首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simultaneous assay for moricizine, its two sulphoxidation metabolites, morizine sulphoxide and moricizine sulphone, using high-performance liquid chromatography (HPLC) is described. The drug and metabolites and clozapine (internal standard) in biological fluids were extracted using pentanesulphonic acid into diethyl ether. The ethereal extract was evaporated to dryness and the residue was redissolved in the mobile phase (methanol-water-triethylamine, 65:35:0.5, v/v). The analyses were performed on a μBondapak reversed-phase C18 column housed in a Waters Z-module, linked to a C18 pre-column, with a run-time of 12 min. The retention times were 2.7, 3.5, 6.2 and 9.7 min for moricizine sulphone, moricizine sulphoxide, moricizine and clozapine, respectively. The recovery of the compounds from plasma ranged from 89.9% for the sulphoxide to 98.1% for clozapine. The limits of detection of the assay for moricizine, moricizine sulphoxide and moricizine sulphone were 20, 10 and 5 ng/ml, respectively.  相似文献   

2.
A high-performance liquid chromatographic method was developed for the determination of a new non-narcotic analgesic, DA-5018 (I), in rat plasma, urine and bile samples, using propranolol for plasma samples and protriptyline for urine and bile samples as internal standards. The method involved extraction followed by injection of 100 μl of the aqueous layer onto a C18 reversed-phase column. The mobile phases were 5 mM methanesulfonic acid with 10 mM NaH2PO4 (pH 2.5)-acetonitrile, 70:30 (v/v) for plasma samples and 75:25 (v/v) for urine and bile samples. The flow-rates were 1.0 ml/min for plasma samples and 1.2 ml/min for urine and bile samples. The column effluent was monitored by a fluorescence detector with an excitation wavelength of 270 nm and an emission wavelength of 330 nm. The retention time for I was 4.8 min in plasma samples and 10.0 min in urine and bile samples. The detection limits for I in rat plasma, urine and bile were 20, 100 and 100 ng/ml, respectively. There was no interference from endogenous substances.  相似文献   

3.
A high-performance liquid chromatographic method for the measurement of bumetamide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol—water—glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5–2000 ng/ml.  相似文献   

4.
Haloperidol and its two metabolites, reduced haloperidol and 4-(4-chlorophenyl)-4-hydroxypiperidine (CPHP) in human plasma and urine were analyzed by HPLC-MS using a new polymer column (MSpak GF-310), which enabled direct injection of crude biological samples without pretreatment. Recoveries of haloperidol and reduced haloperidol spiked into plasma were 64.4-76.1% and 46.8-50.2%, respectively; those for urine were 87.3-99.4% and 94.2-98.5%, respectively; those of CPHP for both samples were not less than 92.7%. The regression equations for haloperidol, reduced haloperidol and CPHP showed good linearity in the ranges of 10-800, 15-800 and 400-800 ng/ml, respectively, for both plasma and urine. Their detection limits were 5, 10 and 300 ng/ml, respectively, for both samples. Thus, the present method was sensitive enough for detection and determination of high therapeutic and toxic levels for haloperidol and its metabolites present in biological samples.  相似文献   

5.
A rapid and sensitive high-performance liquid chromatographic (HPLC) assay for the determination of alpha-naphthylisothiocyanate (1-NITC) and two metabolites alpha-naphthylamine (1-NA) and alpha-naphthylisocyanate (1-NIC) in rat plasma and urine has been developed. The chromatographic analysis was carried out using reversed-phase isocratic elution with a Partisphere C(18) 5-microm column, a mobile phase of acetonitrile-water (ACN-H(2)O 70:30, v/v), and detection by ultraviolet (UV) absorption at 305 nm. The lower limits of quantitation (LLQ) in rat plasma, urine, and ACN were 10, 30, and 10 ng/ml for 1-NITC; 30, 100, and 30 ng/ml for 1-NA; and 30 ng/ml in ACN for 1-NIC. At low (10 ng/ml), medium (500 ng/ml), and high (5000 ng/ml) concentrations of quality control samples (QCs), the range of within-day and between-day accuracies were 95-106 and 97-103% for 1-NITC in plasma, respectively. Stability studies showed that 1-NITC was stable at all tested temperatures in ACN, and at -20 and -80 degrees C in plasma, urine, and ACN precipitated plasma and urine, but degraded at room temperature and 4 degrees C. 1-NA was stable in all of the tested matrices at all temperatures. 1-NIC was unstable in plasma, urine, and ACN precipitated plasma and urine, but stable in ACN. The degradation product of 1-NITC and 1-NIC in universal buffer was confirmed to be 1-NA. 1-NITC and 1-NA were detected and quantified in rat plasma and urine, following the administration of a 25 mg/kg i.v. dose of 1-NITC to a female Sprague-Dawley rat.  相似文献   

6.
We have developed and validated a sensitive and selective assay for the quantification of paclitaxel and its metabolites 6α,3′-p-dihydroxypaclitaxel, 3′-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel in plasma, tissue, urine and faeces specimens of mice. Tissue and faeces were homogenized (approximately 0.1–0.2 g/ml) in bovine serum albumin (40 g/I) in water, and urine was diluted (1:5, v/v) in blank human plasma. Sample pretreatment involved liquid-liquid extraction of 200–1000 μl of sample with diethyl ether followed by automated solid-phase extraction using cyano Bond Elut column. 2′-Methylpaclitaxel was used as internal standard. The overall recovery of the sample pretreatment procedure ranged from 76 ot 85%. In plasma, the lower limit of detection (LOD) and the lower limit of quantitation (LLQ) are 15 and 25 ng/ml, respectively, using 200 μl of sample. In tissues, faeces and urine the LLQs are 25–100 ng/g, 125 ng/g and 25 ng/ml, respectively, using 1000 μl (faeces: 200 μl) of homogenized or diluted sample. The concentrations in the various biological matrices, for validation procedures spiked with known amounts of the test compounds, are read from calibration curves constructed in blank human plasma in the range 25–100 000 ng/ml for paclitaxel and 25–500 ng/ml for the metabolites. The accuracy and precision of the assay fall within the generally accepted criteria for bio-analytical assays.  相似文献   

7.
Ranitidine and its main metabolites, ranitidine N-oxide and ranitidine S-oxide, were determined in plasma and urine after separation using reversed-phase liquid chromatography. The mobile phase consisted of an initial isocratic step with 7:93 (v/v) acetonitrile–7.5 mM phosphate buffer (pH 6) for 8 min, followed by a linear gradient up to a 25:75 (v/v) mixture over 1 min. Detection was carried out by a post-column fluorimetric derivatization based on the reaction of the drugs with sodium hypochlorite, giving rise to primary amines that reacted with o-phthalaldehyde and 2-mercaptoethanol to form highly fluorescent products. The calibration graphs, based on peak area, were linear in the range 0.1–4 μg/ml for all drugs. The detection limits were 30, 41 and 32 ng/ml (8.6, 12.5 and 9.1 pmol) for ranitidine S-oxide, ranitidine N-oxide and ranitidine, respectively. Chromatographic profiles obtained for plasma and urine samples showed no interference from endogenous compounds.  相似文献   

8.
High-performance liquid chromatographic methods were developed for the determination of azosemide and its metabolite, M1, in human plasma and urine and rabbit blood and tissue homogenates. The methods involved deproteinization of the biological samples: 2.5 volumes of acetonitrile were used for the determination of azosemide and 1 volume of saturated Ba(OH)2 and ZnSO4 for that of M1. A 50-μl aliquot of the supernatant was injected onto a C18 reversed-phase column in each instance. The mobile phases employed were 0.03 M phosphoric acid—acetonitrile (50:40, v/v) for azosemide and 0.03 M phosphoric acid/0.2 M acetic acid—acetonitrile (83:17, v/v) for M1. The flow-rate was 1.5 ml/min in both instances. The column effluent was monitored by ultraviolet detection at 240 and 236 nm for azosemide and M1, respectively. The retention times for azosemide and M1 were 6.0 and 8.3 min, respectively. The detection limits for both azosemide and M1 in both human plasma and urine were 50 ng/ml. The coefficients of variation of the assay were generally low (below 11.0%) for plasma, urine, blood and tissue homogenates. No interferences from endogenous substances or other diuretics tested were observed.  相似文献   

9.
Ebastine (CAS 90729-43-4) is an antiallergic agent which selectively and potently blocks histamine H1-receptors in vivo. A simple and sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of ebastine and its two oxidized metabolites, carebastine (CAS 90729-42-3) and hydroxyebastine (M–OH), in human plasma. After a pretreatment of plasma sample by solid-phase extraction, ebastine and its metabolites were analyzed on an HPLC system with ultraviolet detection at 254 nm. Chromatography was performed on a cyano column (250×4.0 mm I.D.) at 40 °C with the mobile phase of acetonitrile–methanol–0.012 M ammonium acetate buffer (20:30:48, v/v/v) at a flow rate of 1.2 ml/min. Accurate determinations were possible over the concentration range of 3–1000 ng/ml for the three compounds using 1 ml plasma samples. The intra- and inter-day assay accuracy of this method were within 100±15% of nominal values and the precision did not exceed 12.4% of relative standard deviation. The lower limits of quantitation were 3 ng/ml for ebastine and its metabolites in human plasma. This method was satisfactorily applied to the determination of ebastine and its two oxidized metabolites in human plasma after oral administration of ebastine.  相似文献   

10.
A column switching high performance liquid chromatographic method with estimable sensitivity and accuracy was developed for the determination of cetirizine and ambroxol in human plasma using nebivolol as the internal standard. Plasma samples were prepared by liquid-liquid extraction in methylene chloride and a mixture of diethylether (80:20, v/v). The extracted samples were injected into a multifunctional clean-up column Supelcosil LCABZ (50 mm × 4.6 mm, 5 μm particle size) using mobile phase 1 comprising acetonitrile-phosphate buffer (pH 3.5; 20 mM) (20:80, v/v). The eluate of cetirizine and ambroxol were separated to an analytical Kromasil C(8) micro bore column (50 mm × 0.3 mm, 5 μm particle size) via a column switching device. A Kromasil C(18) analytical column (250 mm × 2.1 mm, 5 μm particle size) was used as a separation column. Mobile phase 2 consisting acetonitrile-triethylamine (0.5%) in phosphate buffer (pH 3.5; 20mM) (55:45, v/v) was used for the compound elution. The eluents were detected at 230 nm with photodiode array detector. An aliquot of 150 μl of plasma sample was introduced into the pretreatment column via the auto sampler using mobile phase 1 at a flow rate of 0.5 ml/min, column switching valve being positioned at A. The pretreatment column retained cetirizine, ambroxol and nebivolol (IS) in the column leaving the residual proteins of plasma eluted in void volume and drained out. The switching valve was shifted to position B at 7.5 min. Cetirizine, ambroxol and IS were eluted from the pretreatment column between 7. 5 and 11.5 min and introduced to the concentration column. Finally, cetirizine, ambroxol and IS were introduced to the separation column by switching valve using mobile phase 2 at a flow rate of 0.4 ml/min. During the analysis the pretreatment column was washed for the next analysis and resume to the position A. The total run time was 25 min for a sample. The procedure was repeated for urine analysis also. The method was linear from 2 to 450 ng/ml and 7-300 ng/ml for cetirizine and ambroxol respectively in plasma and 1-500 ng/ml and 5-400 ng/ml, respectively for cetirizine and ambroxol in urine. Intra-day and inter-day precision of cetirizine and ambroxol was below 15% in terms of coefficient of variation and accuracy of cetirizine and ambroxol was ranged from 94 to 101.6% and 91.1 to 100.2%, respectively. The method demonstrated high sensitivity and selectivity and therefore, applied to evaluate pharmacokinetics of cetirizine and ambroxol in healthy human volunteer after a single oral administration. Urine samples obtained from healthy human volunteers and clinical subjects with renal impairment have also been analyzed by the method to compare the elimination pattern. The method was precise and accurate for the estimation of cetirizine and ambroxol both in blood and in urine.  相似文献   

11.
Doxepin is a tricyclic antidepressant marketed as an irrational mixture of cis- and trans-geometric isomers in the ratio of 15:85. A convenient high-performance liquid chromatographic (HPLC) procedure for simultaneous quantitation of geometric isomers of doxepin and N-desmethyldoxepin in plasma and urine is described. The HPLC procedure employed a normal phase system with a silica column and a mobile phase consisting of hexane-methanol-nonylamine (95:5:0.3, v/v/v), a UV detector and nortriptyline as the internal standard. The liquid-liquid extraction solvent was a mixture of n-pentane-isopropanol (95:5, v/v). The limit of quantitation was 1 ng/ml for each isomer. The calibration curves were linear over the ranges 1–200 ng/ml (plasma) and 1–400 ng/ml (urine). In plasma, the accuracy (mean±S.D.) (97.53±1.67%) and precision (3.89±1.65%) data for trans-doxepin were similar to corresponding values for urine, i.e., 97.10±2.40 and 3.82±1.14%. Accuracy and precision data for trans-N-desmethyldoxepin in plasma were 97.57±2.06 and 4.38±3.24%, and in urine were 97.64±3.32 and 5.26±1.83%, respectively. Stability tests under three different conditions of storage indicated no evidence of degradation. The recovery of doxepin was 61–64% from plasma and 63–68% from urine. The method has been applied to analyses of plasma and urine samples from human volunteers and animals dosed with doxepin.  相似文献   

12.
A sensitive and specific method was developed and validated for the quantitation of quercetin in human plasma and urine. The application of liquid chromatography-tandem mass spectrometry (LC/MS/MS) with a TurboIonspray (TIS) interface in negative mode under multiple reactions monitoring was investigated. Chromatographic separation was achieved on a C12 column using a mobile phase of acetonitrile/water with 0.2% formic acid (pH 2.4) (40/60, v/v). The detection limit was 100 pg/ml and the lower limit of quantification was 500 pg/ml for plasma samples; the detection limit was 500 pg/ml and the lower limit of quantification was 1 ng/ml for urine samples. The calibration curve was linear from 1 to 800 ng/ml for plasma samples and was linear from 1 to 200 and 50 to 2000 ng/ml for urine samples. All the intra- and inter-day coefficients of variation were less than 11% and intra- and inter-day accuracies were within +/-15% of the known concentrations. This represents a LC/MS/MS assay with the sensitivity and specificity necessary to determine quercetin in human plasma and urine. This assay was used to determine both parent quercetin and the quercetin after enzymatic hydrolysis with beta-glucuronidase/sulfatase in human plasma and urine samples following the ingestion of quercetin 500 mg capsules.  相似文献   

13.
Astragaloside IV is a novel cardioprotective agent extracted from the Chinese medical herb Astragalus membranaceus (Fisch) Bge. This agent is being developed for treatment for cardiovascular disease. Further development of Astragaloside IV will require detailed pharmacokinetic studies in preclinical animal models. Therefore, we established a sensitive and accurate high performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (LC/MS/MS) quantitative detection method for measurement of Astragaloside IV levels in plasma, urine as well as other biological samples including bile fluid, feces and various tissues. Extraction of Astragaloside IV from plasma and other biological samples was performed by Waters OASIS(trade mark) solid phase extraction column by washing with water and eluting with methanol, respectively. An aliquot of extracted residues was injected into LC/MS/MS system with separation by a Cosmosil C18 5 microm, 150 mm x 2.0 mm) column. Acetonitrile:water containing 5 microM NaAc (40:60, v/v) was used as a mobile phase. The eluted compounds were detected by tandem mass spectrometry. The average extraction recoveries were greater than 89% for Astragaloside IV and digoxin from plasma, while extraction recovery of Astragaloside IV and digoxin from tissues, bile fluid, urine and fece ranged from 61 to 85%, respectively. Good linearity (R2>0.9999) was observed throughout the range of 10-5000 ng/ml in 0.5 ml rat plasma and 5-5000 ng/ml in 0.5 ml dog plasma. In addition, good linearity (R2>0.9999) was also observed in urine, bile fluid, feces samples and various tissue samples. The overall accuracy of this method was 93-110% for both rat plasma and dog plasma. Intra-assay and inter-assay variabilities were less than 15.03% in plasma. The lowest quantitation limit of Astragaloside IV was 10 ng/ml in 0.5 ml rat plasma and 5 ng/ml in 0.5 ml dog plasma, respectively. Practical utility of this new LC/MS/MS method was confirmed in pilot pharmacokinetic studies in both rats and dogs following intravenous administration.  相似文献   

14.
An original method for the separation and quantitation of doxorubicin (DOX) and its metabolites by high-pressure liquid chromatography and fluorometry is described. Doxorubicin and its derivatives are extracted from biological samples in a rapid, non-destructive manner, with a recovery close to 100%. The different compounds are rapidly separated by high-pressure liquid chromatography using an eluant system containing magnesium chloride, and detected quantitatively by fluorometry down to a concentration of 1.5 ng/ml in less than 5 min. Using this method, we have determined doxorubicin and its metabolites in plasma and urine, after an intravenous injection into DBA2 and NMRI mice.  相似文献   

15.
For the determination of cisapride from serum samples, an automated microbore high-performance liquid chromatographic method with column switching has been developed. After serum samples (100 μl) were directly injected onto a Capcell Pak MF Ph-1 pre-column (10×4 mm I.D.), the deproteinization and concentration were carried out by acetonitrile–phosphate buffer (20 mM, pH 7.0) (2:8, v/v) at valve position A. At 2.6 min, the valve was switched to position B and the concentrated analytes were transferred from MF Ph-1 pre-column to a C18 intermediate column (35×2 mm I.D.) using washing solvent. By valve switching to position A at 4.3 min, the analytes were separated on a Capcell Pak C18 UG 120 column (250×1.5 mm I.D.) with acetonitrile–phosphate buffer (20 mM, pH 7.0) (5:5, v/v) at a flow-rate of 0.1 ml/min. Total analysis time per sample was 18 min. The linearity of response was good (r=0.999) over the concentration range of 5–200 ng/ml. The within-day and day-to-day precision (CV) and inaccuracy were less than 3.7% and 3.8%, respectively. The mean recovery was 96.5±2.4% with the detection limit of 2 ng/ml.  相似文献   

16.
A sensitive, specific and precise HPLC–UV assay was developed to quantitate cocaine (COC) and its metabolites benzoylecgonine (BE), norcocaine (NC) and cocaethylene (CE) in rat plasma. After adding 50 μl of the internal standard solution (bupivacaine, 8 μg/ml) and 500 μl of Sørensen's buffer (pH 6) to 100 μl of rat plasma sample, the mixture was extracted with 10 ml of chloroform. The organic layer was transferred to a clean test tube and was evaporated under nitrogen. The residue was reconstituted in 100 μl of mobile phase and 35 μl was injected onto the HPLC column. The mobile phase consisted of methanol–acetonitrile–50 mM monobasic ammonium phosphate (5:7:63, v/v/v) and was maintained at a flow-rate of 0.4 ml/min. Separation of COC and its metabolites was achieved using a Supelcosil ABZ+plus deactivated reversed-phase column (250×2.1 mm I.D., 5 μm). Calibration curves were linear over the range of 25–5000 ng/ml for COC and its three metabolites. The absolute extraction efficiencies for BE, COC, NC, CE and bupivacaine were 56.6%, 78.6%, 61.1%, 76.4% and 67.0%, respectively. COC and its metabolites were stable in mobile phase for 24 h at room temperature and in rat plasma for 2 weeks at −20°C. The limits of detection for BE, COC, NC and CE were 20, 24, 15 and 12.9 ng/ml, respectively. These values correspond to 0.70, 0.84, 0.525 and 0.452 ng of the according compound being injected on column. The within-day coefficient of variation for the four compounds ranged from 3.0% to 9.9% while the between-day precision varied from 3.6% to 14%. This method was used to analyze rat plasma samples after administration of COC alone and in combination with alcohol. The pharmacokinetic profiles of COC and its metabolites in these rats are also described.  相似文献   

17.
A simple, rapid HPLC method for quantification of mitoxantrone in mouse plasma and tissue homogenates in the presence of a liposome entrapped mitoxantrone formulation (LEM-ETU) is described. Sample preparation is achieved by protein precipitation of 100 microl plasma or 200 microl tissue homogenate with an equal volume of methanol containing 0.5 M hydrochloric acid:acetonitrile (90:10, v/v). Ametantrone is used as the internal standard (i.s.). Mitoxantrone and i.s. are separated on a C18 reversed phase HPLC column, and quantified by their absorbance at 655 nm. In plasma, the standard curve is linear from 5 to 1000 ng/ml, and the precision (%CV) and accuracy (percentage of nominal concentration) are within 10%. In mouse tissue (heart, kidney, liver, lung, and spleen) homogenates (5%, w/v), the standard curve is linear from 25 to 2000 ng/ml, with acceptable precision and accuracy. The method was used to successfully quantify mitoxantrone in mouse plasma and tissue samples to support a pharmacokinetic study of LEM-ETU in mice.  相似文献   

18.
An analytical method for the detection in biological samples of the novel tricyclic compound adosupine (10-acetoamido-5-methyl-5,6-dihydro-11H-dibenzo[b,e]azepin-6,11-dione), which is capable of influencing various forms of urinary bladder hyperreflexia has been developed using high-performance liquid chromatography with UV detection. Liquid—liquid extraction was used to isolate the parent compound, three metabolites and an analogue (added as internal standard) from plasma and brain of rat. Adosupine was well separated from its three metabolites with 0.01 M disodium hydrogenphosphate—acetonitrile—methanol—nonylamine (59.986:38:2:0.014) at pH 4.5 as mobile phase using a C18 reversed-phase column. The standard curves were linear in the range 50–5000 ng/ml (or ng/g) for adosupine and metabolites in both plasma and brain. The between- and within-assay variations for high and low concentrations of the parent compound and the three metabolites were 8.2–14%. In the range 50–5000 ng/ml (or ng/g) the accuracy of the method was satisfactory, with the relative error always lower than 10%. Analytical recoveries of added adosupine and the three metabolites were higher than 82%. The method has been applied successfully, to investigate the pharmacokinetics of the drug and its distribution in the central nervous system of rats.  相似文献   

19.
An efficient method for the determination of atenolol in human plasma and urine was developed and validated. α-Hydroxymetoprolol, a compound with a similar polarity to atenolol, was used as the internal standard in the present high-performance liquid chromatographic analysis with fluorescence detection. The assay was validated for the concentration range of 2 to 5000 ng/ml in plasma and 1 to 20 μg.ml in urine. For both plasma and urine, the lower limit of detection was 1 ng/ml. The intra-day and inter-day variabilities for plasma samples at 40 and 900 ng/ml, and urine samples at 9.5 μg/ml were <3% (n=5).  相似文献   

20.
Olanzapine is a commonly used atypical antipsychotic medication for which therapeutic drug monitoring has been proposed as clinically useful. A sensitive method was developed for the determination of olanzapine concentrations in plasma and urine by high-performance liquid chromatography with low-wavelength ultraviolet absorption detection (214 nm). A single-step liquid–liquid extraction procedure using heptane-iso-amyl alcohol (97.5:2.5 v/v) was employed to recover olanzapine and the internal standard (a 2-ethylated olanzapine derivative) from the biological matrices which were adjusted to pH 10 with 1 M carbonate buffer. Detector response was linear from 1–5000 ng (r2>0.98). The limit of detection of the assay (signal:noise=3:1) and the lower limit of quantitation were 0.75 ng and 1 ng/ml of olanzapine, respectively. Interday variation for olanzapine 50 ng/ml in plasma and urine was 5.2% and 7.1% (n=5), respectively, and 9.5 and 12.3% at 1 ng/ml (n=5). Intraday variation for olanzapine 50 ng/ml in plasma and urine was 8.1% and 9.6% (n=15), respectively, and 14.2 and 17.1% at 1 ng/ml (n=15). The recoveries of olanzapine (50 ng/ml) and the internal standard were 83±6 and 92±6% in plasma, respectively, and 79±7 and 89±7% in urine, respectively. Accuracy was 96% and 93% at 50 and 1 ng/ml, respectively. The applicability of the assay was demonstrated by determining plasma concentrations of olanzapine in a healthy male volunteer for 48 h following a single oral dose of 5 mg olanzapine. This method is suitable for studying olanzapine disposition in single or multiple-dose pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号