首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrajt L  Longini IM 《PloS one》2010,5(11):e13767

Background

Pandemic influenza A(H1N1) 2009 began spreading around the globe in April of 2009 and vaccination started in October of 2009. In most countries, by the time vaccination started, the second wave of pandemic H1N1 2009 was already under way. With limited supplies of vaccine, we are left to question whether it may be a good strategy to vaccinate the high-transmission groups earlier in the epidemic, but it might be a better use of resources to protect instead the high-risk groups later in the epidemic. To answer this question, we develop a deterministic epidemic model with two age-groups (children and adults) and further subdivide each age group in low and high risk.

Methods and Findings

We compare optimal vaccination strategies started at various points in time in two different settings: a population in a developed country where children account for 24% of the population, and a population in a less developed country where children make up the majority of the population, 55%. For each of these populations, we minimize mortality or hospitalizations and we find an optimal vaccination strategy that gives the best vaccine allocation given a starting vaccination time and vaccine coverage level. We find that population structure is an important factor in determining the optimal vaccine distribution. Moreover, the optimal policy is dynamic as there is a switch in the optimal vaccination strategy at some time point just before the peak of the epidemic. For instance, with 25% vaccine coverage, it is better to protect the high-transmission groups before this point, but it is optimal to protect the most vulnerable groups afterward.

Conclusions

Choosing the optimal strategy before or early in the epidemic makes an important difference in minimizing the number of influenza infections, and consequently the number of influenza deaths or hospitalizations, but the optimal strategy makes little difference after the peak.  相似文献   

2.
We analyze the effectiveness of the first six months of vaccination campaign against SARS-CoV-2 in Italy by using a computational epidemic model which takes into account demographic, mobility, vaccines data, as well as estimates of the introduction and spreading of the more transmissible Alpha variant. We consider six sub-national regions and study the effect of vaccines in terms of number of averted deaths, infections, and reduction in the Infection Fatality Rate (IFR) with respect to counterfactual scenarios with the actual non-pharmaceuticals interventions but no vaccine administration. Furthermore, we compare the effectiveness in counterfactual scenarios with different vaccines allocation strategies and vaccination rates. Our results show that, as of 2021/07/05, vaccines averted 29, 350 (IQR: [16, 454–42, 826]) deaths and 4, 256, 332 (IQR: [1, 675, 564–6, 980, 070]) infections and a new pandemic wave in the country. During the same period, they achieved a −22.2% (IQR: [−31.4%; −13.9%]) IFR reduction. We show that a campaign that would have strictly prioritized age groups at higher risk of dying from COVID-19, besides frontline workers and the fragile population, would have implied additional benefits both in terms of avoided fatalities and reduction in the IFR. Strategies targeting the most active age groups would have prevented a higher number of infections but would have been associated with more deaths. Finally, we study the effects of different vaccination intake scenarios by rescaling the number of available doses in the time period under study to those administered in other countries of reference. The modeling framework can be applied to other countries to provide a mechanistic characterization of vaccination campaigns worldwide.  相似文献   

3.

Background

Herpes Simplex Virus Type 2 (HSV-2) is one of the most common sexually transmitted diseases. Although there is still no licensed vaccine for HSV-2, a theoretical investigation of the potential effects of a vaccine is considered important and has recently been conducted by several researchers. Although compartmental mathematical models were considered for each special case in the previous studies, as yet there are few global stability results.

Results

In this paper, we formulate a multi-group SVIRI epidemic model for HSV-2, which enables us to consider the effects of vaccination, of waning vaccine immunity, and of infection relapse. Since the number of groups is arbitrary, our model can be applied to various structures such as risk, sex, and age group structures. For our model, we define the basic reproduction number ?0 and prove that if ?0≤1, then the disease-free equilibrium is globally asymptotically stable, whereas if ?0>1, then the endemic equilibrium is so. Based on this global stability result, we estimate ?0 for HSV-2 by applying our model to the risk group structure and using US data from 2001 to 2014. Through sensitivity analysis, we find that ?0 is approximately in the range of 2-3. Moreover, using the estimated parameters, we discuss the optimal vaccination strategy for the eradication of HSV-2.

Conclusions

Through discussion of the optimal vaccination strategy, we come to the following conclusions. (1) Improving vaccine efficacy is more effective than increasing the number of vaccines. (2) Although the transmission risk in female individuals is higher than that in male individuals, distributing the available vaccines almost equally between female and male individuals is more effective than concentrating them within the female population.
  相似文献   

4.
Pneumococcal conjugate vaccination has proved highly effective in eliminating vaccine-type pneumococcal carriage and disease. However, the potential adverse effects of serotype replacement remain a major concern when implementing routine childhood pneumococcal conjugate vaccination programmes. Applying a concise predictive model, we present a ready-to-use quantitative tool to investigate the implications of serotype replacement on the net effectiveness of vaccination against invasive pneumococcal disease (IPD) and to guide in the selection of optimal vaccine serotype compositions. We utilise pre-vaccination data on pneumococcal carriage and IPD and assume partial or complete elimination of vaccine-type carriage, its replacement by non-vaccine-type carriage, and stable case-to-carrier ratios (probability of IPD per carriage episode). The model predicts that the post-vaccination IPD incidences in Finland for currently available vaccine serotype compositions can eventually decrease among the target age group of children <5 years of age by 75%. However, due to replacement through herd effects, the decrease among the older population is predicted to be much less (20–40%). We introduce a sequential algorithm for the search of optimal serotype compositions and assess the robustness of inferences to uncertainties in data and assumptions about carriage and IPD. The optimal serotype composition depends on the age group of interest and some serotypes may be highly beneficial vaccine types in one age category (e.g. 6B in children), while being disadvantageous in another. The net effectiveness will be improved only if the added serotype has a higher case-to-carrier ratio than the average case-to-carrier ratio of the current non-vaccine types and the degree of improvement in effectiveness depends on the carriage incidence of the serotype. The serotype compositions of currently available pneumococcal vaccines are not optimal and the effectiveness of vaccination in the population at large could be improved by including new serotypes in the vaccine (e.g. 22 and 9N).  相似文献   

5.
We evaluate the efficiency of various heuristic strategies for allocating vaccines against COVID-19 and compare them to strategies found using optimal control theory. Our approach is based on a mathematical model which tracks the spread of disease among different age groups and across different geographical regions, and we introduce a method to combine age-specific contact data to geographical movement data. As a case study, we model the epidemic in the population of mainland Finland utilizing mobility data from a major telecom operator. Our approach allows to determine which geographical regions and age groups should be targeted first in order to minimize the number of deaths. In the scenarios that we test, we find that distributing vaccines demographically and in an age-descending order is not optimal for minimizing deaths and the burden of disease. Instead, more lives could be saved by using strategies which emphasize high-incidence regions and distribute vaccines in parallel to multiple age groups. The level of emphasis that high-incidence regions should be given depends on the overall transmission rate in the population. This observation highlights the importance of updating the vaccination strategy when the effective reproduction number changes due to the general contact patterns changing and new virus variants entering.  相似文献   

6.
For vaccine-preventable infections, immunization generally needs to be supplemented by palliative care of individuals missed by the vaccination. Costs and availability of vaccine doses and palliative care vary by disease and by region. In many situations, resources for delivery of palliative care are independent of resources required for vaccination; however we also need to consider the conservative scenario where there is some trade-off between efforts, which is of potential relevance for resource-poor settings. We formulate an SEIR model that includes those two control strategies - vaccination and palliative care. We consider their relative merit and optimal allocation in the context of a highly efficacious vaccine, and under the assumption that palliative care may reduce transmission. We investigate the utility of a range of mixed or pure strategies that can be implemented after an epidemic has started, and look for rule-of-thumb principles of how best to reduce the burden of disease during an acute outbreak over a spectrum of vaccine-preventable infections. Intuitively, we expect the best strategy to initially focus on vaccination, and enhanced palliative care after the infection has peaked, but a number of plausible realistic constraints for control result in important qualifications on the intervention strategy. The time in the epidemic when one should switch strategy depends sensitively on the relative cost of vaccine to palliative care, the available budget, and [Formula: see text]. Crucially, outbreak response vaccination may be more effective in managing low-[Formula: see text] diseases, while high [Formula: see text] scenarios enhance the importance of routine vaccination and case management.  相似文献   

7.
The Coronavirus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2), has impacted human lives in the most profound ways with millions of infections and deaths. Scientists and pharmaceutical companies have been in race to produce vaccines against SARS-CoV-2. Vaccine generation usually demands years of developing and testing for efficacy and safety. However, it only took less than one year to generate two mRNA vaccines from their development to deployment. The rapid production time, cost-effectiveness, versatility in vaccine design, and clinically proven ability to induce cellular and humoral immune response have crowned mRNA vaccines with spotlights as most promising vaccine candidates in the fight against the pandemic. In this review, we discuss the general principles of mRNA vaccine design and working mechanisms of the vaccines, and provide an up-to-date summary of pre-clinical and clinical trials on seven anti-COVID-19 mRNA candidate vaccines, with the focus on the two mRNA vaccines already licensed for vaccination. In addition, we highlight the key strategies in designing mRNA vaccines to maximize the expression of immunogens and avoid intrinsic innate immune response. We also provide some perspective for future vaccine development against COVID-19 and other pathogens.  相似文献   

8.
A live attenuated influenza vaccine has been available in Germany since the influenza season 2012/13, which is approved for children aged 2-17 years. Using data from our laboratory-based surveillance system, we described the circulation of influenza and non-influenza respiratory viruses during the influenza season 2012/13 in Saxony-Anhalt. We estimated the effectiveness of live and inactivated trivalent influenza vaccines in preventing laboratory-confirmed cases among children and adolescents. From week 40/2012 to 19/2013, sentinel paediatricians systematically swabbed acute respiratory illness patients for testing of influenza and 5 non-influenza viruses by PCR. We compared influenza cases and influenza-negative controls. Among children aged 2-17 years, we calculated overall and vaccine type-specific effectiveness against laboratory-confirmed influenza, stratified by age group (2-6; 7-17 years). We used multivariable logistic regression to adjust estimates for age group, sex and month of illness. Out of 1,307 specimens, 647 (35%) were positive for influenza viruses and 189 (15%) for at least one of the tested non-influenza viruses. For vaccine effectiveness estimation, we included 834 patients (mean age 7.3 years, 53% males) in our analysis. Of 347 (42%) influenza-positive specimens, 61 (18%) were positive for A(H1N1)pdm09, 112 (32%) for A(H3N2) and 174 (50%) for influenza B virus. The adjusted overall vaccine effectiveness including both age groups was 38% (95% CI: 0.8-61%). The adjusted effectiveness for inactivated vaccines was 37% (95% CI: -35-70%) and for live vaccines 84% (95% CI: 45-95%). Effectiveness for the live vaccine was higher in 2-6 year-old children (90%, 95% CI: 20-99%) than in children aged 7-17 years (74%, 95% CI: -32-95%). Our study of the strong influenza season in 2012/13 suggests a high preventive effect of live attenuated influenza vaccine especially among young children, which could not be reached by inactivated vaccines. We recommend the use of live attenuated influenza vaccines in children unless there are contraindications.  相似文献   

9.
The COVID-19 outbreak has highlighted our vulnerability to novel infections.Faced with this threat and no effective treatment, in line with many other countries, the UK adopted enforced social distancing (lockdown) to reduce transmission—successfully reducing the reproductive number R below one. However, given the large pool of susceptible individuals that remain, complete relaxation of controls is likely to generate a substantial further outbreak. Vaccination remains the only foreseeable means of both containing the infection and returning to normal interactions and behaviour. Here, we consider the optimal targeting of vaccination within the UK, with the aim of minimising future deaths or quality adjusted life year (QALY) losses. We show that, for a range of assumptions on the action and efficacy of the vaccine, targeting older age groups first is optimal and may be sufficient to stem the epidemic if the vaccine prevents transmission as well as disease.  相似文献   

10.
In developing countries, every year about 70 million measles cases occur with 1.5 million deaths, over 200,000 children contract paralytic poliomyelitis, 50 million people get infected with viral B hepatitis causing over 1 million deaths, and several thousand people perish because of yellow fever according to WHO data. At the present time, there are 12 vaccines against viruses: vaccines against German measles and mumps in addition to the above. The universal immunization program (UIP) of WHO targets measles and polio. In 1989, a WHO resolution envisioned a 90% immunization coverage by the year 2000. Measles vaccination is recommended for children aged 9-23 months, since most children have maternal antibodies during the first 3-13 months of age. The Edmonston-Zagreb vaccine provided seroconversion of 92, 96, and 98% for 18 months vs. the 66, 76, and 91% rate of the Schwarz vaccine. In the US, measles incidence increased from 1497 cases in 1983 to 6382 cases in 1988 to over 14,000 cases in 1989, prompting second vaccination in children of school age. The highest incidence of polio was registered in Southeast Asia, although it declined from 1 case/100,000 population in 1975 to .5/100,000 in 1988. Oral poliomyelitis vaccine (OPV) provides protection: there is only 1 case/2.5 million vaccinations. Hepatitis B has infected over 2 billion people. About 300 million are carriers, with a prevalence of 20% in African, Asian, and Pacific region populations. Plasmatic and bioengineered recombinant vaccine type have been used in 30 million people. The first dose is given postnatally, the second at 1-2 months of age, and the 3rd at 1 year of age. Yellow fever vaccine was 50 years old in 1988, yet during 1986-1988 there were 5395 cases with 3172 deaths in Africa and South America. Vaccination provides 90-95% seroconversion, and periodic follow-up vaccinations under UIP could eradicate these infections and their etiologic agents.  相似文献   

11.
Scientific data is presented and problems of influenza prophylaxis in various age groups are discussed. Influenza prophylaxis in neonates is possible by inducing maternal antibodies, this dictates the necessity of influenza vaccination in pregnancy. Problems of influenza prophylaxis are most pressing in the group of children from 6 months to 2 years of age. More effective vaccines that do not cause adverse reactions are necessary for the children of this age group. Influenza prophylaxis in healthy working adults is most important for reducing economical impact during influenza epidemics. Influenza prophylaxis in the elderly is reasonable by using novel and more effective vaccines with adjuvants. The optimal method for influenza prophylaxis in the population in general is mass vaccination of children (80%), when, besides the induction of protection in children, influenza morbidity may decrease up to 80% in the other age groups of unvaccinated population.  相似文献   

12.
To date, vaccination is the most cost-effective strategy to combat infectious diseases. Recently, a productivity gap affects the pharmaceutical industry. The productivity gap describes the situation whereby the invested resources within an industry do not match the expected product turn-over. While risk profiles (combining research and development timelines and transition rates) have been published for new chemical entities (NCE), little is documented on vaccine development. The objective is to calculate risk profiles for vaccines targeting human infectious diseases. A database was actively compiled to include all vaccine projects in development from 1998 to 2009 in the pre-clinical development phase, clinical trials phase I, II and III up to Market Registration. The average vaccine, taken from the preclinical phase, requires a development timeline of 10.71 years and has a market entry probability of 6%. Stratification by disease area reveals pandemic influenza vaccine targets as lucrative. Furthermore, vaccines targeting acute infectious diseases and prophylactic vaccines have shown to have a lower risk profile when compared to vaccines targeting chronic infections and therapeutic applications. In conclusion; these statistics apply to vaccines targeting human infectious diseases. Vaccines targeting cancer, allergy and autoimmune diseases require further analysis. Additionally, this paper does not address orphan vaccines targeting unmet medical needs, whether projects are in-licensed or self-originated and firm size and experience. Therefore, it remains to be investigated how these - and other - variables influence the vaccine risk profile. Although we find huge differences between the risk profiles for vaccine and NCE; vaccines outperform NCE when it comes to development timelines.  相似文献   

13.
BackgroundChina accounted for 87% (9.8 million/11.3 million) of all hand, foot, and mouth disease (HFMD) cases reported to WHO during 2010–2014. Enterovirus 71 (EV71) is responsible for most of the severe HFMD cases. Three EV71 vaccines recently demonstrated good efficacy in children aged 6–71 mo. Here we assessed the cost-effectiveness of routine pediatric EV71 vaccination in China.ConclusionsCompared to no vaccination, routine pediatric EV71 vaccination would be very cost-effective in China if the cost of immunization (including all logistical, procurement, and administration costs needed to confer 5 y of vaccine protection) is below US$12.0–US$18.3, depending on the choice of vaccine among the three candidates. Given that the annual number of births in China has been around 16 million in recent years, the annual costs for routine pediatric EV71 vaccination at this cost range should not exceed US$192–US$293 million. Our results can be used to determine the optimal vaccine when the prices of the three vaccines are known.  相似文献   

14.
For the control of COVID-19, vaccination programmes provide a long-term solution. The amount of available vaccines is often limited, and thus it is crucial to determine the allocation strategy. While mathematical modelling approaches have been used to find an optimal distribution of vaccines, there is an excessively large number of possible allocation schemes to be simulated. Here, we propose an algorithm to find a near-optimal allocation scheme given an intervention objective such as minimization of new infections, hospitalizations, or deaths, where multiple vaccines are available. The proposed principle for allocating vaccines is to target subgroups with the largest reduction in the outcome of interest. We use an approximation method to reconstruct the age-specific transmission intensity (the next generation matrix), and express the expected impact of vaccinating each subgroup in terms of the observed incidence of infection and force of infection. The proposed approach is firstly evaluated with a simulated epidemic and then applied to the epidemiological data on COVID-19 in the Netherlands. Our results reveal how the optimal allocation depends on the objective of infection control. In the case of COVID-19, if we wish to minimize deaths, the optimal allocation strategy is not efficient for minimizing other outcomes, such as infections. In simulated epidemics, an allocation strategy optimized for an outcome outperforms other strategies such as the allocation from young to old, from old to young, and at random. Our simulations clarify that the current policy in the Netherlands (i.e., allocation from old to young) was concordant with the allocation scheme that minimizes deaths. The proposed method provides an optimal allocation scheme, given routine surveillance data that reflect ongoing transmissions. This approach to allocation is useful for providing plausible simulation scenarios for complex models, which give a more robust basis to determine intervention strategies.  相似文献   

15.

Background

Although vaccination of infants against Haemophilus influenzae type b (Hib) invasive infections is effective and has been routinely available in Canada since 1992, cases of the disease continue to occur. We were interested in determining whether recent cases of Hib infection reflected progressive loss of protection with time since vaccination, increasing nonacceptance of vaccination or a deleterious effect of coadministration of recently introduced vaccines such as those for pneumococcal and meningococcal conjugates and hepatitis B. We report on the causes of Hib infections among vaccinated and unvaccinated children between 2001 and 2003 in Canada.

Methods

Through our established network of 12 pediatric tertiary care hospitals we actively searched for cases in each centre by reviewing daily admissions and laboratory reports, visiting the wards and checking discharge diagnosis codes. Culture-confirmed cases were summarized by nurse monitors using a standardized reporting system.

Results

We identified 29 cases during the 3 years: 16 in 2001, 10 in 2002 and 3 in 2003. Half of the 29 patients had meningitis. Hib infection was more common among children less than 6 months of age (11 cases) and in boys (20 cases). Two deaths occurred (7% case-fatality ratio). A total of 20 children had received no or incomplete primary vaccination because of parental refusal (7 cases), because they were too young to have completed the primary series (11 cases, including 1 in which parental refusal was also a factor) or because of delays in completing the primary series (2 cases); the vaccination history was uncertain in the remaining case. Infection despite primary vaccination occurred in 9 children: 2 previously healthy children and 7 who were immunocompromised or who had a predisposing condition. None of the cases identified in 2003 involved children who had received any of the newly introduced vaccines.

Interpretation

Invasive Hib infections remain rare in Canada, with most cases occurring in children too young to have completed the primary series. Protection after vaccination appears to extend into later childhood and does not appear to be diminished by coadministration of newer infant vaccines.Until recently Haemophilus influenzae type b (Hib) was a leading cause of meningitis, epiglottitis and other invasive infections in children, affecting about 1 child in 250 by 5 years of age.1 The risk of infection was highest among children 6–24 months of age. Antibodies directed against the Hib capsular polysaccharide (polyribosyl ribitol phosphate, PRP) form the basis of protection. PRP protein conjugate vaccines that elicit anti-PRP responses in young infants have been used in Canada since 1992. Doses are recommended at 2, 4 and 6 months of age to establish protection and at 18 months to reinforce it. Since 1995 all provinces have used the same Hib vaccine (a PRP–tetanus protein conjugate [PRP-T], produced by Aventis Pasteur), in combination products based on whole-cell pertussis vaccines (from 1995 to 1997) or acellular pertussis vaccines (1998 to the present).Invasive Hib infections have been monitored since 1992 by a network of Canadian pediatric hospitals known as the Immunization Monitoring Program, Active (IMPACT).2 In 1985, before the first Hib vaccine was licensed, 485 invasive Hib cases were seen at 10 centres (those participating in IMPACT when the “look-back” was done).3 Case totals fell progressively as better vaccines became available.3,4,5 In 2000, only 4 cases were recorded by the IMPACT centres (which by then numbered 12), 99% fewer than in 1985.6 Continuing surveillance is important to assess the effectiveness of the current schedule and vaccine. Because Hib vaccination is relatively new, the question of duration of protection remains open. Resurgence of Hib disease occurred recently in the United Kingdom,7 prompting addition of a booster dose to the vaccination schedule (as in Canada). Other questions of relevance are whether nonacceptance of Hib vaccine is influencing case totals and whether coadministration of newer vaccines, such as those for pneumococcal and meningococcal group C conjugates and hepatitis B, is adversely affecting Hib responses. A reduced response is most likely to occur when infants are given conjugate vaccines containing the same carrier protein,8 which is not the case with PRP-T and pneumococcal conjugate vaccines; however, their compatibility has not been formally demonstrated to date. In this report we present details of cases encountered by IMPACT in the period 2001 to 2003.  相似文献   

16.
BackgroundA global stockpile of oral cholera vaccine (OCV) was established in 2013 for use in outbreak response and are licensed as two-dose regimens. Vaccine availability, however, remains limited. Previous studies have found that a single dose of OCV may provide substantial protection against cholera.MethodsUsing a mathematical model with two age groups paired with optimization algorithms, we determine the optimal vaccination strategy with one and two doses of vaccine to minimize cumulative overall infections, symptomatic infections, and deaths. We explore counterfactual vaccination scenarios in three distinct settings: Maela, the largest refugee camp in Thailand, with high in- and out-migration; N’Djamena, Chad, a densely populated region; and Haiti, where departments are connected by rivers and roads.ResultsOver the short term under limited vaccine supply, the optimal strategies for all objectives prioritize one dose to the older age group (over five years old), irrespective of setting and level of vaccination coverage. As more vaccine becomes available, it is optimal to administer a second dose for long-term protection. With enough vaccine to cover the whole population with one dose, the optimal strategies can avert up to 30% to 90% of deaths and 36% to 92% of symptomatic infections across the three settings over one year. The one-dose optimal strategies can avert 1.2 to 1.8 times as many cases and deaths compared to the standard two-dose strategy.ConclusionsIn an outbreak setting, speedy vaccination campaigns with a single dose of OCV is likely to avert more cases and deaths than a two-dose pro-rata campaign under a limited vaccine supply.  相似文献   

17.
Viruses contained in live-attenuated virus vaccines (LAVV) can be transmitted between individuals, resulting in secondary or contact vaccinations. This fact has been exploited successfully in the use of the Oral Polio Vaccine (OPV) to better control wild-type polio viruses. In this work we analyze general LAVV vaccination models for infections that confer lifelong immunity. We consider both standard (continuous) vaccination strategies and pulse vaccination programs (where mass vaccination is carried out at regular intervals). For continuous vaccination, we provide a complete global analysis of a very general compartmental ordinary differential equation LAVV model. We find that the threshold vaccination level required for the eradication of wild-type virus depends on the basic reproduction numbers of both the wild-type and vaccine viruses, but is otherwise independent of the distributions of the durations in each of the sequence of stages of disease progression (e.g., latent, infectious, etc.). Furthermore, even for vaccine viruses with reproduction numbers below one, which would naturally fade from the population upon cessation of vaccination, there can be a significant reduction in the threshold vaccination level. The dependence of the threshold vaccination level on the virus reproduction numbers largely generalizes to the pulse vaccination model. For shorter pulsing periods there is negligible difference in threshold vaccination level as compared to continuous vaccination campaigns. Thus, we conclude that current policy in many countries to employ annual pulsed OPV vaccination does not significantly diminish the benefits of contact vaccination.  相似文献   

18.
Several studies have found that some parents delay the age at which their children receive pediatric vaccines due to perception of higher vaccine risk at the recommended age of vaccination. This has been particularly apparently during the Measles-Mumps-Rubella scare in the United Kingdom. Under a voluntary vaccination policy, vaccine coverage in certain age groups is a potentially complex interplay between vaccinating behaviour, disease dynamics, and age-specific risk factors. Here, we construct an age-structured game dynamic model, where individuals decide whether to vaccinate according to imitation dynamics depending on age-dependent disease prevalence and perceived risk of vaccination. Individuals may be timely vaccinators, delayers, or non-vaccinators. The model exhibits multiple equilibria and a broad range of possible dynamics. For certain parameter regimes, the proportion of timely vaccinators and delayers oscillate in an anti-phase fashion in response to oscillations in infection prevalence. Under an exogenous change to the perceived risk of vaccination as might occur during a vaccine scare, the model can also capture an increase in delayer strategists similar in magnitude to that observed during the Measles-Mumps-Rubella vaccine scare in the United Kingdom. Our model also shows that number of delayers steadily increases with increasing severity of the scare, whereas it saturates to specific value with increases in duration of the scare. Finally, by comparing the model dynamics with and without the option of a delayer strategy, we show that adding a third delayer strategy can have a stabilizing effect on model dynamics. In an era where individual choice—rather than accessibility—is becoming an increasingly important determinant of vaccine uptake, more infectious disease models may need to use game theory or related techniques to determine vaccine uptake.  相似文献   

19.

Background

Seasonal influenza is a major cause of mortality worldwide. Routine immunization of children has the potential to reduce this mortality through both direct and indirect protection, but has not been adopted by any low- or middle-income countries. We developed a framework to evaluate the cost-effectiveness of influenza vaccination policies in developing countries and used it to consider annual vaccination of school- and preschool-aged children with either trivalent inactivated influenza vaccine (TIV) or trivalent live-attenuated influenza vaccine (LAIV) in Thailand. We also compared these approaches with a policy of expanding TIV coverage in the elderly.

Methods and Findings

We developed an age-structured model to evaluate the cost-effectiveness of eight vaccination policies parameterized using country-level data from Thailand. For policies using LAIV, we considered five different age groups of children to vaccinate. We adopted a Bayesian evidence-synthesis framework, expressing uncertainty in parameters through probability distributions derived by fitting the model to prospectively collected laboratory-confirmed influenza data from 2005-2009, by meta-analysis of clinical trial data, and by using prior probability distributions derived from literature review and elicitation of expert opinion. We performed sensitivity analyses using alternative assumptions about prior immunity, contact patterns between age groups, the proportion of infections that are symptomatic, cost per unit vaccine, and vaccine effectiveness. Vaccination of children with LAIV was found to be highly cost-effective, with incremental cost-effectiveness ratios between about 2,000 and 5,000 international dollars per disability-adjusted life year averted, and was consistently preferred to TIV-based policies. These findings were robust to extensive sensitivity analyses. The optimal age group to vaccinate with LAIV, however, was sensitive both to the willingness to pay for health benefits and to assumptions about contact patterns between age groups.

Conclusions

Vaccinating school-aged children with LAIV is likely to be cost-effective in Thailand in the short term, though the long-term consequences of such a policy cannot be reliably predicted given current knowledge of influenza epidemiology and immunology. Our work provides a coherent framework that can be used for similar analyses in other low- and middle-income countries.  相似文献   

20.
Yang Z  Dong Z  Fu C 《PloS one》2012,7(1):e30424
In China the protective effect of seasonal influenza vaccine has only been assessed in controlled clinical trials and proven to be highly effective. However, the post-licensure effectiveness of influenza vaccine has not been examined. In our study all influenza cases from the 19 surveillance sites in Guangzhou were laboratory confirmed during 2009 and 2010. Controls were randomly selected from children aged 6 to 59 months in the Children's Expanded Programmed Immunization Administrative Computerized System. 2529 cases and 4539 controls were finally enrolled. After adjusting for gender, age and area of residence, the vaccine effectiveness of full vaccination was 51.79% and 57.78% in the 2009 and 2010 influenza season, respectively. Partial vaccination provided 39.38% and 35.98% protection to children aged 24 to 59 months in 2009 and 2010, respectively, and no protective effect was observed among younger children. Full vaccination is highly protective and partial vaccination is protective for older children. Influenza vaccination in general should be encouraged, and full vaccination should be particularly encouraged because its protective effect is much stronger than that of partial vaccination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号