首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence of Diaphanosoma excisum (Sars), a freshwater cladoceran, in benthic samples of an intertidal sandy beach is reported. Population density was seasonal. A relatively high density was recorded from June to September (south-west monsoon season) with a maximum (46 ind 10 cm–2) in September at a depth of 10–15 cm of sediment. A sudden decline occurred during north-east monsoon (October to January), and in the fair season (February to May), the cladocerans disappeared. Mean density varied (P<0.001) with sediment depth and season and showed a contagious dispersion. Abundance was negatively correlated with salinity (r = –0.76) but positively with POC (r =0.79) and mean grain size of the sediment (r = 0.93). The density of D. excisum was highest in fine sand.  相似文献   

2.
Broekhuizen  N.  Parkyn  S.  Miller  D. 《Hydrobiologia》2001,457(1-3):125-132
The influence of fine sediment (<63 m diameter) upon the assimilation rates of the snail Potamopyrgus antipodarum, and the mayfly Deleatidium sp. were determined by allowing individuals to feed upon 14C radiolabelled periphyton which had been contaminated with varying quantities of sediment (sediment:food ratios of: 0:1, 1:1, 5:1, 10:1, 50:1, 100:1 [dry weight]). For both grazers, the assimilation rate falls in direct proportion to the sediment fraction in the (sediment+food) matrix. In a second experiment the growth of P. antipodarum was monitored over 3 months when fed organic matter that had been contaminated with fine sediment at ratios of 0:1, 1:1, 5:1, 10:1, 50:1, 100:1, 500:1. In contrast to the monotonic relation between sediment and short-term assimilation, growth rates (mm shell height d–1) were highest at intermediate levels of sediment contamination (5:1 and 10:1 by dry weight) and lowest in the treatment with no sediment added. Growth rates were significantly lower, and mortality high, at sediment:food contamination ratios above 50:1. The reasons for the contrast between the results from the short-term and the long-term experiments are unknown at present, but the fact that snail growth was greatest at intermediate levels of sediment contamination might indicate that they derive trace nutrients from ingested sediment.  相似文献   

3.
Subfossil Bosmina (Eubosmina) remains were analysed in a sediment core from the Untersee of Lake Constance which covered the Late-Glacial/Holocene period.During the Late-Glacial and the early Holocene the lake was inhabited only by Bosmina longispina Leydig. In the Late Holocene a second species, Bosmina coregoni f. kessleri Uljanin, appeared. In the uppermost sediment layers the morphological gap between the two taxa disappeared, apparently from introgressive hybridization.  相似文献   

4.
The burrowing behavior of the holothurian Leptosynapta tenuis, its lebensspuren, and the types of peristaltic waves used in movement and burrow irrigation are described. Particle size selection is a function of accessability of grains. L. tenuis cannot distinguish between particle sizes but nevertheless ingests small particles in a lesser proportion than that found in the surrounding sediment. Feeding rates are 2900–5500 g · yr−1 · animal−1. These rates are strongly dependent on temperature. Computation of a sediment mixing budget shows that of all the sediment ingested, 51% is ingested from the top 1/2 cm of sediment, 75% from the top 3 cm. The significance of the funnel as a ‘tool’ to exploit the top 1/2 cm of sediment is discussed. L. tenuis differs from other deposit feeders in that (1) it removes small particles from the surface sediment during its reworking activities, (2) it reworks sediment downward as well as upward, (3) its reworking activities tend to increase the stability of the upper 3 cm of the sediment, and (4) because so much sediment is ingested from the top 1/2 cm, it reworks an entire sediment column less efficiently per gram of sediment ingested than many other deposit feeders.  相似文献   

5.
The sediment of Lake Balaton (Hungary) provides important information about the lake’s history, particularly with regard to eutrophication. In this study, we used fossil pigment analysis and subfossil Cladocera remains preserved in a dated sediment core to identify trophic stages from ~250 bc to present. Dates of the most recent eutrophic events are in good agreement with previously published data. In general, the abundance and diversity of the Cladocera community increased with eutrophication and decreased with oligotrophication. The sediments of Lake Balaton were characterised by Chydoridae remains, of which Alona species were the most abundant. Of these, Alona quadrangularis and Alona affinis accounted for 40 and 20% of the total Cladocera remains, respectively. The trophic state of Lake Balaton varied between mesotrophic and eutrophic regimes. Seven different trophic periods were identified in Lake Balaton on the basis of Sedimentary Pigment Degradation Unit (SPDU) content of the sediment. Eutrophic states were (1) from ~250 to ~30 bc, (3) between ~300 and ~590 ad, (5) between 1834 and 1944 and (7) from the 1960s until present. Mesotrophic states were (2) ~30 bc to ~300 ad, (4) 590–1834, (6) 1944–1960s. Discriminant analysis of the cladoceran data confirmed these historic events, except for the short mesotrophic episode between 1944 and 1960. The first stage of eutrophication of Lake Balaton (~250 to ~30 bc) was characterised by extensive macrophyte vegetation, as indicated by the increasing abundance of vegetation-associated Cladocera species (Eurycercus lamellatus, Sida crystallina, Pleuroxus sp.). Intensification of eutrophication was identified since the 1980s, reflected by a high abundance of Bosmina species. The most significant planktivorous fish of Lake Balaton was the Sabre carp (Pelecus cultratus), and when its number decreased, the abundance of Bosmina species increased. This study shows that Cladocera are responsive to trophic state changes, underlining their importance as a tool for the assessment of lake eutrophication.  相似文献   

6.
Many (palaeo-)environmental parameters can be deduced from ecological and chemical analyses of ostracods. However, the specific ecology of each taxon has a great impact on its reaction to changing environmental conditions. As a consequence, each taxon records these changes differently. The mean penetration depth (MPD) and relative individual abundances have been documented along sediment depth profiles for the dominant sub-littoral to profundal species of ostracods in western Lake Geneva, Switzerland, and this data can be used to estimate their preferential habitat in terms of sediment depths. Isocypris beauchampi, Limnocytherina sanctipatricii, Cypria ophtalmica forma lacustris at 13-m water depths, Limnocythere inopinata, and a winter generation of Herpetocypris reptans have the shallowest habitat preferences at the study sites (MPDs of 0.45, 0.48, 0.49, 0.60, and 0.81 cm, respectively). These results suggest that these populations may be regarded as being preferentially epifaunal forms. Populations of Cytherissa lacustris (MPDs of 0.61, 0.73, and 0.82 cm at 13-, 33-, and 70-m water depths, respectively), Cypria ophtalmica forma lacustris at 70 m (MPD = 0.96 cm), Fabaeformiscandona caudata (MPD = 0.99 cm), and a summer generation of Herpetocypris reptans (MPD = 1.03 cm) were identified as being infaunal. Candona neglecta is the species that was found the deepest in the sediment of Lake Geneva, with MPDs of 0.65, 1.22, and 1.30 cm at 13-, 33-, and 70-m water depths, respectively. Information on the sediment texture and oxygen concentrations inferred from the analyses of sediment pore water suggest that the oxygen content of the sediment pore water is not the only dominant parameter controlling the differences in ostracod sediment penetration depths observed among the different sites, but that they might also be influenced by the sediment ‘softness,’ which itself depends on grain size, water content, and the abundance of organic matter in sediment.  相似文献   

7.
The organic phosphorus mineralizing bacteria (OPB) play an important role in phosphorus cycling in lake sediment, to which less attention has been paid. Monthly sediment samples in 2009 ending in October, together with the samples from different seasons (May, July, October, and December) in 2008, were collected at 6 sites in a Chinese large shallow eutrophic lake (Lake Taihu). The sediment OPB numbers ranged from 2.2 × 106 to 1.79 × 108 cells g?1 (dry weight) at different sampling sites and in different seasons, with the average being 3.88 × 107 cells g?1 (dry weight). Its number was highest at the most polluted site and peaked in spring and summer, which can be explained by the enrichment of organic matter in sediment. Furthermore, there existed a significant positive relationship between the OPB numbers and alkaline phosphatase activities in the sediment. The 6 OPB strains isolated from the sediment were distinct in terms of their colony morphology on the yolk agar, biochemical characteristics and phosphorus release abilities. According to the 16S rDNA sequences, these OPB belong to Bacillus cereus, Stenotrophomonas maltophilia, Stenotrophomonas sp., Bacillus cereus, Xanthomonas sp., Pseudomonas sp. They were distinguished from the OPB species recorded in a Chinese small shallow eutrophic lake whose sediment organic content was remarkably higher. Taken together, organic matter shaped the OPB community not only quantitatively but also qualitatively, which in concert facilitated the enzymatic hydrolysis of organic phosphorus in lake sediment.  相似文献   

8.
Deposit feeding polychaetes play an important role in the acceleration of the biogeochemical processes of the sediment through bioturbation. Feeding is one of the important factors of bioturbation. However, knowledge of the feeding biology of polychaetes, especially the subsurface deposit feeder, is limited. The objective of this study is to characterize the feeding selection of Perinereis aibuhitensis with different body weights. The animals were fed with natural sediment from their original habitat in the lab. The feed intake and particle size of sediment were measured to find any evidence of feeding selection. A two-way ANOVA showed that the particle size class significantly affected the particle size frequency of the ingested and the remaining sediment (P?P?>?0.05). Bivariate correlation analysis showed that the particle size frequency of sediment, ingested and remaining sediment in different size classes were linearly related (P?P?P?P. aibuhitensis preferred smaller particles in the sediment, which was limited by the particle size distribution of the sediment in which they live. The nitrogen and organic carbon contents in the faeces might be the thresholds when P. aibuhitensis selects sediment particles as food. These results demonstrated the particle selectivity of P. aibuhitensis, and may be applicable to other subsurface deposit feeding polychaetes.  相似文献   

9.
Nagid  Eric J.  Canfield  Daniel E.  Hoyer  Mark V. 《Hydrobiologia》2001,455(1-3):97-110
Nutrient and chlorophyll concentrations in Lake Newnan (27 km2, mean depth 1.5 m), Florida showed dramatic increases from 1991 to 1998. Historical data showed Lake Newnan never had sufficient aquatic macrophyte abundance for a shift in alternate stable states to account for increases in trophic state characteristics. External phosphorus and nitrogen loads from incoming streams were monitored from August 1997 to July 1998 to determine if external supplies of nutrients were responsible for increases in lake nutrient and chlorophyll concentrations. During the study period, external nutrient loading rates were not correlated to lake nutrient concentrations. Phosphorus and nitrogen models based on the external loading estimates predicted the lake total phosphorus and total nitrogen concentrations to be 370% and 680% less, respectively, than the observed lake total phosphorus and total nitrogen mean concentrations. Consequently, phosphorus and nitrogen exports were 280% and 540% greater, respectively, than stream input loading. Data during the study period revealed strong inverse relations between lake stage and total phosphorus (r=–0.78), total nitrogen (r=–0.71), and chlorophyll (r=–0.90) concentrations. Long-term data (1965–1998) also revealed inverse correlations (r=–0.48 to –0.52) between lake stage and total phosphorus, total nitrogen, and chlorophyll concentrations. Applying fundamental wave theory and using a bathymetric map, it is probable that as much as 70% of the lake bottom sediment could be subjected to resuspension 50% of the time when the lake stage falls below 19.9 m mean sea level (msl). Above a lake stage of 19.90 m msl, less than 20% of the lake bottom sediment can potentially be resuspended 50% of the time. A percent frequency distribution from 1991 to 1998 showed that over 30% of the lake stages fell below 19.9 m msl. However, from 1967 to 1990, only 8% of the lake stage values fell below 19.9 m msl. Increases in total phosphorus, total nitrogen and chlorophyll concentrations in Lake Newnan were likely caused by an increased probability of internal loading due to decreased lake levels, and not to external loading of phosphorus and nitrogen.  相似文献   

10.
Genotoxicity and cytotoxicity were evaluated in an in vitro system with a permanent cell line Epithelioma papulosum cyprini (EPC) derived from a skin tumour of carp (Cyprinus carpio L.). EPC cells were exposed to different concentrations of organic sediment extracts from the North Sea for 24 h. After incubation the cells were analysed for viability and DNA strand breaks with the comet assay or single cell gel electrophoresis (SCGE). The results confirm the sensitivity of this assay. Out of 10 marine sediment samples from the North Sea, 9 showed a dose-dependent genotoxic effect. The EC50 of sediment extracts ranged from 7 to 307 mg sediment dry weight/ml assay volume. Hepatic microsomal enzymes from dab (Limanda limanda L.) was proposed for enzymatic activation of benzo[a]pyrene (BAP) or sediment extracts, respectively. The suitability of this in vitro test system for assessing genotoxic and cytotoxic effects of marine sediment extracts on EPC cells could be demonstrated.  相似文献   

11.
Intra-lake variation of fossil Cladocera (Crustacea) assemblages in 31 surface sediment samples in Lake Pieni-Kauro and River Saavanjoki, eastern Finland, was examined with an objective to identify habitat specificity of Cladocera in relation to local hydrology-related environmental factors. The surface sediment assemblages showed high levels of heterogeneity, mainly as to water depth and lentic–lotic gradients in the lake–river complex. This was evident from the principal component analysis which indicated a major trend from shallow to deep samples and a secondary trend from lentic to lotic samples, and from redundancy analysis (RDA), which recognized water depth and river flow as the most important environmental variables in explaining cladoceran variability within the dataset. According to the RDA and generalized linear models, Daphnia spp., Bosmina (Eubosmina), and Alona quadrangularis showed association with deep water localities, whereas Bosmina longirostris and Alona affinis preferred littoral habitats. Acroperus harpae and Chydorus sphaericus s.l. appeared to favor lotic habitats. The results propose that littoral taxa are primarily deposited postmortem or after molting close to their shallow water habitats, while planktonic cladocerans accumulate principally in deepwater locations. Accordingly, it appears that in heterogeneous basins intra-lake surface sediment samples integrate locally living fauna that is driven by local hydrology-related factors, such as water depth, sediment properties, macrophytes, and river flow and coupling biotic interactions.  相似文献   

12.
13.
A numerical model to simulate the transport of suspended sediment in tidal estuaries is presented. The model is applied to the two large European estuaries the Tagus (Portugal) and the Scheldt (Belgium-The Netherlands). Calculated suspended sediment concentrations compare favourably with observations in the Tagus (r=0.84) and in the Scheldt (r=0.73). The parametrization scheme indicates that the bottom content of fine sediment is correlated with depth in the Tagus; but a different relationship is used in the Scheldt. Because of tidal range differences, average suspended sediment concentrations are lower in the Tagus (80 mg l−1) than in the Scheldt (130 mg l−1), but a larger relative variation between spring and neap tide concentrations may occur in the Tagus.  相似文献   

14.
1. The effect of benthivorous bream and carp on sediment resuspension and the concentrations of nutrients and chlorophyll a were studied in sixteen experimental ponds (mean depth 1m, mean area 0.1 ha, sandy clay/clay sediment), stocked with bream or carp at densities varying from 0 to 500 kg ha?1. Planktivorous perch (Perca fluviatilis L.) were added to some ponds to suppress zooplankton. 2. Suspended sediment concentrations increased linearly with biomass of benthivorous fish. Bream caused an increase of 46 g sediment m?2 day?1 per 100kg bream ha?1 and a reduction of 0.38m?1 in reciprocal Secchi disc depth, corresponding to an increase in the extinction coefficient of 0.34m?1. 3. No relationship was found between size of fish and amount of resuspension, but the effect of bream was twice as great as that of carp. Benthivorous feeding was reduced in May because alternative food (zooplankton) was available. 4. Assuming a linear relationship, chlorophyll a level increased by 9.0 μgI?1, total P by 0.03mgl?1 and Kjeldahl-N by 0.48mgl?1 per 100kg bream ha?1. Silicate, chlorophyll a, total P and total N were all positively correlated with fish biomass, but orthophosphate showed no correlation.  相似文献   

15.
Marine invertebrate grazing on temperate macroalgae may exert a significant “top-down” control on macroalgal biomass. We conducted two laboratory experiments to test (1) if consumption by the omnivorous mud snail Ilyanassa obsoleta (Say) on the macroalga Ulva lactuca Linnaeus was a function of food quality (nitrogen content) and (2) if grazing on benthic macroalgae occurred at significant rates in the presence of alternative food sources in the sediment (detritus, larvae, benthic microalgae). Grazing rates were higher for N-enriched macroalgae; however, all snails lost weight when grazing on macroalgae alone, indicating that U. lactuca was a poor food source. The presence of sediment from two sites, a sandy lagoon and an adjacent organic-rich muddy tidal creek, did not affect consumption of macroalgae in microcosm experiments, and the grazing snails were capable of significantly reducing macroalgal biomass associated with both sediment types. Grazing rates by this omnivore were as high as 10.83 mg wet weight·individuals 1·d 1 and were similar to those recorded for herbivorous species. In situ loss rates calculated from average grazing rates per individual and snail abundances (up to 3.5 g dry weight·m 2·d 1) also were comparable with those calculated for herbivorous species. This level of grazing could remove up to 88% of new macroalgal growth at the lagoon site where the N supply was relatively low but had a much smaller effect (18% of new growth) at the high-nutrient creek site. Snails facilitated macroalgal growth at both sites by increasing tissue N content by 40%–80%. Consumption and digestion of macroalgae aided in the recycling of nutrients temporarily bound in the algae and resulted in enrichment of surficial sediments. Increased N sequestration in the sediments also was associated with an interruption of snail burrowing behavior due to persistent anoxia in sediments rich in decaying algal material. Our data suggest that in shallow lagoons where mud snails and benthic macroalgae coexist, grazing may influence N retention in macroalgal biomass.  相似文献   

16.
A remediation process for heavy metal polluted sediment has previously been developed, in which the heavy metals are removed from the sediment by solid‐bed bioleaching using sulfuric acid as a leaching agent arising from added elemental sulfur (S0). This process has been engineered with Weiße Elster River sediment (dredged near Leipzig, Germany), as an example. Here, six heavy metal polluted sediments originating from various bodies of water in Germany were subjected to bioleaching to evaluate the applicability of the developed process on sediment of different nature: each sediment was mixed with 2 % S0, suspended in water and then leached under identical conditions. The buffer characteristics of each sediment were mainly governed by its carbonate and Ca content, i.e., by its geological background, the redox potential and oxidation state depended on its pre‐treatment (e.g., on land disposal), while the pH value was influenced by both. The added S0 was quickly oxidized by the indigenous microbes even in slightly alkaline sediment. The microbially generated H2SO4 accumulated in the aqueous phase and was in part precipitated as gypsum. Significant acidification and heavy metal solubilization only occurred with sediment poor in buffer substances. With the exception of one sediment, the behavior in bioleaching correlated well with the behavior in titration with H2SO4. Since the content in carbonate seemed to be the most important factor deciding on the leachability of a sediment, oxic Weiße Elster River sediment was mixed with 2 % S0 and 0 to 100 g/kg of ground limestone to simulate various buffer capacities, suspended in water and then leached. The lime did not inhibit microbial S0 oxidation but generated a delay in acidification due to neutralization of formed H2SO4, where the pH only started to decrease when the lime was completely consumed. The more lime the sediment contained, the longer this lag period lasted, and the higher the pH and the lower the fraction of the solubilized heavy metals finally was. Since Cu requires stronger acidic conditions for its solubilization, it responded more sensitively to lime addition than Zn, Ni, and Cd. Heavy metal polluted sediment containing large amounts of carbonate may, in principle, also be remediated by bioleaching, but metal solubilization requires excessive amounts of the leaching agent and is thus uneconomical.  相似文献   

17.
Abstract Nitrification in freshwater, a key process in the nitrogen cycle, is now well known to take place predominantly on suspended particles and in sediment. Nitrobacter is the most commonly isolated nitrite oxidizing bacteria from water environments. Three methods for counting nitrite oxidizing communities (especially Nitrobacter) in sediment were investigated: MPN-Griess, fluorescent antibodies (immunofluorescence), and a more recent molecular method coupling specific DNA amplification by PCR and statistical MPN quantification. After preliminary adjustments of the MPN-PCR technique, the detection level and the yield of each method were determined by inoculating a sediment with a pure Nitrobacter culture. The best recovery yield was obtained with the immunofluorescence technique (21.3%) and the lowest detection level was reached with the MPN-Griess method (103 Nitrobacter/g dry weight sediment). The MPN-PCR method resulted in the lowest recovery yields and needs further adaptation to become a reliable and precise tool for investigations of nitrifying bacteria in sediment. Received: 6 July 1998; Accepted: 17 December 1998  相似文献   

18.
Diatom sediment records of large lakes can be used to decipher the history of ancient phytoplankton. The upper layer of the sediment is an important area of remineralization of the sedimenting phytoplankton biomass. It hosts a bacterial community different from those of both the water column and deeper sediment layers. In this work, we analyzed the structure and diversity of the communities of Bacteria and Archaea in the surface sediment core containing valves of diatoms, the major producers in Lake Baikal. Pyrosequencing of the bacterial V3–V4 region of the 16 S ribosomal RNA (rRNA) and archaeal V1–V3 16 S rRNA gene regions yielded 29,168 and 36,997 reads, respectively. In total, we have identified 33 bacterial phyla; uncultured Actinobacteria were the most abundant in the upper layers, while lower sediment was dominated by Firmicutes and Alphaproteobacteria. The composition of the archaeal community changed with depth, but was generally dominated by Crenarchaeota from the classes Marine Group I and Miscellaneous Crenarchaeotic Group, as well as Euryarchaeota from the class Thermoplasmata. These dominant bacterial and archaeal taxa are presumed to participate in the destruction of buried organic matter, which eventually leads to degradation of the diatom valves.  相似文献   

19.
A study on sediment metabolism was carried out during 1986 in Lake Ton-Ton, Uruguay. Sediment oxygen demand (SOD) from chemical and biological origin was measured in undisturbed sediment cores taken from the deepest part of the lake. Mean SOD rate for the study period (51.56 mgO2 m–2 h–1) corresponded well with the eutrophic state of the lake. During stratification, SOD from chemical origin accounted for 69–87% of total SOD, while SOD from biological origin was dominating for the rest of the year, except in July. Biological respiration was principally of microbial origin. Hypolimnetic temperature was the main factor controlling SOD rates (r = 0.771,p < 0.001). Nevertheless, freshly sedimented phytodetritus from anAnabaena bloom, together with a renewed input of oxygen to bottom water were responsible for the maximum SOD values, recorded at the beginning of a mixing period in April (72.51 mgO2 m–2 H–1).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号