首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
场镇发展是西南山区城镇发展的重要模式,且大部分场镇沿河分布,快速城镇发展给河流水环境及生物地化过程带来了一系列影响,然而其对河流温室气体排放时空格局的影响及机制尚不清楚。选择流域场镇发展特征明显的黑水滩河为研究对象,于2014年9月、12月、2015年3月、6月,对流域内干、支流水体温室气体浓度及扩散通量进行分析,旨在阐明流域场镇式发展下河流温室气体排放时空特征及关键驱动因素。研究结果表明,黑水滩河干、支流水体年均二氧化碳分压(pCO_2)及甲烷(CH_4)、一氧化二氮(N_2O)浓度均处于过饱和状态,是大气温室气体的净排放源;流域内干、支流水体流经不同场镇区前后水体碳、氮、磷及叶绿素a含量均不同程度增加,从上游向下游呈现明显的污染累积;水体溶存pCO_2\\CH_4\\N_2O浓度及扩散通量在不同场镇前后也呈现显著增加的趋势,三种温室气体扩散通量平均增幅分别为25.88%、55.22%、99.64%;河流水体pCO_2与N_2O浓度及通量秋季高于其他季节,CH_4浓度及扩散通量春季最高,秋季次之,夏、冬季最低,温室气体浓度及排放的季节变化主要受温度和降雨格局共同影响。相关分析表明,pCO_2与水温和pH关系密切,而水体CH_4和N_2O浓度与水体碳、氮、磷等生源要素均呈显著的正相关关系,水体CH_4与N_2O浓度对生源要素输入极为敏感,流域场镇发展带来的河流污染负荷的增加可能对水体CH_4与N_2O排放产生明显的激发效应。本研究认为,山区河流流域内沿河串珠状场镇分布对河流水体生源要素及其他理化性质产生累积影响,进而改变了水体温室气体的产生与排放时空格局。  相似文献   

2.
Investigations on the CO2 Balance of Submerged Water Plants in Running Water By Means of a Motile Laboratory for Infrared Gas Analysis The CO2-balance of the submerged water mosses Hygrohypnum ochraceum f. obtusifolia, Amblystegium riparium, Amblystegium riparium f. fontinaloides and of Potamogeton trichoides (Potamogetonaceae) was investigated by means of a transportable laboratory for infrared gas analysis. The experiments were carried out in the river Zwickauer Mulde by means of glass vessels exposed to the water body. The device for continuous measuring CO2 exchange was operated by pumping air through the vessels containing 4 l of water. The water plants exhibited a distinct day night rhythm of CO2 turnover. In some cases river water alone, which had percolated a tampon of Perlon fibres, also showed a considerable day night rhythm of CO2 turnover which had to be attributed to phytoplankton and suspended periphyton organisms, the activity of which is superimposed above the photosynthetic activity of the macrophytes. Measurement of the CO2 balance of submerged plants in water containing microphytes can only be attributable to the macrophytes if the time of exposition does not exceed one day.  相似文献   

3.
1. The ecophysiological significance of Crassulacean acid metabolism (CAM) in the invasive aquatic macrophyte Crassula helmsii was studied in an English soft‐water lake. The extent and the contribution of CAM to the carbon budget was examined in spring (April) and summer (July) along a depth gradient (0.5–2.2 m), covering the growth range of C. helmsii in the lake. 2. Significant in situ CAM activity (30–80 meq kg−1 FW) was present in all specimens, although it decreased with depth and hence correlated with the decline in photon irradiance. Potential CAM activity (60–161 meq kg−1 FW), measured after exposure to low concentrations of CO2 in the day and high concentrations at night, were on average 2.7‐times greater than in situ CAM activity. Overall CAM activity increased from April to July, which is consistent with higher potential carbon limitation caused by increased temperature and light availability. 3. CAM activity in C. helmsii appeared to be carbon‐limited at night because night‐time carbon‐fixation increased at raised, compared to ambient, concentrations of CO2. 4. The high in situ CAM activity in C. helmsii was reflected in the contribution of CAM to the total carbon budget which, independent of depth and season, ranged from 18% to 42%. The amount of CO2 taken up in the night via CAM was 0.74 to 2.94 times the amount of CO2 lost in respiration, thus emphasizing the importance of CAM in refixation of potentially lost respiratory CO2. 5. The onset of decarboxylation in the morning appeared to be under circadian control as there was a delay of up to 5.5 h between the start of the light period and a decline in cell acidity level. 6. There was little variation in δ13C content (−21.69 to 23.49‰) with season or depth suggesting, along with the estimated contribution to the carbon‐budget, that CAM is important for the whole population of C. helmsii. CAM may confer a competitive advantage in relation to growth, which may be one of the reasons for the invasiveness of this species.  相似文献   

4.
The potential importance of CO2 derived from host tree respiration at night as a substrate for night time CO2 uptake during CAM was investigated in the subtropical and tropical epiphytic vine Hoya carnosa in a subtropical rainforest in north-eastern Taiwan. Individuals were examined within the canopies of host trees in open, exposed situations, as well as in dense forests. Although night time CO2 concentrations were higher near the epiphytic vines at night, relative to those measured during the day, presumably the result of CO2 added to the canopy air by the host tree, no evidence for substantial use of this CO2 was found. In particular, stable carbon isotope ratios of H. carnosa were not substantially lower than those of many other CAM plants, as would be expected if host-respired CO2 were an important source of CO2 for these CAM epiphytes. Furthermore, laboratory measurements of diel CO2 exchange revealed a substantial contribution of daytime CO2 uptake in these vines, which should also result in lower carbon isotope values than those characteristic of a CAM plant lacking daytime CO2 uptake. Overall, we found that host-respired CO2 does not contribute substantially to the carbon budget of this epiphytic CAM plant. This finding does not support the hypothesis that CAM may have evolved in tropical epiphytes in response to diel changes in the CO2 concentrations within the host tree canopy.  相似文献   

5.
We studied concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in the eutrophic Temmesjoki River and Estuary in the Liminganlahti Bay in 2003–2004 and evaluated the atmospheric fluxes of the gases based on measured concentrations, wind speeds and water current velocities. The Temmesjoki River was a source of CO2, CH4 and N2O to the atmosphere, whereas the Liminganlahti Bay was a minor source of CH4 and a minor source or a sink of CO2 and N2O. The results show that the fluxes of greenhouse gases in river ecosystems are highly related to the land use in its catchment areas. The most upstream river site, surrounded by forests and drained peatlands, released significant amounts of CO2 and CH4, with average fluxes of 5,400 mg CO2–C m−2 d−1 and 66 mg CH4–C m−2 d−1, and concentrations of 210 μM and 345 nM, respectively, but N2O concentrations, at an average of 17 nM, were close to the atmospheric equilibrium concentration. The downstream river sites surrounded by agricultural soils released significant amounts of N2O (with an average emission of 650 μg N2O–N m−2 d−1 and concentration of 22 nM), whereas the CO2 and CH4 concentrations were low compared to the upstream site (55 μM and 350 nM). In boreal regions, rivers are partly ice-covered in wintertime (approximately 5 months). A large part of the gases, i.e. 58% of CO2, 55% of CH4 and 36% of N2O emissions, were found to be released during wintertime from unfrozen parts of the river.  相似文献   

6.
1. The single station diel oxygen curve method was used to determine the response of system metabolism to backfilling of a flood control canal and restoration of flow through the historic river channel of the Kissimmee River, a sub‐tropical, low gradient, blackwater river in central Florida, U.S.A. Gross primary productivity (GPP), community respiration (CR), the ratio of GPP/CR (P/R) and net daily metabolism (NDM) were estimated before and after canal backfilling and restoration of continuous flow through the river channel. 2. Restoration of flow through the river channel significantly increased reaeration rates and mean dissolved oxygen (DO) concentrations from <2 mg L−1 before restoration of flow to 4.70 mg L−1 after flow was restored. 3. Annual GPP and CR rates were 0.43 g O2 m−2 day−1 and 1.61 g O2 m−2 day−1 respectively, before restoration of flow. After restoration of flow, annual GPP and CR rates increased to 3.95 O2 m−2 day−1 and 9.44 g O2 m−2 day−1 respectively. 4. The ratio of P/R (mean of monthly values) increased from 0.29 during the prerestoration period to 0.51 after flow was restored, indicating an increase in autotrophic processes in the restored river channel. NDM values became more negative after flow was restored. 5. After flow was restored, metabolism parameters were generally similar to those reported for other blackwater river systems in the southeast U.S.A. Postrestoration DO concentrations met target values derived from free flowing, minimally impacted reference streams.  相似文献   

7.
Induction of the carbon concentrating mechanism (CCM) has been investigated during the acclimation of 5% CO2‐grown Chlamydomonas reinhardtii 2137 mt + cells to well‐defined dissolved inorganic carbon (Ci) limited conditions. The CCM components investigated were active HCO3? transport, active CO2 transport and extracellular carbonic anhydrase (CAext) activity. The CAext activity increased 10‐fold within 6 h of acclimation to 0·035% CO2 and there was a further slight increase over the next 18 h. The CAext activity also increased substantially after an 8 h lag period during acclimation to air in darkness. Active CO2 and HCO3? uptake by C. reinhardtii cells were induced within 2 h of acclimation to air, but active CO2 transport was induced prior to active HCO3? transport. Similar results were obtained during acclimation to air in darkness. The critical Ci concentrations effecting the induction of active Ci transport and CAext activity were determined by allowing cells to acclimate to various inflow CO2 concentrations in the range 0·035–0·84% at constant pH. The total Ci concentration eliciting the induction and repression of active Ci transport was higher during acclimation at pH 7·5 than at pH 5·5, but the external CO2 concentration was the same at both pHs of acclimation. The concentration of external CO2 required for the full induction and repression of Ci transport and CAext activity were 10 and 100 μM , respectively. The induction of CAext and active Ci transport are not correlated temporally, but are regulated by the same critical CO2 concentration in the medium.  相似文献   

8.
M. M. Babiker 《Hydrobiologia》1984,110(1):351-363
The respiratory behaviour and partitioning of O2 uptake between air and water were investigated in Polypterus genegalus using continuous-flow and two-phase respirometers and lung gas replacement techniques P. senegalus rarely resorts to aerial respiration under normal conditions. Partitioning of O2 consumption depends on the activity and age of fish and the availability of aquatic oxygen. Immature fish (12–22 g) cannot utilize aerial O2 but older fish exhibit age-dependent reliance on aerial respiration in hypoxic and hypercarbic waters. Pulmonary respiration accounts for 50% of the total requirement at aquatic O2 concentrations of about 3.5 mg · l–1 (or CO2 of about 5%) and fish rely exclusively on aerial respiration at O2 concentrations of less than 2.5 mg · l–1. Branchial respiration is initially stimulated by hypercarbia (CO2: 0.5–0.8%) but increased hypercarbia (CO2 – 1%) greatly depresses (by over 90%) brancial respiration and initiates (CO2: 0.5%) and sustains pulmonary respiration.  相似文献   

9.
The mechanism of inorganic carbon (Ci) acquisition by the economic brown macroalga, Hizikia fusiforme (Harv.) Okamura (Sargassaceae), was investigated to characterize its photosynthetic physiology. Both intracellular and extracellular carbonic anhydrase (CA) were detected, with the external CA activity accounting for about 5% of the total. Hizikia fusiforme showed higher rates of photosynthetic oxygen evolution at alkaline pH than those theoretically derived from the rates of uncatalyzed CO2 production from bicarbonate and exhibited a high pH compensation point (pH 9.66). The external CA inhibitor, acetazolamide, significantly depressed the photosynthetic oxygen evolution, whereas the anion‐exchanger inhibitor 4,4′‐diisothiocyano‐stilbene‐2,2′‐disulfonate had no inhibitory effect on it, implying the alga was capable of using HCO3? as a source of Ci for its photosynthesis via the mediation of the external CA. CO2 concentrations in the culture media affected its photosynthetic properties. A high level of CO2 (10,000 ppmv) resulted in a decrease in the external CA activity; however, a low CO2 level (20 ppmv) led to no changes in the external CA activity but raised the intracellular CA activity. Parallel to the reduction in the external CA activity at the high CO2 was a reduction in the photosynthetic CO2 affinity. Decreased activity of the external CA in the high CO2 grown samples led to reduced sensitiveness of photosynthesis to the addition of acetazolamide at alkaline pH. It was clearly indicated that H. fusiforme, which showed CO2‐limited photosynthesis with the half‐saturating concentration of Ci exceeding that of seawater, did not operate active HCO3? uptake but used it via the extracellular CA for its photosynthetic carbon fixation.  相似文献   

10.
Chikov  V.  Bakirova  G. 《Photosynthetica》2000,37(4):519-527
14CO2 uptake in leaves of wheat plants (Triticum aestivum L.) fertilized by urea or Ca(NO3)2 (25 mol m-3) was investigated. The Warburg effect (inhibition of 14CO2 uptake by oxygen) under 0.03 vol. % CO2 concentration was observed only in non-fertilized plants. Under 0.03 vol. % CO2, the Warburg antieffect (stimulation of 14CO2 uptake by oxygen) was detected only in plants fertilized by Ca(NO3)2. Under saturating CO2 concentration (0.30 vol. %), the Warburg antieffect was observed in all variants. Under limitation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity (0.30 vol. % CO2 + 1 vol. % O2), the rate of synthesis of glycollate metabolism products decreased in control and urea-fertilized plants but was enhanced in nitrate-fed plants. Hence, there was an activation of glycollate formation via transketolase reaction in fertilized plants, and the products of nitrate reduction function were oxidants in nitrate-fertilized plants whereas the superoxide radical played this role in urea-fertilized plants.  相似文献   

11.
Nostoc rivulare was grown in batch cultures under controlled CO2 and NO3 concentrations to modulate the photosynthetic source:sink relationship. Increasing CO2 supply accelerated the accumulation of chlorophyll (Chl) a, i.e., supplemental CO2 combined with double concentrations of NO3 more than doubled the amounts of Chl a relative to those of the original medium. Photosynthetic oxygen evolution and respiratory oxygen uptake were both enhanced by elevated CO2 and NO3 . Contents of soluble sugars and starch (total non-structural saccharides) as well as insoluble saccharides (structural fraction) were affected by altering CO2-NO3 combinations. Uptake as well as reduction of either NO3 or NO2 was inhibited by CO2 deprivation. Expanding the sink size via increasing NO3 supply enhanced photosynthesis and thus the sink (NO3 ) acted as a feed forward stimulator of the source (photosynthesis). The regulatory role of nitrate on photosynthesis was most influential in CO2-deprived cultures since it could enhance photosynthesis to higher levels than CO2-supplemented, nitrate-free cultures.  相似文献   

12.
Tobacco plants (Nicotiana tabacum) were kept in CO2 free air for several days to investigate the effect of lack of electron acceptors on the photosynthetic electron transport chain. CO2 starvation resulted in a dramatic decrease in photosynthetic activity. Measurements of the electron transport activity in thylakoid membranes showed that a loss of Photosystem II activity was mainly responsible for the observed decrease in photosynthetic activity. In the absence of CO2 the plastoquinone pool and the acceptor side of Photosystem I were highly reduced in the dark as shown by far-red light effects on chlorophyll fluorescence and P700 absorption measurements. Reduction of the oxygen content of the CO2 free air retarded photoinhibitory loss of photosynthetic activity and pigment degradation. Electron flow to oxygen seemed not to be able to counteract the stress induced by severe CO2 starvation. The data are discussed in terms of a donation of reducing equivalents from mitochondria to chloroplasts and a reduction of the plastoquinone pool via the NAD(P)H-plastoquinone oxidoreductase during CO2 starvation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Saccharomyces cerevisiae was grown under aerobic and substrate-limiting conditions for efficient biomass production. Under these conditions, where the sugar substrate was fed incrementally, the growth pattern of the yeast cells was found to be uniform, as indicated by a constant respiratory quotient during the entire growing period. The effect of carbon dioxide was investigated by replacing portions of the nitrogen in the air stream with carbon dioxide, while maintaining the oxygen content at the normal 20% level, so that identical oxygen transfer rate and atmospheric pressure were maintained for all experiments with different partial pressures of carbon dioxide. Inhibition of yeast growth was negligible below 20% CO2 in the aeration mixture. Slight inhibition was noted at the 40% CO2 level and significant inhibition was noted above the 50% CO2, level, corresponding to 1.6 × 10?2M of dissolved CO2 in the fermentor broth. High carbon dioxide content in the gas phase also inhibited the fermentation activity of baker's yeast.  相似文献   

14.
Plant culture in oxygen concentrations below ambient is known to stimulate vegetative growth, but apart from reports on increased leaf number and weight, little is known about development at subambient oxygen concentrations. Arabidopsis thaliana (L.) Heynh. (cv. Columbia) plants were grown full term in pre-mixed atmospheres with oxygen partial pressures of 2·5, 5·1, 10·1, 16·2, and 21·3 kPa O2, 0·035 kPa CO2 and the balance nitrogen under continuous light. Fully expanded leaves were harvested and processed for light and transmission electron microscopy or for starch quantification. Growth in subambient oxygen concentrations caused changes in leaf anatomy (increased thickness, stomatal density and starch content) that have also been described for plants grown under carbon dioxide enrichment. However, at the lowest oxygen treatment (2·5 kPa), developmental changes occurred that could not be explained by changes in carbon budget caused by suppressed photorespiration, resulting in very thick leaves and a dwarf morphology. This study establishes the leaf parameters that change during growth under low O2, and identifies the lower concentration at which O2 limitation on transport and biosynthetic pathways detrimentally affects leaf development.  相似文献   

15.
The effects of phosphorus, Zn2+, CO2, and light intensity on growth, biochemical composition, and the activity of extracellular carbonic anhydrase (CA) in Isochrysis galbana were investigated. A significant change was observed when the concentration of phosphorus in the medium was increased from 5 μmol/L to 1000 μmol/L affecting I. galbana’s cell density, biochemical composition, and the activity of extracellular CA. Phosphorous concentration of 50 μmol/L to 500 μmol/L was optimal for this microalgae. The Zn2+ concentration at 10 μmol/L was essential to maintain optimal growth of the cells, but a higher concentration of Zn2+ (≥ 1000 μmol/L) inhibited the growth of I. galbana. High CO2 concentrations (43.75 mL/L) significantly increased the cell densities compared to low CO2 concentrations (0.35 mL/L). However, the activity of extracellular CA decreased significantly with an increasing concentration of CO2. The activity of extracellular CA at a CO2 concentration of 43.75 mL/L was approximately 1/6 of the activity when the CO2 concentration was at 0.35 mL/L CO2. Light intensity from 4.0 mW/cm2 to 5.6 mW/cm2 was beneficial for the growth, biochemical composition and the activity of extracellular CA. The lower and higher light intensity was restrictive for growth and changed its biochemical composition and the activity of extracellular CA. These results indicate that phosphorus, Zn2+, CO2, and light intensity are important factors that impact growth, biochemical composition and the activity of extracellular CA in I. galbana.  相似文献   

16.
B. N. Patel  M. J. Merrett 《Planta》1986,169(2):222-227
Air-grown cells of the marine diatom Phaeodactylum tricornutum showed only 10% of the carbonic-anhydrase activity of air-grown Chlamydomonas reinhardtii. Measurement of carbonic-anhydrase activity using intact cells and cell extracts showed all activity was intracellular in Phaeodactylum. Photosynthetic oxygen evolution at constant inorganic-carbon concentration but varying pH showed that exogenous CO2 was poorly utilized by the cells. Sodium ions increased the affinity of Phaeodactylum for HCO 3 - and even at high HCO 3 - concentrations sodium ions enhanced HCO 3 - utilization. The internal inorganic-carbon pool (HCO 3 - +CO2] was measured using a silicone-oil-layer centrifugal filtering technique. The internal [HCO 3 - +CO2] concentration never exceeded 15% of the external [HCO 3 - +CO2] concentration even at the lowest external concentrations tested. It is concluded that an internal accumulation of inorganic carbon relative to the external medium does not occur in P. tricornutum.Abbreviation Hepes 4-(2-hydroxyethyl)-1-piperazineethane-sulfonic acid  相似文献   

17.
Naturally grown trees of Mediterranean evergreen oak (Quercus ilex L.), representing the climax species of the region, were enclosed in six large open-top chambers and exposed to ambient and elevated CO2 concentrations during a 3 year period. Maximum daily net photosynthetic rates measured at the two different CO2 concentrations were from 30 to 100% higher in elevated than in ambient [CO2] throughout the experimental period. The increase in maximum daily photosynthesis was also accompanied by a 93% rise in the apparent quantum yield of CO2 assimilation, measured during periods of optimum soil moisture conditions. Hence, no clear evidence of down-regulation of net photosynthetic activity was found. Interactions between atmospheric CO2 concentration and plant water stress were studied by following the natural evolution of drought in different seasons and years. At each level of water stress, the maximum rate of carbon assimilation was higher in elevated than in ambient [CO2] by up to 100%. Analysis of in vivo chlorophyll fluorescence parameters in normal (21%) and low (2%) oxygen concentrations provided useful insights into the functioning and stability of the photosynthetic processes. The photochemical efficiency of PSII (Fv/Fm) progressively decreased as drought conditions became more evident; this trend was accentuated under elevated [CO2]. Thermal de-excitation processes were possibly more significant under elevated than under ambient [CO2], in a combination of environmental stresses. This research suggests two possible conclusions: (i) a ‘positive’ interaction between elevated [CO2] and carbon metabolism can be obtained through relief of water stress limitation in the summer months, and (ii) elevated [CO2], under drought conditions, may also enhance the significance of slow-relaxing quenching.  相似文献   

18.
The Red River, draining a 169,000 km2 watershed, is the second largest river in Viet Nam and constitutes the main source of water for a large percentage of the population of North Viet Nam. Here we present the results of an investigation into the spatial distribution and temporal dynamics of particulate and dissolved organic carbon (POC and DOC, respectively) in the Red River Basin. POC concentrations ranged from 0.24 to 5.80 mg C L?1 and DOC concentrations ranged from 0.26 to 5.39 mg C L?1. The application of the Seneque/Riverstrahler model to monthly POC and DOC measurements showed that, in general, the model simulations of the temporal variations and spatial distribution of organic carbon (OC) concentration followed the observed trends. They also show the impact of high population densities (up to 994 inhab km?2 in the delta area) on OC inputs in surface runoff from the different land use classes and from urban point sources. A budget of the main fluxes of OC in the whole river network, including diffuse inputs from soil leaching and runoff and point sources from urban centers, as well as algal net primary production and heterotrophic respiration was established using the model results. It shows the predominantly heterotrophic character of the river system and provides an estimate of CO2 emissions from the river of 330 Gg C year?1. This value is in reasonable agreement with the few available direct measurements of CO2 fluxes in the downstream part of the river network.  相似文献   

19.
Thalli of Ulva reticulata Forskaal, Ulva rigida C. Ag., and Ulva pulchra Jaasund were incubated at different concentrations of dissolved CO2. Incubation at a high CO2 concentration resulted in decreased oxygen evolution rate and lower affinity for inorganic carbon at high pH conditions, i.e. the ability to use HCO3 as a carbon source was reduced. This effect was reversible, and plants regained this HCO3 uptake capacity when transferred to air concentrations of CO2. The phytosynthetic oxygen evolution rate of plants grown at high CO2 concentration was reduced by high O2 concentrations, whereas thalli and protoplasts from cultures grown at air concentration were not affected. This is interpreted as a deactivation of the carbon-concentrating mechanism during conditions of high CO2 resulting in high photorespiration when plants are exposed to high O2 concentrations. Protoplasts were not affected by high O2 to the same extent and were not able to utilize HCO3 from the medium. The algae were able to grow at very low CO2 concentrations, but growth was suppressed when an inhibitor of external carbonic anhydrase was present. Assay of carbonic anhydrase activities showed that external and internal CA activities were lower in plants grown at a high CO2 concentration compared to plants grown at a low concentration of CO2. Possible mechanisms for HCO3 utilization in these Ulva species are discussed.  相似文献   

20.
Mechanisms responsive to hypercapnia (elevated CO2 concentrations) and shaping branchial energy turnover were investigated in isolated perfused gills of two Antarctic Notothenioids (Gobionotothen gibberifrons, Notothenia coriiceps). Branchial oxygen consumption was measured under normo- versus hypercapnic conditions (10,000 ppm CO2) at high extracellular pH values. The fractional costs of ion regulation, protein and RNA synthesis in the energy budgets were determined using specific inhibitors. Overall gill energy turnover was maintained under pH compensated hypercapnia in both Antarctic species as well as in a temperate zoarcid (Zoarces viviparus). However, fractional energy consumption by the examined processes rose drastically in G. gibberifrons (100–180%), and to a lesser extent in N. coriiceps gills (7–56%). In conclusion, high CO2 concentrations under conditions of compensated acidosis induce cost increments in epithelial processes, however, at maintained overall rates of branchial energy turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号