首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immune checkpoint inhibitors (ICIs) offer improved survival for patients with advanced malignant melanomas. However, only a subset of these patients exhibit an objective response rate of 10–40 % with ICIs. We aimed to ascertain the effects of RNA signatures and the spatial distribution of immune cells on the treatment outcomes of patients with malignant melanomas undergoing ICI therapy. Clinical data were retrospectively collected from ICI-treated patients with malignant melanoma; RNA expression profiles were examined via next-generation sequencing, whereas the composition, density, and spatial distribution of immune cells were determined via multiplex immunohistochemistry. Patients with poor and good responses to ICIs showed significant differences in mRNA expression profiles. Different spatial distributions of T-cells, macrophages, and NK cells as well as RNA signatures of immune-related genes were found to be closely related to therapeutic outcomes in ICI-treated patients with malignant melanomas. The spatial distributions of PD-1+ T-cells and activated M1 macrophages showed a significant correlation with favorable responses to ICIs. Our findings highlight the clinical relevance of the spatial proximity of immune cell subsets in the treatment outcomes of metastatic malignant melanoma.  相似文献   

2.

Background

Local inflammation associated with solid tumors commonly results from factors released by tumor cells and the tumor stroma, and promotes tumor progression. Cancer associated fibroblasts comprise a majority of the cells found in tumor stroma and are appealing targets for cancer therapy. Here, our aim was to determine the efficacy of targeting cancer associated fibroblasts for the treatment of metastatic breast cancer.

Methodology/Principal Findings

We demonstrate that cancer associated fibroblasts are key modulators of immune polarization in the tumor microenvironment of a 4T1 murine model of metastatic breast cancer. Elimination of cancer associated fibroblasts in vivo by a DNA vaccine targeted to fibroblast activation protein results in a shift of the immune microenvironment from a Th2 to Th1 polarization. This shift is characterized by increased protein expression of IL-2 and IL-7, suppressed recruitment of tumor-associated macrophages, myeloid derived suppressor cells, T regulatory cells, and decreased tumor angiogenesis and lymphangiogenesis. Additionally, the vaccine improved anti-metastatic effects of doxorubicin chemotherapy and enhanced suppression of IL-6 and IL-4 protein expression while increasing recruitment of dendritic cells and CD8+ T cells. Treatment with the combination therapy also reduced tumor-associated Vegf, Pdgfc, and GM-CSF mRNA and protein expression.

Conclusions/Significance

Our findings demonstrate that cancer associated fibroblasts promote tumor growth and metastasis through their role as key modulators of immune polarization in the tumor microenvironment and are valid targets for therapy of metastatic breast cancer.  相似文献   

3.
A framework is developed for constructing a large class of discrete generation, continuous space models of evolving single species populations and finding their bifurcating patterned spatial distributions. Our models involve, in separate stages, the spatial redistribution (through movement laws) and local regulation of the population; and the fundamental properties of these events in a homogeneous environment are found. Emphasis is placed on the interaction of migrating individuals with the existing population through conspecific attraction (or repulsion), as well as on random dispersion. The nature of the competition of these two effects in a linearized scenario is clarified. The bifurcation of stationary spatially patterned population distributions is studied, with special attention given to the role played by that competition.Acknowledgement We gratefully received valuable help through discussions with Hiroshi Matano, Davar Khosnevisan, and Nacho Barradas. Khosnevisan provided us with the background information for Sections 3.3.1 and 3.3.2. Matano provided us with a proof of Lemma 4.4 similar to the one given here. Barradas drew our attention to the relation (2.1).  相似文献   

4.
Previously, we identified a form of epithelial-stromal metabolic coupling, in which cancer cells induce aerobic glycolysis in adjacent stromal fibroblasts, via oxidative stress, driving autophagy and mitophagy. In turn, these cancer-associated fibroblasts provide recycled nutrients to epithelial cancer cells, "fueling" oxidative mitochondrial metabolism and anabolic growth. An additional consequence is that these glycolytic fibroblasts protect cancer cells against apoptosis, by providing a steady nutrient stream of to mitochondria in cancer cells. Here, we investigated whether these interactions might be the basis of tamoxifen-resistance in ER(+) breast cancer cells. We show that MCF7 cells alone are Tamoxifen-sensitive, but become resistant when co-cultured with hTERT-immortalized human fibroblasts. Next, we searched for a drug combination (Tamoxifen + Dasatinib) that could over-come fibroblast-induced Tamoxifen-resistance. Importantly, we show that this drug combination acutely induces the Warburg effect (aerobic glycolysis) in MCF7 cancer cells, abruptly cutting off their ability to use their fuel supply, effectively killing these cancer cells. Thus, we believe that the Warburg effect in tumor cells is not the "root cause" of cancer, but rather it may provide the necessary clues to preventing chemo-resistance in cancer cells. Finally, we observed that this drug combination (Tamoxifen + Dasatinib) also had a generalized anti-oxidant effect, on both co-cultured fibroblasts and cancer cells alike, potentially reducing tumor-stroma co-evolution. Our results are consistent with the idea that chemo-resistance may be both a metabolic and stromal phenomenon that can be overcome by targeting mitochondrial function in epithelial cancer cells. Thus, simultaneously targeting both (1) the tumor stroma and (2) the epithelial cancer cells, with combination therapies, may be the most successful approach to anti-cancer therapy. This general strategy of combination therapy for overcoming drug resistance could be applicable to many different types of cancer.  相似文献   

5.
Our laboratory is investigating the basis for the selective recognition of transformed cells by activated mouse macrophages. As targets we are using a panel of SV40-transformed, C3H.OL fibroblast cell lines (SV-COL) that display widely different levels of sensitivity to lysis, from highly sensitive to completely resistant. Our results show that adding conditioned medium from the macrophage-sensitive target SV-COL-E8 (CM(E8] to a cytolysis assay with the macrophage-resistant target SV-COL-F5f causes the macrophages to kill the resistant targets in a contact dependent fashion. We have termed this activity "macrophage cell lysis factor" (MCLF). MCLF activity was not detected in conditioned media from cells not killed by activated macrophages (i.e., 3T3-like cell lines or embryo fibroblasts) but was present in conditioned media from six other SV-COL cell lines at levels that were directly proportional to the sensitivity of those targets (r = 0.98). These data suggest that MCLF plays a key role in determining the lytic sensitivity of SV40-transformed fibroblasts. Finally, to ask whether the production of MCLF is sufficient to explain the selective recognition of SV40-transformed fibroblasts by activated macrophages we have tested whether CM(E8) will cause macrophages to kill normal cells. Our results show that in the presence of CM(E8) macrophages will kill immortalized, 3T3-like fibroblasts but will not kill normal embryo fibroblasts. These results suggest that the production of MCLF, or a similar activity, is necessary but not sufficient for macrophage cytolysis to occur and that a change in target cell phenotype that occurs during the process of immortalization is also required.  相似文献   

6.
Gene therapy is an emerging alternative to conventional anti-HIV-1 drugs, and can potentially control the virus while alleviating major limitations of current approaches. Yet, HIV-1''s ability to rapidly acquire mutations and escape therapy presents a critical challenge to any novel treatment paradigm. Viral escape is thus a key consideration in the design of any gene-based technique. We develop a computational model of HIV''s evolutionary dynamics in vivo in the presence of a genetic therapy to explore the impact of therapy parameters and strategies on the development of resistance. Our model is generic and captures the properties of a broad class of gene-based agents that inhibit early stages of the viral life cycle. We highlight the differences in viral resistance dynamics between gene and standard antiretroviral therapies, and identify key factors that impact long-term viral suppression. In particular, we underscore the importance of mutationally-induced viral fitness losses in cells that are not genetically modified, as these can severely constrain the replication of resistant virus. We also propose and investigate a novel treatment strategy that leverages upon gene therapy''s unique capacity to deliver different genes to distinct cell populations, and we find that such a strategy can dramatically improve efficacy when used judiciously within a certain parametric regime. Finally, we revisit a previously-suggested idea of improving clinical outcomes by boosting the proliferation of the genetically-modified cells, but we find that such an approach has mixed effects on resistance dynamics. Our results provide insights into the short- and long-term effects of gene therapy and the role of its key properties in the evolution of resistance, which can serve as guidelines for the choice and optimization of effective therapeutic agents.  相似文献   

7.
Evidence supporting the current World Health Organization recommendations of early antiretroviral therapy (ART) initiation for adolescents is inconclusive. We leverage a large observational data and compare, in terms of mortality and CD4 cell count, the dynamic treatment initiation rules for human immunodeficiency virus‐infected adolescents. Our approaches extend the marginal structural model for estimating outcome distributions under dynamic treatment regimes, developed in Robins et al. (2008), to allow the causal comparisons of both specific regimes and regimes along a continuum. Furthermore, we propose strategies to address three challenges posed by the complex data set: continuous‐time measurement of the treatment initiation process; sparse measurement of longitudinal outcomes of interest, leading to incomplete data; and censoring due to dropout and death. We derive a weighting strategy for continuous‐time treatment initiation, use imputation to deal with missingness caused by sparse measurements and dropout, and define a composite outcome that incorporates both death and CD4 count as a basis for comparing treatment regimes. Our analysis suggests that immediate ART initiation leads to lower mortality and higher median values of the composite outcome, relative to other initiation rules.  相似文献   

8.
Tumor metastasis induced by drug resistance is a major challenge in successful cancer treatment. Nevertheless, the mechanisms underlying the pro-invasive and metastatic ability of drug resistance remain elusive. Exosome-mediated intercellular communications between cancer cells and stromal cells in tumor microenvironment are required for cancer initiation and progression. Recent reports have shown that communications between cancer cells also promote tumor aggression. However, little attention has been regarded on this aspect. Herein, we demonstrated that drug-resistant cell-derived exosomes promoted the invasion of sensitive breast cancer cells. Quantitative proteomic analysis showed that EphA2 was rich in exosomes from drug-resistant cells. Exosomal EphA2 conferred the invasive/metastatic phenotype transfer from drug-resistant cells to sensitive cells. Moreover, exosomal EphA2 activated ERK1/2 signaling through the ligand Ephrin A1-dependent reverse pathway rather than the forward pathway, thereby promoting breast cancer progression. Our findings indicate the key functional role of exosomal EphA2 in the transmission of aggressive phenotype between cancer cells that do not rely on direct cell–cell contact. Our study also suggests that the increase of EphA2 in drug-resistant cell-derived exosomes may be an important mechanism of chemotherapy/drug resistance-induced breast cancer progression.Subject terms: Breast cancer, Metastasis  相似文献   

9.
We examined whether fibroblasts from subcutaneous, colon or lung tissues of nude mice influence the invasive potential of highly metastatic human colon carcinoma KM12SM cells. Primary cultures of nude mouse fibroblasts from skin, lung and colon were established. Invasive and metastatic KM12SM cells were cultured alone or with fibroblasts. Growth and invasive properties of the KM12SM cells were evaluated as well as their production of gelatinase activity. KM12SM cells were able to grow on monolayers of all three fibroblast cultures but did not invade through skin fibroblasts. The conditioned media of KM12SM cells cocultured with skin, colon or lung fibroblasts were examined for the presence of type IV collagenase (gelatinase). KM12SM growing on plastic and on colon or lung fibroblasts produced significant levels of latent and active forms of 64 kDa type IV collagenase, whereas KM12SM cells cocultivated with nude mouse skin fibroblasts did not. In contrast, human squamous cell carcinoma A431 cells produced significant levels of collagenase type IV when cocultured with nude mouse skin fibroblasts, a tissue they invaded and completely penetrated. Incubation of KM12SM cells in serum-free medium containing recombinant human interferon-beta (fibroblast interferon) was associated with significant reduction in gelatinase activity. Since the production of type IV collagenase by human colon cancer cells is specifically inhibited by mouse skin fibroblasts but not by colon or lung fibroblasts the data suggest that organ-specific fibroblasts can influence the invasive and metastatic properties of KM12SM cells.  相似文献   

10.
11.
During bouts of evolutionary diversification, such as adaptive radiations, the emerging species cluster around different locations in phenotype space. How such multimodal patterns in phenotype space can emerge from a single ancestral species is a fundamental question in biology. Frequency-dependent competition is one potential mechanism for such pattern formation, as has previously been shown in models based on the theory of adaptive dynamics. Here, we demonstrate that also in models similar to those used in quantitative genetics, phenotype distributions can split into multiple modes under the force of frequency-dependent competition. In sexual populations, this requires assortative mating, and we show that the multimodal splitting of initially unimodal distributions occurs over a range of assortment parameters. In addition, assortative mating can be favoured evolutionarily even if it incurs costs, because it provides a means of alleviating the effects of frequency dependence. Our results reveal that models at both ends of the spectrum between essentially monomorphic (adaptive dynamics) and fully polymorphic (quantitative genetics) yield similar results. This underscores that frequency-dependent selection is a strong agent of pattern formation in phenotype distributions, potentially resulting in adaptive speciation.  相似文献   

12.
Drug resistance is a common problem in the fight against infectious diseases. Recent studies have shown conditions (which we call antiR) that select against resistant strains. However, no specific drug administration strategies based on this property exist yet. Here, we mathematically compare growth of resistant versus sensitive strains under different treatments (no drugs, antibiotic, and antiR), and show how a precisely timed combination of treatments may help defeat resistant strains. Our analysis is based on a previously developed model of infection and immunity in which a costly plasmid confers antibiotic resistance. As expected, antibiotic treatment increases the frequency of the resistant strain, while the plasmid cost causes a reduction of resistance in the absence of antibiotic selection. Our analysis suggests that this reduction occurs under competition for limited resources. Based on this model, we estimate treatment schedules that would lead to a complete elimination of both sensitive and resistant strains. In particular, we derive an analytical expression for the rate of resistance loss, and hence for the time necessary to turn a resistant infection into sensitive (tclear). This time depends on the experimentally measurable rates of pathogen division, growth and plasmid loss. Finally, we estimated tclear for a specific case, using available empirical data, and found that resistance may be lost up to 15 times faster under antiR treatment when compared to a no treatment regime. This strategy may be particularly suitable to treat chronic infection. Finally, our analysis suggests that accounting explicitly for a resistance-decaying rate may drastically change predicted outcomes in host-population models.  相似文献   

13.
14.
Previously, we identified a form of epithelial-stromal metabolic coupling, in which cancer cells induce aerobic glycolysis in adjacent stromal fibroblasts, via oxidative stress, driving autophagy and mitophagy. In turn, these cancer-associated fibroblasts provide recycled nutrients to epithelial cancer cells, “fueling” oxidative mitochondrial metabolism and anabolic growth. An additional consequence is that these glycolytic fibroblasts protect cancer cells against apoptosis, by providing a steady nutrient stream to mitochondria in cancer cells. Here, we investigated whether these interactions might be the basis of tamoxifen-resistance in ER(+) breast cancer cells. We show that MCF7 cells alone are Tamoxifen-sensitive, but become resistant when co-cultured with hTERT-immortalized human fibroblasts. Next, we searched for a drug combination (Tamoxifen + Dasatinib) that could over-come fibroblast-induced Tamoxifen-resistance. Importantly, we show that this drug combination acutely induces the Warburg effect (aerobic glycolysis) in MCF7 cancer cells, abruptly cutting off their ability to use their fuel supply, effectively killing these cancer cells. Thus, we believe that the Warburg effect in tumor cells is not the “root cause” of cancer, but rather it may provide the necessary clues to preventing chemoresistance in cancer cells. Finally, we observed that this drug combination (Tamoxifen + Dasatinib) also had a generalized anti-oxidant effect, on both co-cultured fibroblasts and cancer cells alike, potentially reducing tumor-stroma co-evolution. Our results are consistent with the idea that chemo-resistance may be both a metabolic and stromal phenomenon that can be overcome by targeting mitochondrial function in epithelial cancer cells. Thus, simultaneously targeting both (1) the tumor stroma and (2) the epithelial cancer cells, with combination therapies, may be the most successful approach to anti-cancer therapy. This general strategy of combination therapy for overcoming drug resistance could be applicable to many different types of cancer.Key words: drug resistance, tamoxifen, dasatinib, tumor stroma, microenvironment, Warburg effect, aerobic glycolysis, mitochondrial oxidative phosphorylation, glucose uptake, oxidative stress, reactive oxygen species (ROS), cancer-associated fibroblasts  相似文献   

15.
During tissue repair, excess fibroblasts are eliminated by apoptosis. This physiologic process limits fibrosis and restores normal anatomic patterns. Replicating physiologic apoptosis associated with tissue repair, fibroblasts incorporated into type I collagen matrices undergo apoptosis in response to collagen matrix contraction. In this in vitro model of wound repair, fibroblasts first attach to collagen via alpha2beta1 integrin. This provides a survival signal via activation of the phosphatidylinositol 3-kinase/Akt signal pathway. However, during subsequent collagen matrix contraction, the level of phosphorylated Akt progressively declines, triggering apoptosis. The mechanism underlying the fall in phosphorylated Akt is incompletely understood. Here we show that PTEN phosphatase becomes activated during collagen matrix contraction and is responsible for antagonizing phosphatidylinositol 3-kinase activity and promoting a decline in phosphorylated Akt and fibroblast apoptosis in response to collagen contraction. PTEN null fibroblasts displayed enhanced levels of phosphorylated Akt and were resistant to collagen matrix contraction-induced apoptosis. Reconstitution of PTEN in PTEN null cells conferred susceptibility to apoptosis in response to contraction of collagen matrices. Consistent with this, knockdown of PTEN in PTEN(+/+) embryonic fibroblasts by small interfering RNA augmented Akt activity and suppressed apoptosis in contractile collagen matrices. Furthermore, inhibition of Akt activity restored the sensitivity of PTEN null cells to collagen contraction-induced apoptosis, indicating that the mechanism by which PTEN alters fibroblast viability is through modulation of phosphorylated Akt levels. Our work suggests that collagen matrix contraction activates PTEN by a mechanism involving cytoskeletal disassembly. Our studies indicate a key role for PTEN in regulating fibroblast viability during tissue repair.  相似文献   

16.
Human peripheral Wood lymphocytes were depleted of natural killer cells cytotoxic against human fetal fibroblasts by allowing them to attack the fibroblast targets grown on plastic beads followed by gravity sedimentation under conditions in which single cells floated but the attacker cells sedimented with the carrier beads. The attacker cells could be released from the bead-grown targets and shown to be greatly enriched in natural cytotoxic activity. The effector cells depleted by fibroblast adsorption were also depleted of cytotoxic activity against other monolayer targets whereas suspension grown lymphoma and leukemia cells (MOLT-4, RAJI, and K-562) were killed as effectively as by non-depleted effector cells. In competition assays other monolayer cells inhibited the natural cytotoxicity against fetal fibroblasts but the suspension-grown cells were unable to compete. The results suggested that different effector cell populations were probably involved when monolayer vs suspension targets were used in assays for human natural cell-mediated cytotoxicity. The separation was not, however, functionally complete since in competition assays with suspension-grown target cells also monolayer cells were able to compete. Preliminary morphological characterization of the natural killer cells against fetal fibroblasts is also presented.  相似文献   

17.
近年来,真菌耐药发生率呈逐年上升趋势,真菌对氟康唑等氮唑类药物的耐药性最为严重,成为临床抗真菌治疗失败的原因之一.对于耐药真菌的治疗,往往采用加大剂量或联合用药的方法.此外,文献报道了一些植物提取物、小分子化合物能显著增强抗真菌药物对耐药真菌的敏感性,两个药物的协同作用有望成为治疗耐药真菌的新策略.该文结合近几年的研究报道,简要综述了抗真菌药物增效剂的研究进展.  相似文献   

18.
Conventional and targeted chemotherapies remain integral strategies to treat solid tumors. Despite the large number of anti-cancer drugs available, chemotherapy does not completely eradicate disease. Disease recurrence and the growth of drug resistant tumors remain significant problems in anti-cancer treatment. To develop more effective treatment strategies, it is important to understand the underlying cellular and molecular mechanisms of drug resistance. It is generally accepted that cancer cells do not function alone, but evolve through interactions with the surrounding tumor microenvironment. As key cellular components of the tumor microenvironment, fibroblasts regulate the growth and progression of many solid tumors. Emerging studies demonstrate that fibroblasts secrete a multitude of factors that enable cancer cells to become drug resistant. This review will explore how fibroblast secretion of soluble factors act on cancer cells to enhance cancer cell survival and cancer stem cell renewal, contributing to the development of drug resistant cancer.  相似文献   

19.
Propionic acidemia (PA), caused by a deficiency of the mitochondrial biotin dependent enzyme propionyl-CoA carboxylase (PCC) is one of the most frequent organic acidurias in humans. Most PA patients present in the neonatal period with metabolic acidosis and hyperammonemia, developing different neurological symptoms, movement disorders and cardiac complications. There is strong evidence indicating that oxidative damage could be a pathogenic factor in neurodegenerative, mitochondrial and metabolic diseases. Recently, we identified an increase in ROS levels in PA patients-derived fibroblasts. Here, we analyze the capability of seven antioxidants to scavenge ROS production in PA patients’ cells. Tiron, trolox, resveratrol and MitoQ significantly reduced ROS content in patients and controls’ fibroblasts. In addition, changes in the expression of two antioxidant enzymes, superoxide dismutase and glutathione peroxidase, were observed in PA patients-derived fibroblasts after tiron and resveratrol treatment. Our results in PA cellular models establish the proof of concept of the potential of antioxidants as an adjuvant therapy for PA and pave the way for future assessment of antioxidant strategies in the murine model of PA.  相似文献   

20.
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are elucidated as cells that can perpetuate themselves via autorestoration. These cells are highly resistant to current therapeutic approaches and are the main reason for cancer recurrence. Radiotherapy has made a lot of contributions to cancer treatment. However, despite continuous achievements, therapy resistance and tumor recurrence are still prevalent in most patients. This resistance might be partly related to the existence of CSCs. In the present study, recent advances in the investigation of different biological properties of CSCs, such as their origin, markers, characteristics, and targeting have been reviewed. We have also focused our discussion on radioresistance and adaptive responses of CSCs and their related extrinsic and intrinsic influential factors. In summary, we suggest CSCs as the prime therapeutic target for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号