from 100 to 500 mol photons·m–2·s–1. By studying the effect of ethoxyzolamide (10–4 M) on photosynthetic O2 exchange, measured using18O2 and mass spectrometry, we found that inhibition of carbonic anhydrase activity by 92–95% had little effect on the response curves of net O2 evolution to increased CO2 concentrations. Ethoxyzolamide had no effect on the photosynthetic electron-transport rate, measured as gross O2 photosynthesis at high CO2 concentration (>350 l·–1), but was found to increase both gross O2 photosynthesis and O2 uptake at lower CO2 levels. The chloroplastic CO2 concentration calculated from O2-exchange data was not significantly modified by ethoxyzolamide. We conclude from these results that, under normal conditions of photosynthesis, most of the carbonic anhydrase activity is not involved in CO2 assimilation. Measurement of carbonic anhydrase activity using18O-isotope exchange therefore provides a suitable model to study the in-vivo regulation of this chloroplastic enzyme in plants submitted to various environmental conditions.Abbreviations CA carbonic anhydrase - Ccc chloroplastic CO2 concentration - Ce external CO2 concentration - EZA ethoxyzolamide - k CO2 hydration rate constant - ke CO2 diffusion rate constan - PPFD photosynthetic photon flux density - Rubisco ribulose-1,5 bisphosphate carboxylase oxygenase - RWD relative water deficit The authors wish to thank P. Carrier for technical assistance with mass-spectrometric experiments and Dr. P. Thibault for helpful suggestions and comments. Dr. A. Vavasseur is gratefully acknowledged for supplyingCommelima communis. cultures. P.C., P.T. and A.V. are all from the CEA, Département de Physiologie Végétale et Ecosystèmes, Cadarache, France.  相似文献   

7.
The effects of nitrate and ammonium addition on net and gross photosynthesis, CO2 efflux and the dissolved inorganic carbon compensation point of nitrogen-limited Selenastrum minutum Naeg. Collins (Chlorophyta) were studied. Cultures pulsed with nitrate or ammonium exhibited a marked decrease in both net and gross photosynthetic carbon fixation. During this period of suppression the specific activity of exogenous dissolved inorganic carbon decreased rapidly in comparison to control cells indicating an increase in the rate of CO2 efflux in the light. The nitrate and ammmonium induced rates of CO2 efflux were 31.0 and 33.8 micromoles CO2 per milligram chlorophyll per hour, respectively, and represented 49 and 48% of the rate of gross photosynthesis. Nitrate addition to cells at dissolved inorganic carbon compensation point caused an increase in compensation point while ammonium had no effect. In the presence of the tricarboxylic acid cycle inhibitor fluoroacetate, the nitrate-induced change in compensation point was greatly reduced suggesting the source of this CO2 was the tricarboxylic acid cycle. These results are consistent with the mechanism of N-induced photosynthetic suppression outlined by Elrifi and Turpin (1986 Plant Physiol 81: 273-279).  相似文献   

8.
Photosynthesis and respiration were analyzed in natural biofilms by use of O2 microsensors. Depth profiles of gross photosynthesis were obtained from the rate of decrease in O2 concentration during the first few seconds following extinction of light, and net photosynthesis of the photic zone was calculated from O2 concentration gradients measured at steady state. Respiration within the photic zone was calculated as the difference between gross and net photosynthesis. Two types of biofilms were investigated: one dominated by diatoms, and one dominated by cyanobacteria. High O2/CO2 ratios caused increased respiration especially within the diatom biofilm, which could indicate that photorespiration was a dominant O2-consuming process. The rate of respiration was constant within both biofilms during the first 4.6 s following extinction of light, even when respiration was stimulated by high O2/CO2 ratio. The assumption of a constant rate of respiration during the dark period is an essential one for the determination of gross photosynthetic activity by use of O2 microsensors. We here present the first evidence to substantiate this assumption. The results strongly suggest that gross photosynthesis as measured by use of O2 microsensors may include carbon equivalents that are subsequently lost through photorespiration. Computer modeling of photosynthesis profiles measured after 1.1, 1.6, and 2.6 s of dark incubation illustrated how the actual photosynthesis profile could have appeared if it had been possible to do the determination at time 0. Diffusion of O2 during the up to 4.6-s long dark incubations did not affect gross photosynthetic rate when integrated over all depths, but the apparent vertical distribution of the photosynthetic activity was strongly affected.  相似文献   

9.
J. R. Evans  I. Jakobsen  E. Ögren 《Planta》1993,189(2):191-200
The shapes of photosynthetic light-response curves for leaves of Eucalyptus maculata (Hook) and E. pauciflora (Sieber ex Sprengel) were examined. Three different methods were used to measure photosynthesis: CO2 and H2O-vapour exchange, O2 evolution at a 5-kPa CO2 partial pressure, and chlorophyll fluorescence. The three methods were compared and gave good agreement when measured under equivalent conditions. However, O2 evolution was inhibited by high CO2 partial pressures. A non-rectangular hyperbolic curve has been used widely to describe photosynthetic light-response curves. It has three variables which define the maximum quantum yield (photosynthetic rate divided by absorbed irradiance at very low irradiances), the maximum capacity and the curvature (Θ). We found that Θ was affected by the CO2 partial pressure, declining to a minimum of about 0.6 as CO2 partial pressure increased to 100 Pa. Further increases in the CO2 partial pressure began to inhibit the rate of O2 evolution at 2000 μmol quanta · m?2·?1 and Θ increased back to 0.95 by 5 kPa CO2 partial pressure. At low irradiances, photosynthesis is limited by the rate of electron transport while at high irradiances, photosynthesis is frequently limited by the activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco). The dependence of Θ on CO2 partial pressure arises because the transition between limitations changes as a function of the CO2 partial pressure. The light-response curve is truncated by the transition to a Rubisco limitation and the lower the irradiance at the transition, the higher the value of Θ. There is a gradient in light absorption through the leaf which influences the photosynthetic capacity of different layers within the leaf. The gradient in photosynthetic capacity can be demonstrated by the fact that the shape of the light-response curve changes when the leaf is illuminated unilaterally onto either the adaxial or abaxial surface. We compared two Eucalyptus species which had either isolateral or dorsiventral leaf anatomy. Leaves were able to reverse completely the gradients in photosynthetic capacity following inversion of the leaves for a week, irrespective of their anatomy.  相似文献   

10.
CO2 exchange rates per unit dry weight, measured in the field on attached fruits of the late-maturing Cal Red peach cultivar, at 1200 μmol photons m?2S?1 and in dark, and photosynthetic rates, calculated by the difference between the rates of CO2 evolution in light and dark, declined over the growing season. Calculated photosynthetic rates per fruit increased over the season with increasing fruit dry matter, but declined in maturing fruits apparently coinciding with the loss of chlorophyll. Slight net fruit photosynthetic rates ranging from 0. 087 ± 0. 06 to 0. 003 ± 0. 05 nmol CO2 (g dry weight)?1 S?1 were measured in midseason under optimal temperature (15 and 20°C) and light (1200 μmol photons m?2 S?1) conditions. Calculated fruit photosynthetic rates per unit dry weight increased with increasing temperatures and photon flux densities during fruit development. Dark respiration rates per unit dry weight doubled within a temperature interval of 10°C; the mean seasonal O10 value was 2. 03 between 20 and 30°C. The highest photosynthetic rates were measured at 35°C throughout the growing season. Since dark respiration rates increased at high temperatures to a greater extent than CO2 exchange rates in light, fruit photosynthesis was apparently stimulated by high internal CO2 concentrations via CO2 refixation. At 15°C, fruit photosynthetic rates tended to be saturated at about 600 μmol photons m?2 S?1. Young peach fruits responded to increasing ambient CO2 concentrations with decreasing net CO2 exchange rates in light, but more mature fruits did not respond to increases in ambient CO2. Fruit CO2 exchange rates in the dark remained fairly constant, apparently uninfluenced by ambient CO2 concentrations during the entire growing season. Calculated fruit photosynthetic rates clearly revealed the difference in CO2 response of young and mature peach fruits. Photosynthetic rates of younger peach fruits apparently approached saturation at 370 μl CO21?2. In CO2 free air, fruit photosynthesis was dependent on CO2 refixation since CO2 uptake by the fruits from the external atmosphere was not possible. The difference in photosynthetic rates between fruits in CO2-free air and 370 μl CO2 1?1 indicated that young peach fruits were apparently able to take up CO2 from the external atmosphere. CO2 uptake by peach fruits contributed between 28 and 16% to the fruit photosynthetic rate early in the season, whereas photosynthesis in maturing fruits was supplied entirely by CO2 refixation.  相似文献   

11.
We examined the in situ CO2 gas-exchange of fruits of a tropical tree, Durio zibethinus Murray, growing in an experimental field station of the Universiti Pertanian Malaysia. Day and night dark respiration rates were exponentially related to air temperature. The temperature dependent dark respiration rate showed a clockwise loop as time progressed from morning to night, and the rate was higher in the daytime than at night. The gross photosynthetic rate was estimated by summing the rates of daytime dark respiration and net photosynthesis. Photosynthetic CO2 refixation, which is defined as the ratio of gross photosynthetic rate to dark respiration rate in the daytime, ranged between 15 and 45%. The photosynthetic CO2 refixation increased rapidly as the temperature increased in the lower range of air temperature T c (T c <28.5 °C), while it decreased gradually as the temperature increased in the higher range (T c 28.5 °C). Light dependence of photosynthetic CO2 refixation was approximated by a hyperbolic formula, where light saturation was achieved at 100 mol m–2 s–1 and the asymptotic CO2 refixation was determined to be 37.4%. The estimated gross photosynthesis and dark respiration per day were 1.15 and 4.90 g CO2 fruit–1, respectively. Thus the CO2 refixation reduced the respiration loss per day by 23%. The effect of fruit size on night respiration rate satisfied a power function, where the exponent was larger than unity.  相似文献   

12.
Abstract This paper describes a dynamic model for photosynthesis by an aquatic plant, Egeria densa. The model takes into account an HCO?3 pump, high diffusion resistances and PEP carboxylase, and develops a set of differential equations to form the time-dependent solutions for photosynthesis. The predicted changes in pH, [CO2]aq and total inorganic carbon are compared with experimental data and the model is found to describe the data. The model is then used to examine the effect of O2 on photosynthesis under these conditions, and shows that the increase in internal CO2 concentration due to the recycling of photorespiratory CO2 directly stimulates gross CO2 fixation and can more than compensate for the O2 inhibition of gross photosynthesis. The importance of the HCO?3 pump in O2 inhibition is also examined. The CO2 compensation point (where inorganic carbon influx and efflux are equal) is examined and the importance of the HCO?3 pump and PEP carboxylase in reducing the compensation concentration is discussed. The model was developed in order to study the photosynthesis of an aquatic weed, which will be reported in a later paper.  相似文献   

13.
One cultivar each of spring wheat (Triticum aestivum L. cv. Arkas), oat (Avena sativa L. cv. Lorenz), and barley (Hordeum vulgare L. cv. Aramir) was chosen in order to study the relative contributions of individual bracts to the gas exchange of whole ears. The distribution and frequency of the stomata on the bracts were examined. Gas exchange was measured at normal atmospheric CO2 (330 bar) and at high CO2 (2000 bar) on intact ears and on ears from which glumes or lemmas and pleae (wheat and oat) or awns (barley) had been removed.The relative contribution to the gas exchange of the whole organ is highest for the awns of barley ears. In wheat, the contribution of the glumes is slightly higher than that of the inner bracts before anthesis. Two weeks after anthesis the inner bracts contribute more than the glumes. This tendency of increasing importance of the inner bracts is also found in oat ears, but the relative amount of CO2 uptake by the glumes is higher than in wheat. These changes during ontogeny result from the better supply of light to the inner bracts caused by opening of the ears' structures during grain filling, which in part compensates for the decreasing photosynthetic capacity.The ratio of the photosynthesis rate at high CO2 to that at normal CO2 is lower for the glumes of oat and for the awns of barley than for the other bracts.Abbreviations A330, A2000 net photosynthesis rate, A330 at normal atmospheric CO2 (330 bar), A2000 at high CO2 (2000 bar) - PPFD photosynthetic photon flux density - pc intercellular partial pressure of CO2  相似文献   

14.
The depressions of photosynthetic CO2 uptake following O3 exposures of 200 and 400 nmol mol-1 for between 4 and 16 h were compared between Pisum sativum, Quercus robur and Triticum aestivum, and the potential causes of change identified in vivo. Photosynthetic change was examined by analysis of CO2, O2, O3 and water vapour exchanges together with chlorophyll fluorescence in controlled environments. Under identical fumigation conditions, each species showed very similar rates of O3 consumption. The light-saturated rate of CO2 uptake showed a statistically significant decrease in each species with increasing O3 dose. Although stomatal conductance declined in parallel with CO2 uptake this did not account for the observed decrease in photosynthesis. The decrease in mesophyll conductance resulted primarily from a decrease in the apparent carboxylation capacity, implying in decreased activity of ribulose 1,5-bisphosphate carboxylase/oxygenase. The maximum capacity of carboxylation was consequently reduced by over 30% and 50% after 16 h fumigation with 200 and 400 nmol mol-1 O3 respectively. Additionally, in Q. robur, a statistically significant inhibition of the CO2 saturated rate of photosynthesis occurred after 16 h with 400 nmol mol-1 O3, suggesting that the ability to regenerate ribulose 1,5-bisphosphate was also impaired. None of the species showed any significant decrease in the efficiency of light-limited photosynthesis following fumigation at 200 nmol mol-1 O3, but effects were apparent at 400 nmol mol-1 O3. The common feature in all three species was a decline in carboxylation capacity which preceded any other change in the photosynthetic apparatus.Abbreviations Asat net CO2 uptake rate per unit leaf area at light saturation - A net CO2 uptake rate per unit leaf area - Amax net CO2 uptake rate per unit leaf area at CO2 and light saturation - ci mole fraction of CO2 in the intercellular air space - gs stomatal conductance to CO2 - Fm maximum chlorophyll fluorescence - Fv variable chlorophyll fluorescence - c quantum yield of CO2 uptake for absorbed light - 0 quantum yield of oxygen evolution for incident light - PPFD photosynthetically active radiation - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - Vcmax maximum rate of carboxylation  相似文献   

15.
A biochemical model of C 3photosynthesis has been developed by G.D. Farquhar et al. (1980, Planta 149, 78–90) based on Michaelis-Menten kinetics of ribulose-1,5-bisphosphate (RuBP) carboxylase-oxygenase, with a potential RuBP limitation imposed via the Calvin cycle and rates of electron transport. The model presented here is slightly modified so that parameters may be estimated from whole-leaf gas-exchange measurements. Carbon-dioxide response curves of net photosynthesis obtained using soybean plants (Glycine max (L.) Merr.) at four partial pressures of oxygen and five leaf temperatures are presented, and a method for estimating the kinetic parameters of RuBP carboxylase-oxygenase, as manifested in vivo, is discussed. The kinetic parameters so obtained compare well with kinetic parameters obtained in vitro, and the model fits to the measured data give r 2values ranging from 0.87 to 0.98. In addition, equations developed by J.D. Tenhunen et al. (1976, Oecologia 26, 89–100, 101–109) to describe the light and temperature responses of measured CO2-saturated photosynthetic rates are applied to data collected on soybean. Combining these equations with those describing the kinetics of RuBP carboxylase-oxygenase allows one to model successfully the interactive effects of incident irradiance, leaf temperature, CO2 and O2 on whole-leaf photosynthesis. This analytical model may become a useful tool for plant ecologists interested in comparing photosynthetic responses of different C3 plants or of a single species grown in contrasting environments.Abbreviations PCO photorespiratory carbon oxidation - PCR photosynthetic carbon reduction - PPFD photosynthetic photon-flux density - RuBP ribulose bisphosphate  相似文献   

16.
Photosynthetic CO2 and O2 exchange was studied in two moss species, Hypnum cupressiforme Hedw. and Dicranum scoparium Hedw. Most experiments were made during steady state of photosynthesis, using 18O2 to trace O2 uptake. In standard experimental conditions (photoperiod 12 h, 135 micromoles photons per square meter per second, 18°C, 330 microliters per liter CO2, 21% O2) the net photosynthetic rate was around 40 micromoles CO2 per gram dry weight per hour in H. cupressiforme and 50 micromoles CO2 per gram dry weight per hour in D. scoparium. The CO2 compensation point lay between 45 and 55 microliters per liter CO2 and the enhancement of net photosynthesis by 3% O2versus 21% O2 was 40 to 45%. The ratio of O2 uptake to net photosynthesis was 0.8 to 0.9 irrespective of the light intensity. The response of net photosynthesis to CO2 showed a high apparent Km (CO2) even in nonsaturating light. On the other hand, O2 uptake in standard conditions was not far from saturation. It could be enhanced by only 25% by increasing the O2 concentration (saturating level as low as 30% O2), and by 65% by decreasing the CO2 concentration to the compensation point. Although O2 is a competitive inhibitor of CO2 uptake it could not replace CO2 completely as an electron acceptor, and electron flow, expressed as gross O2 production, was inhibited by both high O2 and low CO2 levels. At high CO2, O2 uptake was 70% lower than the maximum at the CO2 compensation point. The remaining activity (30%) can be attributed to dark respiration and the Mehler reaction.  相似文献   

17.
A mass spectrometric 16O2/18O2-isotope technique was used to analyse the rates of gross O2 evolution, net O2 evolution and gross O2 uptake in relation to photon fluence rate by Dunaliella tertiolecta adapted to 0.5, 1.0, 1.5, 2.0 and 2.5 M NaCl at 25°C and pH 7.0.At concentrations of dissolved inorganic carbon saturating for photosynthesis (200 M) gross O2 evolution and net O2 evolution increased with increasing salinity as well as with photon fluence rate. Light compensation was also enhanced with increased salinities. Light saturation of net O2 evolution was reached at about 1000 mol m-2s-1 for all salt concentrations tested. Gross O2 uptake in the light was increased in relation to the NaCl concentration but it was decreased with increasing photon fluence rate for almost all salinities, although an enhanced flow of light generated electrons was simultaneously observed. In addition, a comparison between gross O2 uptake at 1000 mol photons m-2s-1, dark respiration before illumination and immediately after darkening of each experiment showed that gross O2 uptake in the light paralleled but was lower than mitochondrial O2 consumption in the dark.From these results it is suggested that O2 uptake by Dunaliella tertiolecta in the light is mainly influenced by mitochondrial O2 uptake. Therefore, it appears that the light dependent inhibition of gross O2 uptake is caused by a reduction in mitochondrial O2 consumption by light.Abbreviations DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DHAP dihydroxy-acetonephosphate - DIC dissolved inorganic carbon - DRa rate of dark respiration immediately after illumination - DRb rate of dark respiration before illumination - E0 rate of gross oxygen evolution in the light - NET rate of net oxygen evolution in the light - PFR photon fluence rate - RubP rubulose-1,5-bisphosphate - SHAM salicyl hydroxamic acid - U0 rate of gross oxygen uptake in the light  相似文献   

18.
The CO2 exchange of the aboveground parts for five different-sized 17-year-old (as of 1991) hinoki cypress (Chamaecyparis obtusa) trees growing in the field was non-destructively measured over one year, using an open CO2 exchange system. The CO2 exchange of individual trees decreased with decreasing tree sizes, such as aboveground phytomass, leaf mass and leaf area. However, the CO2 exchange abruptly decreased near the smallest-suppressed sample tree. The size dependence was well described by a generalized power function. The annual gross photosynthesis of individual trees was proportional to the square root of leaf mass or leaf area. The dependence of CO2 exchange on annual phytomass increment was described by a simple power function with an exponent value less than unity, suggesting that CO2 exchange per unit of phytomass increment was lower in larger-sized trees than in smaller-sized trees. The mean photosynthetic activity of a tree, i.e., gross photosynthesis per unit of leaf area, slightly increased to its highest value with decreasing leaf area and then decreased abruptly near the smallest sample tree. The maximum value of mean photosynthetic activity was estimated to be 2.85 kg CO2 m−2 year−1 for a leaf area of 1.56 m2 tree−1. The ratio of mean photosynthetic activity to the maximum photosynthetic activity was the highest in an intermediate tree and decreased gradually toward larger-sized trees by ca. 60% and also decreased toward the smallest suppressed tree by ca. 35%.  相似文献   

19.
The rate of dark CO2 efflux from mature wheat (Triticum aestivum cv Gabo) leaves at the end of the night is less than that found after a period of photosynthesis. After photosynthesis, the dark CO2 efflux shows complex dependence on time and temperature. For about 30 minutes after darkening, CO2 efflux includes a large component which can be abolished by transferring illuminated leaves to 3% O2 and 330 microbar CO2 before darkening. After 30 minutes of darkness, a relatively steady rate of CO2 efflux was obtained. The temperature dependence of steady-state dark CO2 efflux at the end of the night differs from that after a period of photosynthesis. The higher rate of dark CO2 efflux following photosynthesis is correlated with accumulated net CO2 assimilation and with an increase in several carbohydrate fractions in the leaf. It is also correlated with an increase in the CO2 compensation point in 21% O2, and an increase in the light compensation point. The interactions between CO2 efflux from carbohydrate oxidation and photorespiration are discussed. It is concluded that the rate of CO2 efflux by respiration is comparable in darkened and illuminated wheat leaves.  相似文献   

20.
Net CO2 exchange was monitored through a dark-light-dark transition, under 2% and 21% O2 in the presence and absence of CO2, in Chlamydomonas reinhardtii wild type and the high-CO2-requiring mutant ca-1-12-1C. Upon illumination at 350 l/l CO2, ca-1-12-1C cell exhibited a large decrease in net CO2 uptake following an initial surge of CO2 uptake. Net CO2 uptake subsequently attained a steady-state rate substantially lower than the maximum. A large, O2-enchanced post-illumination burst of CO2 efflux was observed after a 10-min illumination period, corresponding to a minimum in the net CO2 uptake rate. A smaller, but O2-insensitive post-illumination burst was observed following a 30-min illumination period, when net CO2 uptake was at a steady-state rate. These post-illumination bursts appeared to reflect the release of an intracellular pool of inorganic carbon, which was much larger following the initial surge of net CO2 uptake than during the subsequent steady-state CO2 uptake period.With the mutant in CO2-free gas, O2-stimulated, net CO2 efflux was observed in the light, and a small, O2-dependent post-illumination burst was observed. With wild-type cells no CO2 efflux was observed in the light in CO2-free gas under either 2% or 21% O2, but a small, O2-dependent post-illumination burst was observed. These results were interpreted as indicating that photorespiratory rates were similar in the mutant and wild-type cells in the absence of CO2, but that the wild-type cells were better able to scavenge the photorespiratory CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号