首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
甾体药物(steroid drugs)是一类具有重要生理和药理作用的药物。目前,甾药行业主要通过分枝杆菌(Mycobacteria)转化制备系列重要甾药中间体,再经过必要的化学修饰或酶法修饰获得高端甾体药物。较之前的“薯蓣皂素-双烯醇酮”体系具有原料廉价且来源丰富、生产成本低且反应路线短、收率高且环境友好等优点。基于基因组学和代谢组学进一步揭示分枝杆菌甾醇降解途径中关键酶系及其催化机理,使分枝杆菌作为底盘细胞成为可能。本文对不同物种类固醇转化酶的发现、分枝杆菌自源基因和异源基因过表达的改造以及分枝杆菌作为底盘细胞的优化和修饰等方面的研究进展进行了综述。  相似文献   

2.
相比于传统的化学转化法,微生物转化法在甾体药物的生产中显示出了明显的优势.利用分枝杆菌降解植物甾醇可以生成一系列甾体药物的中间体,这极大地方便了甾体药物的生产.通过基因工程、分子生物学和结构生物学等学科的技术手段,人们对甾醇转化菌株进行了深入的探索和改造.本文对工业分枝杆菌植物甾醇转化途径及菌种改造的研究进展进行了综述...  相似文献   

3.
甾类化合物具有重要的生理医药作用,市场需求巨大。甾类化合物及其关键甾类药物通过微生物转化制备工艺较化学合成法具有区域立体选择性、减少合成步骤、缩短生产周期、提高收率以及生态友好等优点逐步被应用,然而甾类物质微生物分解代谢机制还有待进一步深入探索研究并确定。本文从甾类化合物结构种类与主要来源、生理功能、微生物转化与分解代谢机制的研究等方面进行了归纳,着重解析甾类化合物分解代谢过程关键酶系及其分子作用机制,为甾药化合物生产菌种改造与工程菌构建,以及微生物转化工业化生产工艺的开发提供参考。  相似文献   

4.
分枝杆菌常被用作甾体药物中间体生产菌种,然而当前人们对其具体的甾醇降解机制仍然不是很清楚。为了获得C20-羟基甾药中间体,文章直接以RS为底物进行了转化,并通过对转化产物进行TLC、HPLC、LS-MS和核磁分析,初步确定分枝杆菌中存在类固醇C20-羟基脱氢酶(1DHC)参与的代谢途径。同时,基于生物信息学和结构生物学,通过序列和结构比对分析,最终从分枝杆菌中鉴定出了一个与类固醇C20-羟基脱氢酶同源性很高的基因。将该基因在大肠杆菌中异源表达,并对其功能活性进行分析,证明该基因所编码的酶和类固醇C20-羟基脱氢酶具有相同的功能活性。文章首次从分枝杆菌中鉴定出一种类固醇C20-羟基脱氢酶,使研究者对分枝杆菌甾醇代谢机制有了更深入的理解,同时也为新型甾药中间体的制备以及分枝杆菌的改造奠定了理论基础。  相似文献   

5.
采用气相色谱/质谱(GC/MS)联用的方法,对林麝麝香中的甾体成分进行分析,确定了林麝麝香样品含有多种甾体成分的结构,并分析了不同来源的林麝麝香的麝香酮及甾体成分.通过检索NIST05质谱库,进一步确定了麝香中含有16种甾体成分.利用外标法、标准曲线法同时测定了麝香样品中3种甾类成分(胆固醇、苯胆烷醇酮及麝香酮)的含量,麝香酮的定量分析显示所有样品麝香中麝香酮含量均较高(30.1~45.2 mg/g),但甾类成分含量波动较大.聚类分析显示,9个麝香样品聚为两支.利用GC/MS技术检测麝香成分的方法,可以提供麝香较为全面的甾类信息,可高效准确地对麝香进行质量分析.  相似文献   

6.
利用分枝杆菌对植物甾醇进行边链降解可产生4-AD(4-烯-雄甾-3,17-二酮)和ADD(1,4-二烯-雄甾-3,17-二酮),ADD由4-AD在C1,2位脱氢酶(ksdD)作用下脱氢产生,这两种物质在化学结构上高度相似,难以分离。本文首先扩增出部分ksdD基因,大小为631bp,并以此为基础构建打靶载体pUC19-MK。将pUC19-MK电转分枝杆菌感受态,通过同源重组敲除分枝杆菌染色体上正常的ksdD基因,使C1,2位脱氢酶失活,以达到4-AD大量积累的目的。结果通过初筛筛选出5株转化子,进行甾体转化实验,发酵144h时,1号转化子的4-AD生成率达到17.52%,比出发菌株提高了192%,而此时ADD的生成率仅为6.12%,比出发菌株降低了89.9%。  相似文献   

7.
硬孔灵芝的化学成分研究   总被引:5,自引:0,他引:5  
采用硅胶柱层析法进行分离纯化,从硬孔灵芝Ganoderma duropora的氯仿萃取物中分离得到甾类化合物8种。根据波谱数据,化合物1-8结构分别被鉴定为:麦角甾醇、麦角甾-7,22-二烯-3β-醇、麦角甾-7,22-二烯-3-酮、6,9-环氧麦角甾-7,22-二烯-3β-醇、过氧麦角甾醇、3,5-二羟基麦角甾-7,22-二烯-6-酮、β-谷甾醇和胡萝卜苷。  相似文献   

8.
3-甾酮-9α-羟基化酶(KSH)是微生物甾体降解途径中的关键酶,在甾体药物制备中有重要价值。以本实验室从土壤中自行筛选的分枝杆菌Mycobacterium sp.NwIB-01为出发菌株,利用红平红球菌Rhodococcus erythropolis SQ1已报道的ksh序列与已全基因组测序的分枝杆菌序列数据库进行比对分析,根据同源基因设计简并引物获得部分ksh序列,通过染色体步移扩增出全长ksh(命名为M.S.-ksh),该基因与耻垢分枝杆菌M.smegmatis mc2155的ksh同源性为85%。构建pET32-ksh表达载体,转化大肠杆菌BL21(DE3),获得高表达重组转化子菌株,经IPTG低温诱导,SDS-PAGE电泳分析,目的蛋白主要为可溶性表达,表达量占菌体总蛋白的30%以上,用Ni2+亲和层析柱纯化,纯度达90%以上。本研究为利用基因工程菌进行工业化生产甾体药物奠定了基础。  相似文献   

9.
采用硅胶色谱法、重结晶法从椭圆嗜蓝孢孔菌Fomitiporia ellipsoidea子实体的石油醚提取物中分离得到4个甾类化合物,单体化合物通过与已知标准品比对确定化合物结构,分别为麦角甾醇(麦角甾-5,7,22-三烯-3β-醇)、麦角甾醇过氧化物(5α,8α-过氧麦角甾-6,22-二烯-3β-醇)、麦角甾-7,22-二烯-3β-醇-棕榈酸酯和麦角甾-4,6,8(14),22(23)-四烯-3-酮。采用MTT法检测甾类化合物对人肿瘤细胞的抑制活性。采用H22裸鼠移植模型法评价甾类化合物的体内抗肿瘤活性。结果表明:在细胞毒实验中,麦角甾醇和麦角甾醇过氧化物对人肝癌细胞株Hep G2、人乳腺癌细胞株MCF-7、人宫颈癌细胞株Hela和人肺癌细胞株A549均有较好的抑制活性,麦角甾醇效果最佳,在浓度为50·g/m L时抑制率分别达到82.89%、74.33%、50.03%和69.33%,IC_(50)值分别为20.61·g/m L、37.18·g/m L、49.89·g/m L和38.74·g/m L,对Hep G2的抑制能力优于其他细胞系。在体内实验中,麦角甾醇和麦角甾-4,6,8(14),22(23)-四烯-3-酮在剂量为50mg/kg/d时抑瘤率分别为60.75%和63.21%,并且麦角甾醇组瘤鼠的脾指数有显著增加。构效关系分析认为甾核的C-3位被羟基或羰基取代后,化合物的抗肿瘤活性较显著。  相似文献   

10.
在植物界中所发现的甾类化合物,除普遍存在的固醇外,也特异地存在于有限的植物种中,如椰子油中所含的雌酮,蕨类和罗汉松目植物中所含有昆虫蜕皮激素(ecdysones),马铃薯所含的茄碱(solanine),甾体激素合成的重要原料——薯蓣属植物的甾类化合物皂角苷(saponin),作为重要的心脏功能不全的特效药毛地黄属植物所含的强心配糖体[毛地黄毒苷(digitoxin)和地高辛(digoxin)]等都可作为代表。灵敏度高、特异性好的RIA(放射免疫法),用于少量植物培养细胞中微量甾类化合物的定量时十分有  相似文献   

11.
为揭示根际效应对多环芳烃降解的影响机制,建立恰当的植物-微生物联合修复模式,本研究向含有微生物及多环芳烃(芘和苯并\[a\]芘)的微宇宙中加入三叶草根系分泌物,分析其对多环芳烃降解的影响,研究降解过程中微生物加氧酶和16S rDNA基因拷贝数的变化,并对具有多环芳烃降解能力的微生物进行鉴定.结果表明: 分枝杆菌M1具有降解多环芳烃的能力;三叶草根系分泌物总有机碳(TOC)浓度为35.5 mg·L-1时,芘和苯并\[a\]芘降解率明显提高,分枝杆菌加氧酶基因所占比例增加,表明其促进了分枝杆菌对芘和苯并\[a\]芘的降解;在降解过程中,加氧酶基因拷贝数明显增加,而16S rDNA数量增加不明显,表明前者与多环芳烃降解过程有关,而后者和微生物数量有关.三叶草根系分泌物使分枝杆菌加氧酶基因拷贝数明显增加,从而促进了分枝杆菌对多环芳烃的降解.
  相似文献   

12.
通过分枝杆菌(Mycobacteriumsp.)M3限制性降解胆固醇侧链获得了产物雄甾-4-烯-3,17-二酮(AD)和雄甾-1,4-二烯-3,17-二酮(ADD)。优化了胆固醇的投料时间、投料方式、培养基初始pH和葡萄糖浓度等工艺参数。将羟丙基-β-环糊精(HP-β-CD)应用于转化反应中,确定了HP-β-CD的最佳添加时间和添加量,使AD(D)生成率由初始对照的30%提高到60%,转化至72 h时AD(D)生成率达48%,是同期对照的4.0倍,生成率与生成速率均得到显著提高。在添加HP-β-CD的最佳转化条件下,AD(D)生成率达到70%,是初始对照的2.3倍。  相似文献   

13.
刘夺  张莹  周晓  元英进 《生命科学》2013,(10):958-965
甾体类药物是销售额仅次于抗生素的世界第二大类药物,不同的甾体药物分子结构均由甾体激素中间体衍生而来。甾体激素中间体的传统生产方法包括植物提取皂素法和化学全合成法,其对环境有害,反应产物结构不唯一且成本较高,不利于工业化生产。目前主要的生产工艺是利用微生物对特殊原料进行转化的半合成法,但会遇到微生物酶转化率低、发酵周期长等问题。合成生物学的出现为构建利用糖为唯一碳源生产甾体激素中间体的人工细胞提供了理论上的可行性和可靠的技术支持。重点综述了合成生物技术在甾体激素中间体生产中的应用,以有利于工业发酵的酿酒酵母、分枝杆菌等为底盘细胞,通过引入外源合成功能模块,实现胆甾醇、雄烯二酮等甾体激素中间体的生物合成,并对合成生物技术在医药生产方式转变中的应用进行了展望,以期推动甾体类药物生物制造技术的进步。  相似文献   

14.
甾体微生物转化在制药工业中的应用   总被引:8,自引:0,他引:8  
对几种重要的甾体微生物转化反应如甾体边链降解、甾体羟基化反应的机理及其发展与应用作了概述;同时也介绍了固定化微生物细胞、非水溶液中酶催化反应及混合发酵等微生物转化技术在制药工业中的应用。  相似文献   

15.
节杆菌9—2能彻底降解5a一△16一3β一羟基一孕甾烯一20一酮一3β一醋酸酯(I)形成二氧化碳和水。在它的培养基质中添加钴离子可抑制甾核的进一步降解,从而积累中间产物△1,4-雄甾二烯-3,17一二酮(VI),  相似文献   

16.
新金分枝杆菌(Mycobacterium neoaurum)通过敲除羟酰基辅酶A脱氢酶(hydroxyacyl-CoA dehydrogenase, Hsd4A)或酰基辅酶A硫解酶(acyl-CoA thiolase, FadA5)基因来生产22-羟基-23,24-双降甾-4-烯-3-酮(22-hydroxy-23,24-bisnorchol-4-en-3-one, BA)甾体类药物中间体来受到广泛关注。本实验室前期发现,敲除fadA5基因后,发酵产物中出现了一种新的代谢产物。本研究通过对该物质的结构鉴定、fadA5基因的蛋白同源序列比对、M. neoaurum HGMS2的系统发育树分析和基因敲除等手段探究该物质的代谢途径。结果表明该物质为C23类代谢中间体,即24-norchol-4-ene-3,22-dione (将其命名为3-OPD)。该物质是通过硫酯酶(thioesterase, TE)催化3,22-dioxo-25,26-bisnorchol-4-ene-24-oyl CoA (22-O-BNC-CoA)生成侧链为β-酮酸结构的物质后通过生物体的自动脱羧反应生成的。这些结果对开发新的甾类中间体有重要价值。  相似文献   

17.
9α-羟基雄烯二酮(9-OH-AD)是制备甾体类药物的重要中间产物。3-甾酮-9α-羟基化酶(KSH)能够转化雄烯二酮(AD)产生9α-羟基雄烯二酮(9-OH-AD),该酶由Ksh A和Ksh B两个亚基构成。为获得高效积累9-OH-AD的重组菌株,本研究选择耻垢分枝杆菌Mycobacterium smegmatis mc2155和戈登氏菌Gordonia neofelifaecis NRRL B-59395,对其在胆固醇为唯一碳源条件下表达明显上调的ksh A和ksh B候选基因进行克隆,插入到分枝杆菌表达载体p NIT中,构建共表达质粒,并将它们导入分枝杆菌Mycobacterium sp.NRRL B-3805中,获得重组菌株。利用重组菌株分别对植物甾醇、胆固醇和谷甾醇进行生物转化,分离纯化转化产物,采用光谱学方法鉴定其化学结构,确定该转化产物为9α-羟基雄烯二酮,说明分枝杆菌Mycobacterium sp.NRRL B-3805由积累雄烯二酮变为积累9α-羟基雄烯二酮(9-OH-AD),进而证明导入的候选基因ksh A和ksh B确实为有功能的基因。生物转化实验表明,与胆固醇、谷甾醇相比,植物甾醇作为底物更易于转化;而用来源于耻垢分枝杆菌的ksh A、ksh B构建的重组菌转化率更高,可达90%,具有较高的应用价值。本研究通过对KSH编码基因的异源表达,成功地进行了分枝杆菌生物转化特性的改造,为探索各种甾体药物中间体的工业生产奠定了基础。  相似文献   

18.
3-甾酮-Δ~1-脱氢酶是甾体化合物微生物代谢的关键酶,负责催化3-酮基类甾体化合物A环上的C1,2位脱氢反应。其不仅在甾体母核的早期降解途径中发挥重要作用,而且能通过A环C1,2位上双键的导入显著提高甾体化合物的生理活性。本文详细阐述了3-甾酮-Δ~1-脱氢酶在微生物中的种属分布和序列特征、酶的生物学特性、生理作用、催化机理以及分子改造等,为深入研究该酶在甾体生物转化领域中的应用提供重要参考。  相似文献   

19.
表面活性剂对分枝杆菌KR2菌株降解菲的影响   总被引:2,自引:0,他引:2  
采用同位素示踪方法,从表面活性剂的浓度、离子类型和直链长度三方面研究了表面活性剂对分枝杆菌KR2菌株降解菲的影响。结果表明,表面活性剂的存在不能促进KR2菌对菲的降解;高浓度表面活性剂(≥20mg·L-1)的存在,使菲的降解出现延迟期,非离子表面活性剂Tween80在低浓度时(≤10mg·L-1)可以优先作为营养基质被分枝杆菌KR2菌株利用,表面活性剂的离子类型对菲降解的抑制作用的顺序为阳离子表面活性剂TDTMA>阴离子表面活性剂LAS>非离子表面活性剂Tween80,表面活性剂的直链长度对菲降解的影响为直链越短,对微生物的毒性越大,菲降解得越不完全。  相似文献   

20.
雄甾-4-烯-3,17-二酮(4AD)是甾体化合物合成过程中的关键中间体,其羟化产物通常具有良好的药理活性或作为工业生产甾体药物的重要中间体。利用粉红单端孢Trichothecium roseum对4AD进行生物转化,从其发酵提取物中共分离鉴定了3个4AD羟基化产物:6β-羟基-雄甾-4-烯-3,17-二酮(6β-OH-4AD,1),14α-羟基-雄甾-4-烯-3,17-二酮(14α-OH-4AD,2),6β,14α-双羟基-雄甾-4-烯-3,17-二酮(6β,14α-di-OH-4AD,3),表明T. roseum对4AD的C-6β位和C-14α位具有较强的羟化能力,其中14α-OH-4AD(2)可作为合成强心甾类化合物毛地黄毒素的重要中间体,6β,14α-di-OH-4AD(3)可作为合成具有抗肿瘤活性的14α-羟基-雄甾-4-烯-3,6,17-三酮的重要中间体。提供了1株能够高效制备活性甾醇中间体14α-OH-4AD和6β,14α-di-OH-4AD的菌株,同时可为研究其他甾醇药物奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号