首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The sequencing of the euchromatic genome of a marsupial, the opossum Monodelphis domestica, identifies shared and unique features of marsupial and placental genomes and reveals a prominent role for the evolution of non-protein-coding elements.  相似文献   

2.
Clinical strains of Candida albicans are highly tolerant of aneuploidies and other genome rearrangements. We have used comparative genome hybridization (CGH), in an array format, to analyse the copy number of over 6000 open reading frames (ORFs) in the genomic DNA of C. albicans laboratory strains carrying one (CAI-4) to three (BWP17) auxotrophies. We find that during disruption of the HIS1 locus all genes telomeric to HIS1 were deleted and telomeric repeats were added to a 9 nt sequence within the transforming DNA. This deletion occurred in approximately 10% of transformants analysed and was stably maintained through two additional rounds of transformation and counterselection of the transformation marker. In one example, the deletion was repaired, apparently via break-induced replication. Furthermore, all CAI-4 strains tested were trisomic for chromosome 2 although this trisomy appears to be unstable, as it is not detected in strains subsequently derived from CAI-4. Our data indicate CGH arrays can be used to detect monosomies and trisomies, to predict the sites of chromosome breaks, and to identify chromosomal aberrations that have not been detected with other approaches in C. albicans strains. Furthermore, they highlight the high level of genome instability in C. albicans laboratory strains exposed to the stress of transformation and counterselection on 5-fluoro-orotic acid.  相似文献   

3.
Bergero R  Forrest A  Charlesworth D 《Genetics》2008,178(2):1085-1092
Mechanisms involved in eroding fitness of evolving Y chromosomes have been the focus of much theoretical and empirical work. Evolving Y chromosomes are expected to accumulate transposable elements (TEs), but it is not known whether such accumulation contributes to their genetic degeneration. Among TEs, miniature inverted-repeat transposable elements are nonautonomous DNA transposons, often inserted in introns and untranslated regions of genes. Thus, if they invade Y-linked genes and selection against their insertion is ineffective, they could contribute to genetic degeneration of evolving Y chromosomes. Here, we examine the population dynamics of active MITEs in the young Y chromosomes of the plant Silene latifolia and compare their distribution with those in recombining genomic regions. To isolate active MITEs, we developed a straightforward approach on the basis of the assumption that recent transposon insertions or excisions create singleton or low-frequency size polymorphisms that can be detected in alleles from natural populations. Transposon display was then used to infer the distribution of MITE insertion frequencies. The overall frequency spectrum showed an excess of singleton and low-frequency insertions, which suggests that these elements are readily removed from recombining chromosomes. In contrast, insertions on the Y chromosomes were present at high frequencies. Their potential contribution to Y degeneration is discussed.  相似文献   

4.
Sea anemones have a wide array of toxic compounds (peptide toxins found in their venom) which have potential uses as therapeutics. To date, the majority of studies characterizing toxins in sea anemones have been restricted to species from the superfamily, Actinioidea. No highly complete draft genomes are currently available for this superfamily, however, highlighting our limited understanding of the genes encoding toxins in this important group. Here we have sequenced, assembled, and annotated a draft genome for Actinia tenebrosa. The genome is estimated to be approximately 255 megabases, with 31,556 protein‐coding genes. Quality metrics revealed that this draft genome matches the quality and completeness of other model cnidarian genomes, including Nematostella, Hydra, and Acropora. Phylogenomic analyses revealed strong conservation of the Cnidaria and Hexacorallia core‐gene set. However, we found that lineage‐specific gene families have undergone significant expansion events compared with shared gene families. Enrichment analysis performed for both gene ontologies, and protein domains revealed that genes encoding toxins contribute to a significant proportion of the lineage‐specific genes and gene families. The results make clear that the draft genome of A. tenebrosa will provide insight into the evolution of toxins and lineage‐specific genes, and provide an important resource for the discovery of novel biological compounds.  相似文献   

5.
Recent studies of the LTR-retrotransposons of Schizosaccharomyces pombe have shed considerable light on their evolution and function. The sequencing of the S. pombe genome allowed analysis of its transposon content. This analysis provides information about the maintenance and loss of transposons in the genome. The results of transposition assays and biochemical analyses demonstrate that the N-terminal protein of Tf1 is functionally equivalent to the Gag proteins of retroviruses and retrotransposons. Despite this conservation of function, the N-terminal protein of Tf1 lacks any sequence similarity to other known Gag proteins. Sequence analysis and experimental data also indicate that the Tf1 transposons of S. pombe target their integration into specific sites in the host genome. Transposition events resulting from the expression of Tf1 reveal a strong preference for intergenic regions, specifically at pol II promoters in a window 100-400 bp upstream of open reading frames. The complete and partial copies of Tf transposons in the sequenced genome of S. pombe show the same association of integration with promoter regions. This body of work explores how the transposon interacts with the host, the balance between the transposons propagation and loss, and how different families of transposons evolve.  相似文献   

6.
E3 ubiquitin ligases (E3s) target proteins for degradation by the 26S proteasome. In SKP1/CDC53/F-box protein-type E3s, substrate specificity is conferred by the interchangeable F-box protein subunit. The vast majority of the 694 F-box proteins encoded by the Arabidopsis thaliana genome remain to be understood. We characterize the VIER F-BOX PROTEINE (VFB; German for FOUR F-BOX PROTEINS) genes from Arabidopsis that belong to subfamily C of the Arabidopsis F-box protein superfamily. This subfamily also includes the F-box proteins TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOX (AFB) proteins and EIN3 BINDING F-BOX proteins, which regulate auxin and ethylene responses, respectively. We show that loss of VFB function causes delayed plant growth and reduced lateral root formation. We find that the expression of a number of auxin-responsive genes and the activity of DR5:beta-glucuronidase, a reporter for auxin response, are reduced in the vfb mutants. This finding correlates with an increase in the abundance of an AUXIN/INDOLE-3-ACETIC ACID repressor. However, we also find that auxin responses are not affected in the vfb mutants and that a representative VFB family member, VFB2, cannot functionally complement the tir1-1 mutant. We therefore exclude the possibility that VFBs are functional orthologs of TIR1/AFB proteins.  相似文献   

7.
ABSTRACT: The genome sequence of tomato (Solanum lycopersicum), one of the most important vegetable crops, has recently been decoded. We address implications of the tomato genome for plant breeding, genomics and evolutionary studies, and its potential to fuel future crop biology research.  相似文献   

8.
李书粉  李莎  邓传良  卢龙斗  高武军 《遗传》2015,37(2):157-164
XY性染色体决定系统是决定植物性别的主要方式,但是对于其起源与演化机制却知之甚少。目前认为,携带控制雌蕊或雄蕊发育基因的一对常染色体由于某种未知原因的突变形成早期的neo-Y或neo-X性染色体,随着演化的进行,早期XY性染色体之间的重组逐渐受到抑制,非重组区域扩展最终形成异型的性染色体。研究发现,重复序列的累积以及DNA甲基化等因素都可能参与了XY性染色体的异染色质化、重组抑制及Y染色体体积增大过程。转座子作为一种基因组中含量最高的重复序列在性染色体演化中扮演了重要的角色,包括性染色体演化的起始激发,以及导致性染色体局部表观遗传修饰使其发生异染色质化扩展和重组抑制。文章综述了转座子在植物性染色体上的累积及其与性染色体异染色质化之间的关系,并简要分析了转座子在性染色体演化过程中的作用。  相似文献   

9.
The occurrence of polyploidy in land plant evolution has led to an acceleration of genome modifications relative to other crown eukaryotes and is correlated with key innovations in plant evolution. Extensive genome resources provide for relating genomic changes to the origins of novel morphological and physiological features of plants. Ancestral gene contents for key nodes of the plant family tree are inferred. Pervasive polyploidy in angiosperms appears likely to be the major factor generating novel angiosperm genes and expanding some gene families. However, most gene families lose most duplicated copies in a quasi-neutral process, and a few families are actively selected for single-copy status. One of the great challenges of evolutionary genomics is to link genome modifications to speciation, diversification and the morphological and/or physiological innovations that collectively compose biodiversity. Rapid accumulation of genomic data and its ongoing investigation may greatly improve the resolution at which evolutionary approaches can contribute to the identification of specific genes responsible for particular innovations. The resulting, more ‘particulate’ understanding of plant evolution, may elevate to a new level fundamental knowledge of botanical diversity, including economically important traits in the crop plants that sustain humanity.  相似文献   

10.
植物基因组大小进化的研究进展   总被引:4,自引:0,他引:4  
陈建军  王瑛 《遗传》2009,31(5):464
不同的真核生物之间基因组大小差异很大, 并与生物体复杂性不相关, 在基因组中存在大量的非编码DNA序列是造成这种差异的主要原因, 特别是转座子序列。文章综述了植物基因组大小差异以及引起这种差异的主要进化动力的最新研究进展。植物基因组多倍化和转座子积累是导致基因组增大的主要动力, 而同源不平等重组和非正规重组则是驱动基因组DNA丢失的潜在动力, 以制约基因组无限制地增大。文中还讨论了植物基因组大小进化方向, 即总体趋势是朝着增大的方向进化, 某些删除机制主要是削弱这种增大作用但不能逆转。  相似文献   

11.
Recent genome sequencing efforts have revealed how extensively transposable elements (TEs) have contributed to the shaping of present day plant genomes. DNA transposons associate preferentially with the euchromatic or genic component of plant genomes and have had the opportunity to interact intimately with the genes of the plant host. These interactions have resulted in TEs acquiring host sequences, forming chimeric genes through exon shuffling, replacing regulatory sequences, mobilizing genes around the genome, and contributing genes to the host. The close interaction of transposons with genes has also led to the evolution of intricate cellular mechanisms for silencing transposon activity. Transposons have thus become important subjects of study in understanding epigenetic regulation and, in cases where transposons have amplified to high numbers, how to escape that regulation.  相似文献   

12.
Recent sequencing of the Chinese hamster ovary (CHO) cell and Chinese hamster genomes has dramatically advanced our ability to understand the biology of these mammalian cell factories. In this study, we focus on the powerhouse of the CHO cell, the mitochondrion. Utilizing a high-resolution next generation sequencing approach we sequenced the Chinese hamster mitochondrial genome for the first time and surveyed the mutational landscape of CHO cell mitochondrial DNA (mtDNA). Depths of coverage ranging from ~3,319X to 8,056X enabled accurate identification of low frequency mutations (>1%), revealing that mtDNA heteroplasmy is widespread in CHO cells. A total of 197 variants at 130 individual nucleotide positions were identified across a panel of 22 cell lines with 81% of variants occurring at an allele frequency of between 1% and 99%. 89% of the heteroplasmic mutations identified were cell line specific with the majority of shared heteroplasmic SNPs and INDELs detected in clones from 2 cell line development projects originating from the same host cell line. The frequency of common predicted loss of function mutations varied significantly amongst the clones indicating that heteroplasmic mtDNA variation could lead to a continuous range of phenotypes and play a role in cell to cell, production run to production run and indeed clone to clone variation in CHO cell metabolism. Experiments that integrate mtDNA sequencing with metabolic flux analysis and metabolomics have the potential to improve cell line selection and enhance CHO cell metabolic phenotypes for biopharmaceutical manufacturing through rational mitochondrial genome engineering.  相似文献   

13.
14.
Species distribution models (SDM) are commonly used to obtain hypotheses on either the realized or the potential distribution of species. The reliability and meaning of these hypotheses depends on the kind of absences included in the training data, the variables used as predictors and the methods employed to parameterize the models. Information about the absence of species from certain localities is usually lacking, so pseudo‐absences are often incorporated to the training data. We explore the effect of using different kinds of pseudo‐absences on SDM results. To do this, we use presence information on Aphodius bonvouloiri, a dung beetle species of well‐known distribution. We incorporate different types of pseudo‐absences to create different sets of training data that account for absences of methodological (i.e. false absences), contingent and environmental origin. We used these datasets to calibrate SDMs with GAMs as modelling technique and climatic variables as predictors, and compare these results with geographical representations of the potential and realized distribution of the species created independently. Our results confirm the importance of the kind of absences in determining the aspect of species distribution identified through SDM. Estimations of the potential distribution require absences located farther apart in the geographic and/or environmental space than estimations of the realized distribution. Methodological absences produce overall bad models, and absences that are too far from the presence points in either the environmental or the geographic space may not be informative, yielding important overestimations. GLMs and Artificial Neural Networks yielded similar results. Synthetic discrimination measures such as the Area Under the Receiver Characteristic Curve (AUC) must be interpreted with caution, as they can produce misleading comparative results. Instead, the joint examination of ommission and comission errors provides a better understanding of the reliability of SDM results.  相似文献   

15.
  1. Download : Download high-res image (78KB)
  2. Download : Download full-size image
  相似文献   

16.
Abiotic stress and plant genome evolution. Search for new models   总被引:23,自引:0,他引:23       下载免费PDF全文
  相似文献   

17.
Afrotheria is the clade of placental mammals that, together with Xenarthra, Euarchontoglires and Laurasiatheria, represents 1 of the 4 main recognized supraordinal eutherian clades. It reunites 6 orders of African origin: Proboscidea, Sirenia, Hyracoidea, Macroscelidea, Afrosoricida and Tubulidentata. The apparently unlikely relationship among such disparate morphological taxa and their possible basal position at the base of the eutherian phylogenetic tree led to a great deal of attention and research on the group. The use of biomolecular data was pivotal in Afrotheria studies, as they were the basis for the recognition of this clade. Although morphological evidence is still scarce, a plethora of molecular data firmly attests to the phylogenetic relationship among these mammals of African origin. Modern cytogenetic techniques also gave a significant contribution to the study of Afrotheria, revealing chromosome signatures for the group as a whole, as well as for some of its internal relationships. The associations of human chromosomes HSA1/19 and 5/21 were found to be chromosome signatures for the group and provided further support for Afrotheria. Additional chromosome synapomorphies were also identified linking elephants and manatees in Tethytheria (the associations HSA2/3, 3/13, 8/22, 18/19 and the lack of HSA4/8) and elephant shrews with the aardvark (HSA2/8, 3/20 and 10/17). Herein, we review the current knowledge on Afrotheria chromosomes and genome evolution. The already available data on the group suggests that further work on this apparently bizarre assemblage of mammals will provide important data to a better understanding on mammalian genome evolution.  相似文献   

18.
Transposable element contributions to plant gene and genome evolution   总被引:34,自引:0,他引:34  
Transposable elements were first discovered in plants because they can have tremendous effects on genome structure and gene function. Although only a few or no elements may be active within a genome at any time in any individual, the genomic alterations they cause can have major outcomes for a species. All major element types appear to be present in all plant species, but their quantitative and qualitative contributions are enormously variable even between closely related lineages. In some large-genome plants, mobile DNAs make up the majority of the nuclear genome. They can rearrange genomes and alter individual gene structure and regulation through any of the activities they promote: transposition, insertion, excision, chromosome breakage, and ectopic recombination. Many genes may have been assembled or amplified through the action of transposable elements, and it is likely that most plant genes contain legacies of multiple transposable element insertions into promoters. Because chromosomal rearrangements can lead to speciating infertility in heterozygous progeny, transposable elements may be responsible for the rate at which such incompatibility is generated in separated populations. For these reasons, understanding plant gene and genome evolution is only possible if we comprehend the contributions of transposable elements.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号