首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In neuronal nitric-oxide synthase (nNOS), calmodulin (CaM) binding is thought to trigger electron transfer from the reductase domain to the heme domain, which is essential for O(2) activation and NO formation. To elucidate the electron-transfer mechanism, we characterized a series of heterodimers consisting of one full-length nNOS subunit and one oxygenase-domain subunit. The results support an inter-subunit electron-transfer mechanism for the wild type nNOS, in that electrons for catalysis transfer in a Ca(2+)/CaM-dependent way from the reductase domain of one subunit to the heme of the other subunit, as proposed for inducible NOS. This suggests that the two different isoforms form similar dimeric complexes. In a series of heterodimers containing a Ca(2+)/CaM-insensitive mutant (delta40), electrons transferred from the reductase domain to both hemes in a Ca(2+)/CaM-independent way. Thus, in the delta40 mutant electron transfer from the reductase domains to the heme domains can occur via both inter-subunit and intra-subunit mechanisms. However, NO formation activity was exclusively linked to inter-subunit electron transfer and was observed only in the presence of Ca(2+)/CaM. This suggests that the mechanism of activation of nNOS by CaM is not solely dependent on the activation of electron transfer to the nNOS hemes but may involve additional structural factors linked to the catalytic action of the heme domain.  相似文献   

2.
A central conserved arginine, first identified as a clinical mutation leading to sulfite oxidase deficiency, is essential for catalytic competency of sulfite oxidizing molybdoenzymes, but the molecular basis for its effects on turnover and substrate affinity have not been fully elucidated.We have used a bacterial sulfite dehydrogenase, SorT, which lacks an internal heme group, but transfers electrons to an external, electron accepting cytochrome, SorU, to investigate the molecular functions of this arginine residue (Arg78). Assay of the SorT Mo centre catalytic competency in the absence of SorU showed that substitutions in the central arginine (R78Q, R78K and R78M mutations) only moderately altered SorT catalytic properties, except for R78M which caused significant reduction in SorT activity. The substitutions also altered the Mo-centre redox potentials (MoVI/V potential lowered by ca. 60–80 mV). However, all Arg78 mutations significantly impaired the ability of SorT to transfer electrons to SorU, where activities were reduced 17 to 46-fold compared to SorTWT, precluding determination of kinetic parameters. This was accompanied by the observation of conformational changes in both the introduced Gln and Lys residues in the crystal structure of the enzymes. Taking into account data collected by others on related SOE mutations we propose that the formation and maintenance of an electron transfer complex between the Mo centre and electron accepting heme groups is the main function of the central arginine, and that the reduced turnover and increases in KMsulfite are caused by the inefficient operation of the oxidative half reaction of the catalytic cycle in enzymes carrying these mutations.  相似文献   

3.
Sulfite oxidase (EC 1.8.3.1), purified from chicken liver, is comprised of two identical subunits of 55 kDa, each of which contains a molybdenum and heme prosthetic group. The functional size of sulfite oxidase was determined by radiation inactivation analysis using both full, sulfite:cytochrome c reductase, and partial, sulfite:ferricyanide reductase, catalytic activities. Inactivation of full enzyme activity indicated a target size of 42 kDa while the partial activity indicated a target size of 25 kDa. These results confirm the earlier findings of two equivalent subunits and suggest the presence of a functional domain within the subunit structure that contains the molybdenum center and exhibits a smaller molecular mass than that of the enzyme subunit.  相似文献   

4.
Sulfite oxidizing enzymes   总被引:1,自引:0,他引:1  
Sulfite oxidizing enzymes are essential mononuclear molybdenum (Mo) proteins involved in sulfur metabolism of animals, plants and bacteria. There are three such enzymes presently known: (1) sulfite oxidase (SO) in animals, (2) SO in plants, and (3) sulfite dehydrogenase (SDH) in bacteria. X-ray crystal structures of enzymes from all three sources (chicken SO, Arabidopsis thaliana SO, and Starkeya novella SDH) show nearly identical square pyramidal coordination around the Mo atom, even though the overall structures of the proteins and the presence of additional cofactors vary. This structural information provides a molecular basis for studying the role of specific amino acids in catalysis. Animal SO catalyzes the final step in the degradation of sulfur-containing amino acids and is critical in detoxifying excess sulfite. Human SO deficiency is a fatal genetic disorder that leads to early death, and impaired SO activity is implicated in sulfite neurotoxicity. Animal SO and bacterial SDH contain both Mo and heme domains, whereas plant SO only has the Mo domain. Intraprotein electron transfer (IET) between the Mo and Fe centers in animal SO and bacterial SDH is a key step in the catalysis, which can be studied by laser flash photolysis in the presence of deazariboflavin. IET studies on animal SO and bacterial SDH clearly demonstrate the similarities and differences between these two types of sulfite oxidizing enzymes. Conformational change is involved in the IET of animal SO, in which electrostatic interactions may play a major role in guiding the docking of the heme domain to the Mo domain prior to electron transfer. In contrast, IET measurements for SDH demonstrate that IET occurs directly through the protein medium, which is distinctly different from that in animal SO. Point mutations in human SO can result in significantly impaired IET or no IET, thus rationalizing their fatal effects. The recent developments in our understanding of sulfite oxidizing enzyme mechanisms that are driven by a combination of molecular biology, rapid kinetics, pulsed electron paramagnetic resonance (EPR), and computational techniques are the subject of this review.  相似文献   

5.
Prostaglandin endoperoxide H synthase-2 (PGHS-2), also known as cyclooxygenase-2 (COX-2), is a sequence homodimer. However, the enzyme exhibits half-site heme and inhibitor binding and functions as a conformational heterodimer having a catalytic subunit (Ecat) with heme bound and an allosteric subunit (Eallo) lacking heme. Some recombinant heterodimers composed of a COX-deficient mutant subunit and a native subunit (i.e. Mutant/Native PGHS-2) have COX activities similar to native PGHS-2. This suggests that the presence of heme plus substrate leads to the subunits becoming lodged in a semi-stable Eallo-mutant/Ecat-Native∼heme form during catalysis. We examined this concept using human PGHS-2 dimers composed of combinations of Y385F, R120Q, R120A, and S530A mutant or native subunits. With some heterodimers (e.g. Y385F/Native PGHS-2), heme binds with significantly higher affinity to the native subunit. This correlates with near native COX activity for the heterodimer. With other heterodimers (e.g. S530A/Native PGHS-2), heme binds with similar affinities to both subunits, and the COX activity approximates that expected for an enzyme in which each monomer contributes equally to the net COX activity. With or without heme, aspirin acetylates one-half of the subunits of the native PGHS-2 dimer, the Ecat subunits. Subunits having an S530A mutation are refractory to acetylation. Curiously, aspirin acetylates only one-quarter of the monomers of S530A/Native PGHS-2 with or without heme. This implies that there are comparable amounts of two noninterchangeable species of apoenzymes, Eallo-S530A/Ecat-Native and Eallo-Native/Ecat-S530A. These results suggest that native PGHS-2 assumes a reasonably stable, asymmetric Eallo/Ecat form during its folding and processing.  相似文献   

6.
Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2–3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (∼60 and 200 s–1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.Sulfite-oxidizing enzymes protect cells against potentially fatal damage to DNA and proteins caused by exposure to sulfite, and consequently they are found in all forms of life (1). In bacteria, sulfite oxidation is often linked to energy-generating processes during chemolithotrophic growth on reduced sulfur compounds (2, 3), whereas both plant and vertebrate sulfite oxidases have been shown to detoxify sulfite arising from the degradation of methionine and cysteine and exposure to sulfur dioxide (4, 5).All known sulfite-oxidizing enzymes belong to the same family of mononuclear molybdenum enzymes. Their active sites contain one molybdopterin unit per molybdenum atom, and these enzymes may also contain heme groups as accessory redox centers (69). Examples of different types of sulfite-oxidizing molybdoenzymes are the homodimeric plant sulfite oxidase, which does not contain a heme group and uses oxygen as its preferred electron acceptor (9), the homodimeric chicken and human liver sulfite oxidases (CSO3 and HSO, respectively) (10), which are also able to use oxygen as an electron acceptor, and the bacterial sulfite dehydrogenase (SDH) isolated from the soil bacterium Starkeya novella (11, 12), which cannot donate electrons directly to oxygen. Each monomer of CSO and HSO contains a heme b center in addition to the molybdenum center, and the redox centers are located within separate, flexibly linked domains of the same protein subunit. In contrast, the bacterial enzyme is a heterodimer where each subunit of the enzyme contains one redox center. The molybdopterin cofactor is located in the larger 40.2-kDa SorA subunit, and the c-type heme is located in the smaller, 8.8-kDa SorB subunit (12). The SDH quaternary structure thus differs clearly from that of the human and chicken sulfite oxidases.Crystal structures are available for plant sulfite oxidase, CSO, and the bacterial SDH (10, 11, 1315) and have revealed molecular details of the sulfite-oxidizing enzymes. In the CSO structure, the mobile heme b domain occupies a position too removed from the molybdenum active site to mediate efficient electron transfer (10), and indeed the kinetics of this enzyme are known to be complicated by domain movements (16). In contrast, the bacterial SDH is a tight complex with strong electrostatic interactions between the subunits, and the close approach of the redox centers (Mo–Fe distance 16.6 Å) allows for rapid electron transfer (11, 17) (Fig. 1, A and B).Open in a separate windowFIGURE 1.Details of the crystal structure of wild type SDH and comparison with CSO. A, ribbon diagram of the SDH heterodimer with the SorA and SorB subunits colored blue and cyan, respectively, and the redox cofactors in space-filling mode with the molybdenum atom colored green and the iron atom colored violet. B, ribbon diagram of a single subunit of CSO with the molybdopterin binding domain in the same orientation as SorA in A. The cytochrome domain of CSO is clearly in a different position with respect to the molybdenum cofactor than is seen for the cytochrome subunit of SDH. C, SDH molybdopterin cofactor demonstrating the geometry of the molybdenum ligands. The thiol ligands donated by the organic component of molybdopterin and the Cys-104 side chain, and the reactive oxygen ligand (Oeq) sit in the equatorial plane with the axial oxygen (Oax) ligand at the apex of a square pyramid. Atoms are colored as follows: molybdenum (green), sulfur (orange), phosphorous (magenta), oxygen (red), nitrogen (blue), and carbon (yellow in the cofactor and white in the protein). D, hydrogen bonding network around the substrate binding site. The molybdopterin and heme cofactors are shown together with active site residues Cys-104, Arg-55, His-57, Tyr-236, and Gln-33. Figs. 1 and and44 were prepared using Pymol (37).Despite the overall structural differences of these proteins, the coordination geometries of the molybdenum active sites of these sulfite-oxidizing enzymes are nearly identical. The oxidized molybdenum center has a square pyramidal conformation, with three sulfur and two oxo ligands (18). Within this molybdenum center, the equatorial oxo ligand is proposed to be catalytically active, whereas the axial oxo ligand is not thought to participate directly in the reaction (Fig. 1C). During catalysis, the equatorial oxo ligand is transformed into a hydroxy/water ligand as a result of the reduction of the molybdenum center (Fig. 2), and it is in this form that it is generally observed in the CSO and SDH crystal structures.Open in a separate windowFIGURE 2.Proposed reaction mechanism for S. novella sulfite dehydrogenase. The reaction is shown in terms of the redox states of the molybdenum and heme centers present in the enzyme. Shown in boldface type and boxed are the stable redox states of the S. novella SDH. Cyt. c, a mitochondrial type cytochrome c550 (e.g. horse heart or S. novella cytochrome c550) that can act as the external electron acceptor.SDH, CSO, and HSO show similarly high affinities for their substrate, sulfite, and several highly conserved residues surround the substrate-binding and molybdenum active site, namely Tyr-236 (all residues given in SDH numbering (11)), Arg-55, and His-57 (Fig. 1D). Both Arg-55 and Tyr-236 form hydrogen bonds to the catalytically active equatorial Mo-oxo group, whereas His-57 is positioned close to both Arg-55 and Tyr-236 (10, 11) (Fig. 1D). In addition, the crystal structure of the bacterial SDH shows that Arg-55 interacts directly with the second SDH redox center by hydrogen bonding to heme propionate-6 (Fig. 1D) (11).As a result of the similarities in catalytic parameters and the structure of the active site, the bacterial SDH is a very good system for studies of enzymatic sulfite oxidation and especially the molecular basis for catalysis. Since this enzyme does not rely on domain movement for catalysis, it has a less complicated reaction mechanism than the vertebrate enzymes, which facilitates the interpretation of kinetic data, and it can be readily crystallized with both redox centers present in an electron transfer competent conformation. We have previously reported data on the structure, kinetics, EPR, and redox properties of a Y236F-substituted SDH (13). In addition to reduced turnover and substrate affinity, this substitution influences the reactivity of the SDH toward oxygen, turning SDHY236F essentially into an (albeit weak) sulfite oxidase. In order to further understand the roles of the conserved amino acids surrounding the molybdenum active site of sulfite-oxidizing enzymes, we have created two novel amino acid substitutions in the Arg-55 and His-57 residues present at the active site and have investigated their effect on catalytic and spectroscopic parameters of the bacterial SDH. We have also solved the crystal structures of the substituted enzymes, which have provided new insights into the conformation and plasticity of the active site of sulfite-oxidizing enzymes and how the conserved active site residues contribute to sulfite oxidation.  相似文献   

7.
Conservation of energy based on the reduction of sulfate is of fundamental importance for the biogeochemical sulfur cycle. A key enzyme of this ancient anaerobic process is the dissimilatory sulfite reductase (dSir), which catalyzes the six-electron reduction of sulfite to hydrogen sulfide under participation of a unique magnetically coupled siroheme-[4Fe-4S] center. We determined the crystal structure of the enzyme from the sulfate-reducing archaeon Archaeoglobus fulgidus at 2-Å resolution and compared it with that of the phylogenetically related assimilatory Sir (aSir). dSir is organized as a heterotetrameric (αβ)2 complex composed of two catalytically independent αβ heterodimers. In contrast, aSir is a monomeric protein built of two fused modules that are structurally related to subunits α and β except for a ferredoxin domain inserted only into the subunits of dSir. The [4Fe-4S] cluster of this ferredoxin domain is considered as the terminal redox site of the electron transfer pathway to the siroheme-[4Fe-4S] center in dSir. While aSir binds one siroheme-[4Fe-4S] center, dSir harbors two of them within each αβ heterodimer. Surprisingly, only one siroheme-[4Fe-4S] center in each αβ heterodimer is catalytically active, whereas access to the second one is blocked by a tryptophan residue. The spatial proximity of the functional and structural siroheme-[4Fe-4S] centers suggests that the catalytic activity at one active site was optimized during evolution at the expense of the enzymatic competence of the other. The sulfite binding mode and presumably the mechanism of sulfite reduction appear to be largely conserved between dSir and aSir. In addition, a scenario for the evolution of Sirs is proposed.  相似文献   

8.
Developing electrode-driven biocatalytic systems utilizing the P450 cytochromes for selective oxidations depends not only on achieving electron transfer (ET) but also doing so at rates that favor native-like turnover. Herein we report studies that correlate rates of heme reduction with ET pathways and resulting product distributions. We utilized single-surface cysteine mutants of the heme domain of P450 from Bacillus megaterium and modified the thiols with N-(1-pyrene)-iodoacetamide, affording proteins that could bond to basal-plane graphite. Of the proteins examined, Cys mutants at position 62, 383, and 387 were able to form electroactive monolayers with similar E1/2 values (− 335 to − 340 mV vs AgCl/Ag). Respective ET rates (kso) and heme-cysteine distances for 62, 383, and 387 are 50 s-1 and 16 ?, 0.8 s- 1 and 25 ?, and 650 s- 1 and 19 ?. Experiments utilizing rotated-disk electrodes were conducted to determine the products of P450-catalyzed dioxygen reduction. We found good agreement between ET rates and product distributions for the various mutants, with larger kso values correlating with more electrons transferred per dioxygen during catalysis.  相似文献   

9.
Sulfite oxidase (SOX) is a crucial molybdenum cofactor-containing enzyme in plants that re-oxidizes the sulfite back to sulfate in sulfite assimilation pathway. However, studies of this crucial enzyme are quite limited hence this work was attempted to understand the SOXs in four plant species namely, Arabidopsis thaliana, Solanum lycopersicum, Populus trichocarpa and Brachypodium distachyon. Herein studied SOX enzyme was characterized with both oxidoreductase molybdopterin binding and Mo-co oxidoreductase dimerization domains. The alignment and motif analyses revealed the highly conserved primary structure of SOXs. The phylogeny constructed with additional species demonstrated a clear divergence of monocots, dicots and lower plants. In addition, to further understand the phylogenetic relationship and make a functional inference, a structure-based phylogeny was constructed using normalized RMSD values in five superposed models from four modelled plant SOXs herein and one previously characterized chicken SOX structure. The plant and animal SOXs showed a clear divergence and also implicated their functional divergences. Based on tree topology, monocot B. distachyon appeared to be diverged from other dicots, pointing out a possible monocot–dicot split. The expression patterns of sulfite scavengers including SOX were differentially modulated under cold, heat, salt and high light stresses. Particularly, they tend to be up-regulated under high light and heat while being down-regulated under cold and salt stresses. The presence of cis-regulatory motifs associated with different stresses in upstream regions of SOX genes was thus justified. The protein–protein interaction network of AtSOX and network enrichment with gene ontology (GO) terms showed that most predicted proteins, including sulfite reductase, ATP sulfurylases and APS reductases were among prime enzymes involved in sulfite pathway. Finally, SOX–sulfite docked structures indicated that arginine residues particularly Arg374 is crucial for SOX–sulfite binding and additional two other residues such as Arg51 and Arg103 may be important for SOX–sulfite bindings in plants.  相似文献   

10.
The mitochondrial amidoxime reducing component mARC is a newly discovered molybdenum enzyme that is presumed to form the catalytical part of a three-component enzyme system, consisting of mARC, heme/cytochrome b5, and NADH/FAD-dependent cytochrome b5 reductase. mARC proteins share a significant degree of homology to the molybdenum cofactor-binding domain of eukaryotic molybdenum cofactor sulfurase proteins, the latter catalyzing the post-translational activation of aldehyde oxidase and xanthine oxidoreductase. The human genome harbors two mARC genes, referred to as hmARC-1/MOSC-1 and hmARC-2/MOSC-2, which are organized in a tandem arrangement on chromosome 1. Recombinant expression of hmARC-1 and hmARC-2 proteins in Escherichia coli reveals that both proteins are monomeric in their active forms, which is in contrast to all other eukaryotic molybdenum enzymes that act as homo- or heterodimers. Both hmARC-1 and hmARC-2 catalyze the N-reduction of a variety of N-hydroxylated substrates such as N-hydroxy-cytosine, albeit with different specificities. Reconstitution of active molybdenum cofactor onto recombinant hmARC-1 and hmARC-2 proteins in the absence of sulfur indicates that mARC proteins do not belong to the xanthine oxidase family of molybdenum enzymes. Moreover, they also appear to be different from the sulfite oxidase family, because no cysteine residue could be identified as a putative ligand of the molybdenum atom. This suggests that the hmARC proteins and sulfurase represent members of a new family of molybdenum enzymes.  相似文献   

11.
Sulfite oxidase (SO) is a vital metabolic enzyme that catalyzes the oxidation of toxic sulfite to sulfate. The proposed mechanism of this molybdenum cofactor dependent enzyme involves two one-electron intramolecular electron transfer (IET) steps from the molybdenum center to the iron of the b 5-type heme and two one-electron intermolecular electron transfer steps from the heme to cytochrome c. This work focuses on how the electrostatic interaction between two conserved amino acid residues, R472 and D342, in human SO (hSO) affects catalysis. The hSO variants R472M, R472Q, R472K, R472D, and D342K were created to probe the effect of the position of the salt bridge charges, along with the interaction between these two residues. With the exception of R472K, these variants all showed a significant decrease in their IET rate constants, k et, relative to wild-type hSO, indicating that the salt bridge between residues 472 and 342 is important for rapid IET. Surprisingly, however, except for R472K and R472D, all of the variants show k cat values higher than their corresponding k et values. The turnover number for R472D is about the same as k et, which suggests that the change in this variant is rate-limiting in catalysis. Direct spectroelectrochemical determination of the Fe(III/II) reduction potentials of the heme and calculation of the Mo(VI/V) potentials revealed that all of the variants affected the redox potentials of both metal centers, probably due to changes in their environments. Thus, the position of the positive charge of R472 and that of the negative charge of D342 are both important in hSO, and changing either the position or the nature of these charges perturbs IET and catalysis.  相似文献   

12.
In the crystal structure of chicken sulfite oxidase, the residue Tyr(322) (Tyr(343) in human sulfite oxidase) was found to directly interact with a bound sulfate molecule and was proposed to have an important role in mediating the substrate specificity and catalytic activity of this molybdoprotein. In order to understand the role of this residue in the catalytic mechanism of sulfite oxidase, steady-state and stopped-flow analyses were performed on wild-type and Y343F human sulfite oxidase over the pH range 6-10. In steady-state assays of Y343F sulfite oxidase using cytochrome c as the electron acceptor, k(cat) was somewhat impaired ( approximately 34% wild-type activity at pH 8.5), whereas the K(m)(sulfite) showed a 5-fold increase over wild type. In rapid kinetic assays of the reductive half-reaction of wild-type human sulfite oxidase, k(red)(heme) changed very little over the entire pH range, with a significant increase in K(d)(sulfite) at high pH. The k(red)(heme) of the Y343F variant was significantly impaired across the entire pH range, and unlike the wild-type protein, both k(red)(heme) and K(d)(sulfite) were dependent on pH, with a significant increase in both kinetic parameters at high pH. Additionally, reduction of the molybdenum center by sulfite was directly measured for the first time in rapid reaction assays using sulfite oxidase lacking the N-terminal heme-containing domain. Reduction of the molybdenum center was quite fast (k(red)(Mo) = 972 s(-1) at pH 8.65 for wild-type protein), indicating that this is not the rate-limiting step in the catalytic cycle. Reduction of the molybdenum center of the Y343F variant by sulfite was more significantly impaired at high pH than at low pH. These results demonstrate that the Tyr(343) residue is important for both substrate binding and oxidation of sulfite by sulfite oxidase.  相似文献   

13.
Anaerobic degradation of hydrocarbons was discovered a decade ago, and ethylbenzene dehydrogenase was one of the first characterized enzymes involved. The structure of the soluble periplasmic 165 kDa enzyme was established at 1.88 A resolution. It is a heterotrimer. The alpha subunit contains the catalytic center with a molybdenum held by two molybdopterin-guanine dinucleotides, one with an open pyran ring, and an iron-sulfur cluster with a histidine ligand. During catalysis, electrons produced by substrate oxidation are transferred to a heme in the gamma subunit and then presumably to a separate cytochrome involved in nitrate respiration. The beta subunit contains four iron-sulfur clusters and is structurally related to ferredoxins. The gamma subunit is the first known protein with a methionine and a lysine as axial heme ligands. The catalytic product was modeled into the active center, showing the reaction geometry. A mechanism consistent with activity and inhibition data of ethylbenzene-related compounds is proposed.  相似文献   

14.
《Inorganica chimica acta》1987,133(2):295-300
The compound K4[Mo2(SO4)4]Br·4H2O has been made and its crystal structure determined. Space group P4/mnc; unit cell dimensions, a = 11.903(2), c = 8.021(1) Å, V = 1136(1) Å3. The compound is isomorphous with the analogous chloride whose structure has been reported. The MoMo and MoBr distances are 2.169(2) and 2.926(1) Å, respectively and the [Mo2(SO4)4] 3− ions reside on crystallographic special positions with 4/m symmetry. The Raman spectra of both the bromo and chloro compounds have been measured and the MoMo stretching frequency is 370 ± 1.5 cm−1 in each, for the compounds containing the natural isotopic distribution of molybdenum. The chloro compound has been prepared containing the pure isotope 92Mo as well, and the Raman spectra recorded. The v(MoMo) band is shifted by 6.8 ± 0.5 cm−1. The compound K4[Mo2(SO4)4]·2H2O has also been prepared with Mo at natural abundance and with the pure isotope 100Mo, whereby a shift of 8.5 ± 0.5 cm−1 was found. These and other results will be discussed with regard to the similarity of the Raman spectra of the Mo2(S04)43− and M02(S04)44− species.  相似文献   

15.
The attenuation of the sulfite:cytochrome c activity of sulfite oxidase upon treatment with ferricyanide was demonstrated to be the result of oxidation of the pterin ring of the molybdenum cofactor in the enzyme. Oxidation of molybdopterin (MPT) was detected in several ways. Ferricyanide treatment not only abolished the ability of sulfite oxidase to serve as a source of MPT to reconstitute the aponitrate reductase in extracts of the Neurospora crassa mutant nit-1 but also eliminated the ability of sulfite oxidase to reduce dichlorobenzenoneindophenol after anaerobic denaturation. Additionally, the absorption spectrum of anaerobically denatured ferricyanide-treated molybdenum fragment of rat liver sulfite oxidase was typical of fully oxidized pterins. Ferricyanide treatment had no effect on the protein of sulfite oxidase or on the sulfhydryl-containing side chain of MPT. Quantitation of the ferricyanide reaction showed that 2 mol of ferricyanide were reduced per mol of MPT oxidized, yielding a fully oxidized pterin. These results corroborate the previously reported conclusion that the native state of reduction of MPT in sulfite oxidase is at the dihydro level (Gardlik, S., and Rajagopalan, K.V. (1990) J. Biol. Chem. 265, 13047-13054). As a result of oxidation of the pterin ring, the affinity of MPT for molybdenum is decreased, leading to eventual loss of molybdenum. Because the loss of molybdenum is slow, a population of sulfite oxidase molecules can exist in which molybdenum is complexed to oxidized MPT. These molecules retain sulfite:O2 activity, a function apparently dependent solely on the molybdenum-thiolate complex, yet have greatly decreased sulfite:cytochrome c activity, a function requiring heme as well as the molybdenum center of holoenzyme. These observations suggest that the pterin ring of MPT participates in enzyme function, possibly in electron transfer, directly in catalysis, or by controlling the oxidation/reduction potential of molybdenum.  相似文献   

16.
Mo K-edge X-ray absorption spectroscopy (XAS) has been used to probe the environment of Mo in dimethylsulfoxide (DMSO) reductase from Rhodobacter capsulatus in concert with protein crystallographic studies. The oxidised (MoVI) protein has been investigated in solution at 77?K; the Mo K-edge position (20006.4?eV) is consistent with the presence of MoVI and, in agreement with the protein crystallographic results, the extended X-ray absorption fine structure (EXAFS) is also consistent with a seven-coordinate site. The site is composed of one oxo-group (Mo=O 1.71?Å), four S atoms (considered to arise from the dithiolene groups of the two molybdopterins, two at 2.32?Å and two at 2.47?Å, and two O atoms, one at 1.92?Å (considered to be H-bonded to Trp 116) and one at 2.27?Å (considered to arise from Ser 147). The Mo K-edge XAS recorded for single crystals of oxidised (MoVI) DMSO reductase at 77?K showed a close correspondence to the data for the frozen solution but had an inferior signal:noise ratio. The dithionite-reduced form of the enzyme and a unique form of the enzyme produced by the addition of dimethylsulfide (DMS) to the oxidised (MoVI) enzyme have essentially identical energies for the Mo K-edge, at 20004.4?eV and 20004.5?eV, respectively; these values, together with the lack of a significant presence of MoV in the samples as monitored by EPR spectroscopy, are taken to indicate the presence of MoIV. For the dithionite-reduced sample, the Mo K-edge EXAFS indicates a coordination environment for Mo of two O atoms, one at 2.05?Å and one at 2.51?Å, and four S atoms at 2.36?Å. The coordination environment of the Mo in the DMS-reduced form of the enzyme involves three O atoms, one at 1.69?Å, one at 1.91?Å and one at 2.11?Å, plus four S atoms, two at 2.28?Å and two at 2.37?Å. The EXAFS and the protein crystallographic results for the DMS-reduced form of the enzyme are consistent with the formation of the substrate, DMSO, bound to MoIV with an Mo-O bond of length 1.92?Å.  相似文献   

17.
Ec DOS is a heme-based gas sensor enzyme that catalyzes conversion from cyclic-di-GMP to linear-di-GMP in response to gas molecules, such as oxygen, CO and NO. Ec DOS contains an N-terminal heme-binding PAS domain and C-terminal phosphodiesterase domain. Based on crystal structures of the isolated heme-binding domain, it is suggested that the FG loop is involved in intra-molecular signal transduction to the catalytic domain. We generated nine full-length proteins mutated at ionic and non-ionic polar residues between positions 83 and 96 corresponding to the F-helix and FG loop, and examined the heme binding properties, autoxidation rates, and catalytic activities of mutant proteins. N84A and R85A mutant proteins displayed lower heme binding affinities, consistent with the finding that Asn84 interacts with propionate of protoporphyrin IX, and Arg85 with Asp40 on the heme proximal side. Autoxidation rates (0.058-0.54 min−1) of R91A, S96A and K89A/R91A/E93A mutant proteins were significantly higher than that (0.0053 min−1) of wild-type protein, suggesting that these residues in the FG loop form heme distal architecture conferring stability to the Fe(II)-O2 complex. Catalytic activities of N84A and R85A mutant proteins with low heme affinity were significantly higher than those of wild-type protein in the absence of gas molecules. Accordingly, we propose that loss of heme binding enhances basal catalysis without the gas molecule, consistent with previous reports on heme inhibition of Ec DOS catalysis.  相似文献   

18.
Pseudouridine, one major RNA modification, is catabolized into uracil and ribose-5′-phosphate by two sequential enzymatic reactions. In the first step, pseudouridine kinase (PUKI) phosphorylates pseudouridine to pseudouridine 5′-monophosphate. High-fidelity catalysis of pseudouridine by PUKI prevents possible disturbance of in vivo pyrimidine homeostasis. However, the molecular basis of how PUKI selectively phosphorylates pseudouridine over uridine with >100-fold greater efficiency despite minor differences in their Km values has not been elucidated. To investigate this selectivity, in this study we determined the structures of PUKI from Escherichia coli strain B (EcPUKI) in various ligation states. The structure of EcPUKI was determined to be similar to PUKI from Arabidopsis thaliana, including an α/β core domain and β-stranded small domain, with dimerization occurring via the β-stranded small domain. In a binary complex, we show that Ser30 in the substrate-binding loop of the small domain mediates interactions with the hallmark N1 atom of pseudouridine nucleobase, causing conformational changes in its quaternary structure. Kinetic and fluorescence spectroscopic analyses also showed that the Ser30-mediated interaction is a prerequisite for conformational changes and subsequent catalysis by EcPUKI. Furthermore, S30A mutation or EcPUKI complexed with other nucleosides homologous to pseudouridine but lacking the pseudouridine-specific N1 atom did not induce such conformational changes, demonstrating the catalytic significance of the proposed Ser30-mediated interaction. These analyses provide structural and functional evidence for a pseudouridine-dependent conformational change of EcPUKI and its functional linkage to catalysis.  相似文献   

19.
Brokx SJ  Rothery RA  Zhang G  Ng DP  Weiner JH 《Biochemistry》2005,44(30):10339-10348
We report the biochemical and biophysical characterization of YedYZ, a sulfite oxidase homologue from Escherichia coli. YedY is a soluble catalytic subunit with a twin arginine leader sequence for export to the periplasm by the Tat translocation system. YedY is the only molybdoenzyme so far isolated from E. coli with the Mo-MPT form of the molybdenum cofactor. The electron paramagnetic resonance (EPR) signal of the YedY molybdenum is similar to that of known Mo-MPT containing enzymes, with the exception that only the Mo(IV) --> Mo(V) transition is observed, with a midpoint potential of 132 mV. YedZ is a membrane-intrinsic cytochrome b with six putative transmembrane helices. The single heme b of YedZ has a midpoint potential of -8 mV, determined by EPR spectroscopy of YedZ-enriched membrane preparations. YedY does not associate strongly with YedZ on the cytoplasmic membrane. However, mutation of the YedY active site Cys102 to Ser results in very efficient targeting of YedY to YedZ in the membrane, demonstrating a clear role for YedZ as the membrane anchor for YedY. Together, YedYZ comprise a well-conserved bacterial heme-molybdoenzyme found in a variety of bacteria that can be assigned to the sulfite oxidase class of enzyme.  相似文献   

20.
The molybdenum cofactor (Moco)-containing enzymes are divided into three classes that are named after prototypical members of each family, viz. sulfite oxidase, DMSO reductase and xanthine oxidase. Functional or structural models have been prepared for these three prototypical enzymes: (i) The complex [MoO2(mnt)2]2- (mnt2- = 1,2-dicyanoethylenedithiolate) has been found to be able to oxidize hydrogen sulfite to HSO4- and is thus a functional model of sulfite oxidase. Kinetic and computational studies indicate that the reaction proceeds via attack of the substrate at one of the oxo ligands of the complex, rather than at the metal. (ii) The coordination geometries of the mono-oxo [Mo(VI)(O-Ser)(S2)2] entity (S2 = dithiolene moiety of molybdopterin) found in the crystal structure of R. sphaeroides DMSO reductase and the corresponding des-oxo Mo(IV) unit have been reproduced in the complexes [M(VI)O(OSiR3)(bdt)2] and [M(VI)O(OSiR3)(bdt)2] (M = Mo,W; bdt = benzene dithiolate). (iii) A facile route has been developed for the preparation of complexes containing a cis-Mo(VI)OS molybdenum oxo, sulfido moiety similar to that detected in the oxidized form of xanthine oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号