首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background:The WNT-pathway is involved in several cancers, including colorectal cancer (CRC). Many cell signaling components and pathways are controlled by microRNAs. The main purpose of the present study was to investigate the expression of hsa-miR-374, and its two target genes of the Wnt-pathway in CRC clinical samples.Methods:In this study, we predicted the miRNAs targeting key genes of WNT-pathway using bioinformatics algorithms. The expression levels of hsa-miR-374, APC and GSK-3β on 48 pairs of Formalin-Fixed Paraffin-Embedded (FFPE) CRC tumors and marginal-tumors were evaluated using real time-PCR. Additionally, the hsa-miR-374a-5p precursor sequence was amplified by whole-blood DNA as a template. This amplicon was cloned into pEGFP-c1 expression vector and transfected into SW742 cells. Aside from this, MTT assay was performed to evaluate the effect of miR-374 on cell viability. Results:The bioinformatics analysis indicated that hsa-miR-374 binds to the regulatory region the key components of WNT-pathway, including APC and GSK-3β considering the recognition elements and mirSVR scores. Our results revealed significant down-regulation of GSK-3β (0.94 times, p= 0.0098) and APC (0.96 times, p= 0.03) and up-regulation of miR-374 (1.22 times, p= 0.0071) on tumor samples compared with their normal pairs. Meanwhile, the results of the over-expression of miR-374 showed down-regulation of APC and GSK-3β. MTT-assay also indicated that the miR-374 increased cell survival.Conclusion:The results of our study indicated a concomitant change in the expression of miR-374 and its two related target genes, in clinical samples of CRC. Hsa-miR-374 might be as a helpful biomarker or therapeutic target in CRC.Key Words: Colorectal cancer, GSK-3β, miR-374, WNT  相似文献   

2.
IntroductionCurrent serological surveillance markers to monitor colorectal cancer (CRC) or colorectal advanced adenomas (CAA) are hampered by poor sensitivity and specificity. The aim of this study is to identify and validate a panel of plasma microRNAs which change in expression after resection of such lesions.MethodsA prospectively maintained colorectal surgery database was queried for patients in whom both pre- and post-procedural serum samples had been obtained. An initial screening analysis of CRC and CAA patients (5 each) was conducted using screening cards for 380 miRNAs. Four identified miRNAs were combined with a previously described panel of 7 miRNAs that were diagnostically predictive of CRC and CAA. Differential miRNA expression was assessed using quantitative real-time polymerase chain reaction(qRT-PCR).ResultsFifty patients were included (n = 27 CRC, n = 23 CAA). There was no difference in age, gender, or race profile of CRC patients compared to CAA patients. Six miRNA were significantly increased after CRC resection (miR-324, let7b, miR-454, miR-374a, miR-122, miR-19b, all p<0.05), while three miRNAs were significantly increased following CAA resection (miR-454, miR-374a, miR-122, all p<0.05). Three miRNA were increased in common for both (miR-454, miR-374a, miR-122).DiscussionThe expression of miRNAs associated with neoplasia (either CRC or CAA) was significantly increased following surgical resection or endoscopic removal of CRC or CAA. Future studies should focus on the evaluation of these miRNAs in CRC and CAA prognosis.  相似文献   

3.
Acquisition of resistance to docetaxel (Doc) is one of the most important problems in treatment of breast cancer patients, but the underlying mechanisms are still not fully understood. In present study, Doc-resistant MDA-MB-231 and MCF-7 breast cancer cell lines (MDA-MB-231/Doc and MCF-7/Doc) were successfully established in vitro by gradually increasing Doc concentration on the basis of parental MDA-MB-231 and MCF-7 cell lines (MDA-MB-231/S and MCF-7/S). The potential miRNAs relevant to the Doc resistance were screened by miRNA microarray. We selected 5 upregulated miRNAs (has-miR-3646, has-miR-3658, has-miR-4438, has-miR-1246, and has-miR-574-3p) from the results of microarray for RT-qPCR validation. The results showed that expression level of miR-3646 in MDA-MB-231/Doc cells was significantly higher than in MDA-MB-231/S cells. Compared to MCF-7/S cells, miR-3646 expression was up-regulated in MCF-7/Doc cells. Further studies revealed that transfection of miR-3646 mimics into MDA-MB-231/S or MCF-7/S cells remarkably increased their drug resistance, in contrast, transfection of miR-3646 inhibitors into MDA-MB-231/Doc or MCF-7/Doc cells resulted in significant reduction of the drug resistance. By the pathway enrichment analyses for miR-3646, we found that GSK-3β/β-catenin signaling pathway was a significant pathway, in which GSK-3β was an essential member. RT-qPCR and Western blot results demonstrated that miR-3646 could regulate GSK-3β mRNA and protein expressions. Furthermore, a marked increase of both nuclear and cytoplasmic β-catenin expressions (with phosphorylated-β-catenin decrease) was observed in MDA-MB-231/Doc cells compared with MDA-MB-231/S cells, and their expression were positively related to miR-3646 and negatively correlated with GSK-3β. Taken together, our results suggest that miR-3646-mediated Doc resistance of breast cancer cells maybe, at least in part, through suppressing expression of GSK-3β and resultantly activating GSK-3β/β-catenin signaling pathway.  相似文献   

4.
5.
Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide. Recently, nucleolar complex protein 14 (NOP14) has been discovered to play a critical role in cancer development and progression, but the mechanisms of action of NOP14 in colorectal cancer remain to be elucidated. In this study, we used collected colorectal cancer tissues and cultured colorectal cancer cell lines (SW480, HT29, HCT116, DLD1, Lovo), and measured the mRNA and protein expression levels of NOP14 in colorectal cancer cells using qPCR and Western blotting. GFP-NOP14 was constructed and siRNA fragments against NOP14 were synthesized to investigate the importance of NOP14 for the development of colorectal cells. Transwell migration assays were used to measure cell invasion and migration, CCK-8 kits were used to measure cell activity, and flow cytometry was applied to the observation of apoptosis. We found that both the mRNA and protein levels of NOP14 were significantly upregulated in CRC tissues and cell lines. Overexpression of GFP-NOP14 markedly promoted the growth, migration, and invasion of the CRC cells HT19 and SW480, while genetic knockdown of NOP14 inhibited these behaviors. Overexpression of NOP14 promoted the expression of NRIP1 and phosphorylated inactivation of GSK-3β, leading to the upregulation of β-catenin. Genetic knockdown of NOP14 had the opposite effect on NRIP1/GSK-3/β-catenin signals. NOP14 therefore appears to be overexpressed in clinical samples and cell lines of colorectal cancer, and promotes the proliferation, growth, and metastasis of colorectal cancer cells by modulating the NRIP1/GSK-3β/β-catenin signaling pathway.Key words: Colorectal cancer, NOP14, proliferation, migration, invasion  相似文献   

6.
7.
Overexpression or activation of cyclic AMP-response element-binding protein (CREB) has been known to be involved in several human malignancies, including lung cancer. Genes regulated by CREB have been reported to suppress apoptosis, induce cell proliferation, inflammation, and tumor metastasis. However, the critical target genes of CREB in lung cancer have not been well understood. Here, we identified GSK-3α as one of the CREB target genes which is critical for the viability of lung cancer cells. The CREB knockdown significantly reduced the expression of GSK-3α and the direct binding of CREB on the promoter of GSK3A was identified. Kaplan-Meier analysis with a public database showed a prognostic significance of aberrant GSK-3α expression in lung cancer. Inhibition of GSK-3α suppressed cell viability, colony formation, and tumor growth. For the first time, we demonstrated that GSK-3α is regulated by CREB in lung cancer and is required for the cell viability. These findings implicate CREB-GSK-3α axis as a novel therapeutic target for lung cancer treatment.  相似文献   

8.
ObjectiveTo examine the impact of 5-Aza-2ʹ-deoxycytidine (5-AzadC) on methylation status of miR-124a genes in rheumatoid arthritis (RA) associated fibroblast-like synoviocytes (FLS) and its effect on RA-FLS proliferation and TNF-α expression.ResultsAfter 5-AzadC treatment, the expression of miR-124a was significantly increased compared with the control group (1.545 ± 0.189 vs 0.836 ± 0.166, p = 0.001). On the other hand, 5-AzadC significantly reduced IL-1β-mediated cell proliferation by nearly 2.5 fold (p = 0.006). Also, the level of TNF-α secreted from the cells treated with IL-1β plus 5-AzadC was considerably less than that from the cells treated with IL-1β alone (324.99 ± 22.73 ng/L vs 387.91 ± 58.51 ng/L, p = 0.022). After transfection with miR-124a inhibitor in RA-FLS treated with IL-1β plus 5-AzadC, the cell proliferation was increased by 18.2% and the TNF-α expression was increased by 19.0% (p = 0.001 and 0.011, respectively).ConclusionMethylation of miR-124a genes contributed to IL-1β-mediated RA-FLS proliferation and TNF-α expression.  相似文献   

9.
10.
11.
Chronic inflammation is fundamental for the induction of insulin resistance in the muscle tissue of vertebrates. Although several miRNAs are thought to be involved in the development of insulin resistance, the role of miRNAs in the association between inflammation and insulin resistance in muscle tissue is poorly understood. Herein, we investigated the aberrant expression of miRNAs by conducting miRNA microarray analysis of TNF-α-treated mouse C2C12 myotubes. We identified two miRNAs that were upregulated and six that were downregulated by a >1.5-fold change compared to normal cells. Among the findings, qRT-PCR analysis confirmed that miR-494 is consistently upregulated by TNF-α-induced inflammation. Overexpression of miR-494 in CHOIR/IRS1 and C2C12 myoblasts suppressed insulin action by down-regulating phosphorylations of GSK-3α/β, AS160 and p70S6K, downstream of Akt. Moreover, overexpression of miR-494 did not regulate TNF-α-mediated inflammation . Among genes bearing the seed site for miR-494, RT-PCR analysis showed that the expression of Stxbp5, an inhibitor of glucose transport, was downregulated following miR-494 inhibition. In contrast, the expression of PTEN decreased in the cells analyzed, thus showing that both positive and negative regulators of insulin action may be simultaneously controlled by miR-494. To investigate the overall effect of miR-494 on insulin signaling, we performed a PCR array analysis containing 84 genes related to the insulin signaling pathway, and we observed that 25% of genes were downregulated (P<0.05) and 11% were upregulated (P<0.05). These results confirm that miR-494 might contribute to insulin sensitivity by positive and negative regulation of the expression of diverse genes. Of note, PCR array data showed downregulation of Slc2A4, a coding gene for Glut4. Altogether, the present study concludes that the upregulation of miR-494 expression by TNF-α-mediated inflammation exacerbates insulin resistance. Therefore, we suggest that miR-494 could prove an important target for the diagnosis and therapy of inflammation-mediated insulin resistance in muscle.  相似文献   

12.
13.
Expression of endoplasmic reticulum (ER) stress-associated genes is often dysregulated in cancer progression. ER protein 29 (ERp29) is abnormally expressed in many neoplasms and plays an important role in tumorigenesis. Here, we showed ERp29 is a novel target for microRNA-135a-5p (miR-135a-5p) to inhibit the progression of colorectal cancer (CRC); correspondingly, ERp29 acts as an oncoprotein in CRC by promoting proliferation and metastasis of CRC cells, and suppressing apoptosis of the cells. More importantly, we found that miR-135a-5p expression is reversely upregulated by ERp29 through suppressing IL-1β-elicited methylation of miR-135a-5p promoter region, a process for enterocyte to maintain a balance between miR-135a-5p and ERp29 but dysregulated in CRC. Our study reveals a novel feedback regulation loop between miR-135a-5p and ERp29 that is critical for maintaining appropriate level of each of them, but partially imbalanced in CRC, resulting in abnormal expression of miR-135a-5p and ERp29, which further accelerates CRC progression. We provide supporting evidence for ERp29 and miR-135a-5p as potential biomarkers for diagnosis and treatment of CRC.Subject terms: Cell death, Oncogenes  相似文献   

14.
15.
IntroductionSeveral studies have shown that osteoarthritis (OA) is strongly associated with metabolism-related disorders, highlighting OA as the fifth component of the metabolic syndrome (MetS). On the basis of our previous findings on dysregulation of cholesterol homeostasis in OA, we were prompted to investigate whether microRNA-33a (miR-33a), one of the master regulators of cholesterol and fatty acid metabolism, plays a key role in OA pathogenesis.MethodsArticular cartilage samples were obtained from 14 patients with primary OA undergoing total knee replacement surgery. Normal cartilage was obtained from nine individuals undergoing fracture repair surgery. Bioinformatics analysis was used to identify miR-33a target genes. miR-33a and sterol regulatory element-binding protein 2 (SREBP-2) expression levels were investigated using real-time PCR, and their expression was also assessed after treatment with transforming growth factor-β1 (TGF-β1) in cultured chondrocytes. Akt phosphorylation after treatment with both TGF-β1 and miR-33a inhibitor or TGF-β1 and miR-33a mimic was assessed by Western blot analysis. Furthermore, we evaluated the effect of miR-33a mimic and miR-33a inhibitor on Smad7, a negative regulator of TGF-β signaling, on cholesterol efflux-related genes, ATP-binding cassette transporter A1 (ABCA1), apolipoprotein A1 (ApoA1) and liver X receptors (LXRα and LXRβ), as well as on matrix metalloproteinase-13 (MMP-13), using real-time PCR.ResultsWe found that the expression of miR-33a and its host gene SREBP-2 was significantly elevated in OA chondrocytes compared with normal chondrocytes. Treatment of cultured chondrocytes with TGF-β1 resulted in increased expression of both miR-33a and SREBP-2, as well as in rapid induction of Akt phosphorylation, whereas TGF-β-induced Akt phosphorylation was enhanced by miR-33a and suppressed by inhibition of miR-33a, as a possible consequence of Smad7 regulation by miR-33a. Moreover, treatment of normal chondrocytes with miR-33a resulted in significantly reduced ABCA1 and ApoA1 mRNA expression levels and significantly elevated MMP-13 expression levels, promoting the OA phenotype, whereas miR-33a’s suppressive effect was reversed using its inhibitor.ConclusionsOur findings suggest, for the first time to our knowledge, that miR-33a regulates cholesterol synthesis through the TGF-β1/Akt/SREBP-2 pathway, as well as cholesterol efflux-related genes ABCA1 and ApoA1, in OA chondrocytes, pointing to its identification as a novel target for ameliorating the OA phenotype.  相似文献   

16.
Objectives:To explore the role and mechanism of miR-125a-3p in rheumatoid arthritis (RA) progression.Methods:The RA-tissues and fibroblast-like synovial cells in rheumatoid arthritis (RA-FLS) were used in this study. qRT-PCR, western blot and ELISA assay were performed to detect the expression levels of IL-6, IL-β and ΤΝF-α. Dual-luciferase reporter gene assay was used to observe the binding effect of miR-125a-3p and MAST3, and CCK-8 was used to observe the effect of miR-125a-3p on the proliferation of RA-FLS.Results:miR-125a-3p was significantly downregulated in the RA-tissues and RA-FLS, and miR-125a-3p could inhibit the proliferation and reduce the inflammation response of RA-FLS. Besides, MAST3 was found as a target of miR-125a-3p, and increased MAST3 could reverse the effects of miR-125a-3p on RA-FLS including decreased proliferation, reduced inflammation level and the inactivation of Wnt/β-catenin and NF-κB pathways.Conclusions:This study suggests that miR-125a-3p could inactivate the Wnt/β-catenin and NF-κB pathways to reduce the proliferation and inflammation response of RA-FLS via targeting MAST3.  相似文献   

17.
While TRAIL is a promising anticancer agent due to its ability to selectively induce apoptosis in neoplastic cells, many tumors, including pancreatic ductal adenocarcinoma (PDA), display intrinsic resistance, highlighting the need for TRAIL-sensitizing agents. Here we report that TRAIL-induced apoptosis in PDA cell lines is enhanced by pharmacological inhibition of glycogen synthase kinase-3 (GSK-3) or by shRNA-mediated depletion of either GSK-3α or GSK-3β. In contrast, depletion of GSK-3β, but not GSK-3α, sensitized PDA cell lines to TNFα-induced cell death. Further experiments demonstrated that TNFα-stimulated IκBα phosphorylation and degradation as well as p65 nuclear translocation were normal in GSK-3β-deficient MEFs. Nonetheless, inhibition of GSK-3β function in MEFs or PDA cell lines impaired the expression of the NF-κB target genes Bcl-xL and cIAP2, but not IκBα. Significantly, the expression of Bcl-xL and cIAP2 could be reestablished by expression of GSK-3β targeted to the nucleus but not GSK-3β targeted to the cytoplasm, suggesting that GSK-3β regulates NF-κB function within the nucleus. Consistent with this notion, chromatin immunoprecipitation demonstrated that GSK-3 inhibition resulted in either decreased p65 binding to the promoter of BIR3, which encodes cIAP2, or increased p50 binding as well as recruitment of SIRT1 and HDAC3 to the promoter of BCL2L1, which encodes Bcl-xL. Importantly, depletion of Bcl-xL but not cIAP2, mimicked the sensitizing effect of GSK-3 inhibition on TRAIL-induced apoptosis, whereas Bcl-xL overexpression ameliorated the sensitization by GSK-3 inhibition. These results not only suggest that GSK-3β overexpression and nuclear localization contribute to TNFα and TRAIL resistance via anti-apoptotic NF-κB genes such as Bcl-xL, but also provide a rationale for further exploration of GSK-3 inhibitors combined with TRAIL for the treatment of PDA.  相似文献   

18.
Glycogen Synthase Kinase 3 (GSK-3) is a key player in development, physiology and disease. Because of this, GSK-3 inhibitors are increasingly being explored for a variety of applications. In addition most analyses focus on GSK-3β and overlook the closely related protein GSK-3α. Here, we describe novel GSK-3α and GSK-3β mouse alleles that allow us to visualise expression of their respective mRNAs by tracking β-galactosidase activity. We used these new lacZ alleles to compare expression in the palate and cranial sutures and found that there was indeed differential expression. Furthermore, both are loss of function alleles and can be used to generate homozygous mutant mice; in addition, excision of the lacZ cassette from GSK-3α creates a Cre-dependent tissue-specific knockout. As expected, GSK3α mutants were viable, while GSK3β mutants died after birth with a complete cleft palate. We also assessed the GSK-3α mutants for cranial and sternal phenotypes and found that they were essentially normal. Finally, we observed gestational lethality in compound GSK-3β−/−; GSK3α+/− mutants, suggesting that GSK-3 dosage is critical during embryonic development.  相似文献   

19.
C-X-C motif chemokine receptor 7 (CXCR7) is a newly discovered atypical chemokine receptor that binds to C-X-C motif chemokine ligand 12 (CXCL12) with higher affinity than CXCR4 and is associated with the metastasis of colorectal cancer (CRC). Cancer-associated fibroblasts (CAFs) have been known to promote tumor progression. However, whether CAFs are involved in CXCR7-mediated metastasis of CRC remains elusive. We found a significant positive correlation between CXCR7 expression and CAF activation markers in colonic tissues from clinical specimens and in villin-CXCR7 transgenic mice. RNA sequencing revealed a coordinated increase in the levels of miR-146a-5p and miR-155-5p in CXCR7-overexpressing CRC cells and their exosomes. Importantly, these CRC cell-derived miR-146a-5p and miR-155-5p could be uptaken by CAFs via exosomes and promote the activation of CAFs through JAK2–STAT3/NF-κB signaling by targeting suppressor of cytokine signaling 1 (SOCS1) and zinc finger and BTB domain containing 2 (ZBTB2). Reciprocally, activated CAFs further potently enhanced the invasive capacity of CRC cells. Mechanistically, CAFs transfected with miR-146a-5p and miR-155-5p exhibited a robust increase in the levels of inflammatory cytokines interleukin-6, tumor necrosis factor-α, transforming growth factor-β, and CXCL12, which trigger the epithelial–mesenchymal transition and pro-metastatic switch of CRC cells. More importantly, the activation of CAFs by miR-146a-5p and miR-155-5p facilitated tumor formation and lung metastasis of CRC in vivo using tumor xenograft models. Our work provides novel insights into CXCR7-mediated CRC metastasis from tumor–stroma interaction and serum exosomal miR-146a-5p and miR-155-5p could serve as potential biomarkers and therapeutic targets for inhibiting CRC metastasis.Subject terms: Cancer microenvironment, Colon cancer  相似文献   

20.
Circular RNAs have been reported to play essential roles in the tumorigenesis and progression of various cancers. However, the biological processes and mechanisms involved in hepatocellular carcinoma (HCC) remain unclear. Initial RNA-sequencing data and qRT-PCR results in our cohort showed that hsa_circ_0072309 (also called circLIFR) was markedly downregulated in HCC tissues. Kaplan–Meier analysis indicated that higher levels of circLIFR in HCC patients correlated with favorable overall survival and recurrence-free survival rates. Both in vitro and in vivo experiments indicated that circLIFR inhibited the proliferation and invasion abilities of HCC cells. We therefore conducted related experiments to explore the mechanism of circLIFR in HCC. Fluorescence in situ hybridization results revealed that circLIFR was mainly located in the cytoplasm, and RNA immunoprecipitation assays indicated that circLIFR was significantly enriched by Ago2 protein. These results suggested that circLIFR may function as a sponge of miRNAs to regulate HCC progression. We further conducted bioinformatics prediction as well as dual-luciferase reporter assays, and the results of which showed that circLIFR could sponge miR-624-5p to stabilize glycogen synthase kinase 3β (GSK-3β) expression. Loss and gain of function experiments demonstrated that regulation of the expression of miR-624-5p or GSK-3β markedly affected HCC progression induced by circLIFR. Importantly, we also proved that circLIFR could facilitate the degradation of β-catenin and prevent its translocation to the nucleus in HCC cells. Overall, our study demonstrated that circLIFR acts as a tumor suppressor in HCC by regulating miR-624-5p and inactivating the GSK-3β/β-catenin signaling pathway.Subject terms: Oncogenes, Liver cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号