首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ebastine (CAS 90729-43-4) is an antiallergic agent which selectively and potently blocks histamine H1-receptors in vivo. A simple and sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of ebastine and its two oxidized metabolites, carebastine (CAS 90729-42-3) and hydroxyebastine (M–OH), in human plasma. After a pretreatment of plasma sample by solid-phase extraction, ebastine and its metabolites were analyzed on an HPLC system with ultraviolet detection at 254 nm. Chromatography was performed on a cyano column (250×4.0 mm I.D.) at 40 °C with the mobile phase of acetonitrile–methanol–0.012 M ammonium acetate buffer (20:30:48, v/v/v) at a flow rate of 1.2 ml/min. Accurate determinations were possible over the concentration range of 3–1000 ng/ml for the three compounds using 1 ml plasma samples. The intra- and inter-day assay accuracy of this method were within 100±15% of nominal values and the precision did not exceed 12.4% of relative standard deviation. The lower limits of quantitation were 3 ng/ml for ebastine and its metabolites in human plasma. This method was satisfactorily applied to the determination of ebastine and its two oxidized metabolites in human plasma after oral administration of ebastine.  相似文献   

2.
A HPLC–UV determination of clobazam and N-desmethylclobazam in human serum and urine is presented. After simple liquid–liquid extraction with dichloromethane the compounds and an internal standard diazepam were separated on a Supelcosil LC-8-DB column at ambient temperature under isocratic conditions using the mobile phase: CH3CN–water–0.5 M KH2PO4–H3PO4 (440:540:20:0.4, v/v and 360:580:60:0.4, v/v for serum and urine, respectively). The detection was performed at 228 nm with limits of quantification of 2 ng/ml for serum and 1 ng/ml for urine. Relative standard deviations for intra- and inter-assay precision were found below 8% for both compounds for all the tested concentrations. The described procedure may be easily adapted for several 1,4-benzodiazepines.  相似文献   

3.
An isocratic high-performance liquid chromatographic (HPLC) method with ultraviolet detection is described for the quantification of the atypical neuroleptic clozapine and its major metabolites, N-desmethylclozapine and clozapine N-oxide, in human serum or plasma. The method included automated solid-phase extraction on C18 reversed-phase material. Clozapine and its metabolites were separated by HPLC on a C18 ODS Hypersil analytical column (5 μm particle size; 250 mm × 4.6 mm I.D.) using an acetonitrile—water (40:60, v/v) eluent buffered with 0.4% (v/v) N,N,N′,N′-tetramethylethylenediamine and acetic acid to pH 6.5. Imipramine served as internal standard. After extraction of 1 ml of serum or plasma, as little as 5 ng/ml of clozapine and 10 or 20 ng/ml of the metabolites were detectable. Linearity was found for drug concentrations between 5 and 2000 ng/ml as indicated by correlation coefficients of 0.998 to 0.985. The intra- and inter-assay coefficients of variation ranged between 1 and 20%. Interferences with other psychotropic drugs such as benzodiazepines, antidepressants or neuroleptics were negligible. In all samples, collected from schizophrenic patients who had been treated with daily oral doses of 75–400 mg of clozapine, the drug and its major metabolite, N-desmethylclozapine, could be detected, while the concentrations of clozapine N-oxide were below 20 ng/ml in three of sixteen patients. Using the method described here, data regarding relations between therapeutic or toxic effects and drug blood levels or metabolism may be collected in clinical practice to improve the therapeutic efficacy of clozapine drug treatment.  相似文献   

4.
A simple HPLC method has been developed for the determination of ticlopidine in human plasma. Plasma samples were buffered at pH 9 and extracted with n-heptane-isoamyl alcohol (98.5: 1.5, v/v). Imipramine was used as internal standard. Chromatography was performed isocratically with acetonitrile-methanol-0.05 M KH2PO4 (20:25:55, v/v) at pH 3.0 containing 3% triethylamine at a flow-rate of 1 ml/min. A reversed-phase column, Supelcosil LC-8-DB, 15 cm × 4.6 mm I.D., 5 μm particle size, was used. The effluent was monitored by UV absorbance detection at 235 nm. The method showed good accuracy, precision and linearity in the concentration range 5–1200 ng/ml. The limit of quantitation was 5 ng/ml, with a precision (C.V.) of 8.91%, which is the same as that achieved by other authors with a previously published GC-MS method. The procedure described in this paper is simple and allows the routine assessment of ticlopidine plasma concentration in pharmacokinetic studies following therapeutic doses in human subjects.  相似文献   

5.
A new high-performance liquid chromatographic method for the simultaneous determination of indinavir, saquinavir and ritonavir in human plasma is described. Quantitative recovery following liquid–liquid extraction with diethyl ether from 500 μl of human plasma was achieved. Subsequently, the assay was performed with a linear gradient starting at 67 mM potassium dihydrogenphosphate–acetonitrile (65:35 to 40:60, v/v) as a mobile phase, a Phenomenex C18 column and UV detection at 240 and 258 nm, respectively. Linear standard curves were obtained for concentrations ranging from 75 to 20 000 ng/ml for indinavir, from 10 to 6000 ng/ml for saquinavir, and from 45 to 30 000 ng/ml for ritonavir. The calculated intra- and inter-day coefficients of variation were below 6%.  相似文献   

6.
A simple, selective, sensitive and precise high-performance liquid chromatographic plasma assay for the prokinetic drug cisapride is described. Alkalinised samples of plasma (100 μl) were extracted with 1.0 ml of 10% (v/v) isopropanol in chloroform, dried, redissolved in mobile phase and injected. Chromatography was performed at 20°C by pumping a mobile phase of acetonitrile (370 ml) in pH 5.2, 0.02 M phosphate buffer (630 ml) at 1.0 ml/min through a C8 Symmetry column. Cisapride and the internal standard were detected by fluorescence monitoring at 295 nm (excitation) and 350 nm (emission), and were eluted 5 min and 8 min, respectively, after injection. Calibration plots in bovine serum albumin (3% w/v) were linear (r > 0.999) from 5 to 250 ng/ml. Intra-day and inter-day precision (C.V.) was 9.5%, or less, and the accuracy was within 5.5% of the nominal concentration over the range 8–200 ng/ml. Total assay recovery was above 82%. Endogenous plasma components, major cisapride metabolite (norcisapride), and other durgs used in neonatal pharmacotherapeutics did not interfere.  相似文献   

7.
A highly sensitive HPLC method with automated column switching was developed for the simultaneous determination of endogenous levels of 13-cis-retinoic acid (isotretinoin), all-trans-retinoic acid (tretinoin) and their 4-oxo metabolites in plasma samples from man, Cynomolgus monkey, rabbit, rat and mouse. Plasma (0.4 ml) was deproteinated by adding ethanol (1.5 ml) containing the internal standard acitretin. After centrifugation, 1.4 ml of the supernatant were directly injected onto the precolumn packed with LiChrospher 100 RP-18 (5 μm). 1.25% ammonium acetate and acetic acid-ethanol (8:2, v/v) was used as mobile phase during injection and 1% ammonium acetate and 2% acetic acid-ethanol (102:4, v/v) was added, on-line, to decrease the elution strength of the injection solution. After backflush purging of the precolumn, the retained components were transferred to the analytical column in the backflush mode, separated by gradient elution and detected at 360 nm. Two coupled Superspher 100 RP-18 endcapped columns (both 250×4 mm) were used for the separation, together with a mobile phase consisting of acetonitrile-water-10% ammonium acetate-acetic acid: (A) 600:300:60:10 (v/v/v/v), (B) 950:20:5:20 (v/v/v/v), and (C) 990:5:0:5 (v/v/v/v). The method was linear in the range 0.3–100 ng/ml, at least, with a quantification limit of 0.3 ng/ml. The mean recoveries from human plasma were 93.2%–94.4% and the mean inter-assay precision was 2.8%–3.2% (range 0.3–100 ng/ml). Similar results were obtained for animal plasma. The analytes were found to be stable in the plasma of all investigated species stored at −20°C for 4.3 months and at −80°C for 9 months, at least. At this temperature, human plasma samples were even stable for 2 years. The method was successfully applied to more than 6000 human and 1000 animal plasma samples from clinical and toxicokinetic studies. Endogenous levels determined in control patients and pregnant women were similar to published data from volunteers.  相似文献   

8.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantitation of risperidone and its major metabolite 9-hydroxyrisperidone in human plasma, using clozapine as internal standard. After sample alkalinization with 1 ml of NaOH (2 M) the test compounds were extracted from plasma using diisopropyl ether–isoamylalcohol (99:1, v/v). The organic phase was back-extracted with 150 μl potassium phosphate (0.1 M, pH 2.2) and 60 μl of the acid solution was injected into a C18 BDS Hypersil analytical column (3 μm, 100×4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.05 M, pH 3.7 with 25% H3PO4)–acetonitrile (70:30, v/v), and was delivered at a flow-rate of 1.0 ml/min. The peaks were detected using a UV detector set at 278 nm and the total time for a chromatographic separation was about 4 min. The method was validated for the concentration range 5–100 ng/ml. Mean recoveries were 98.0% for risperidone and 83.5% for 9-hydroxyrisperidone. Intra- and inter-day relative standard deviations were less than 11% for both compounds, while accuracy, expressed as percent error, ranged from 1.6 to 25%. The limit of quantitation was 2 ng/ml for both analytes. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it has successfully been applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

9.
A selective reproducible high-performance liquid chromatographic assay for the simultaneous quantitative determination of the antimalarial compound artesunic acid (ARS), dihydroartemisinin (DQHS) and artemisinin (QHS), as internal standard, is described. After extraction from plasma, ARS and DQHS were analysed using an Econosil C8 column and a mobile phase of acetonitrile–0.05 M acetic acid (42:58, v/v) adjusted to pH 5.0 and electrochemical detection in the reductive mode. The mean recovery of ARS and DQHS over a concentration range of 50–200 ng/ml was 75.5% and 93.5%, respectively. The within-day coefficients of variation were 4.2–7.4% for ARS and 2.6–4.9% for DQHS. The day-to-day coefficients of variation were 1.6–9.6% and 0.5–8.3%, respectively. The minimum detectable concentration for ARS and DQHS in plasma was 4.0 ng/ml for both compounds. The method was found to be suitable for use in clinical pharmacological studies.  相似文献   

10.
The simultaneous isolation and determination of mitoxantrone (Novantrone ®) and its two known metabolites (the mono- and dicarboxylic metabolites) were carried out using a high-performance liquid chromatographic (HPLC) system equipped with an automatic pre-column-switching system that permits drug analysis by direct injection of biological samples. Plasma or urine samples were injected directly on to an enrichment pre-column flushed with methanol-water (5:95, v/v) as the mobile phase. The maximum amount of endogenous water-soluble components was removed from biological samples within 9 min. Drugs specifically adsorbed on the pre-column were back-flushed on to an analytical column (Nucleosil C18, 250x4.6 mm I.D.) with 1.6 M ammonium formate buffer (pH 4.0) (2.5% formic acid) containing 20% acetonitrile. Detection was effected at 655 nm. Chromatographic analysis was performed within 12 min. The detection limit of the method was about 4 ng/ml for urine and 10 ng/ml for plasma samples. The precision ranged from 3 to 11% depending on the amount of compound studied. This technique was applied to the monitoring of mitoxantrone in plasma and to the quantification of the unchanged compound and its two metabolites in urine from patients receiving 14 mg/m2 of mitoxantrone by intravenous infusion for 10 min.  相似文献   

11.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifampin in human plasma. Rifampin and sulindac (internal standard) are extracted from human plasma using a C2 Bond Elut extraction column. A 100-μl volume of 0.1 M HCl is added to the plasma before extraction to increase the retenction of the compounds on the extraction column. Methanol (1 ml) is used to elute the compounds and 0.5 ml of 3 mg/ml ascorbic acid in water is added to the final eluate to reduce the oxidation of rifampin. Separation is achieved by reversed-phase chromatography on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate-acetonitrile (55:45, v/v). Detection is by ultraviolet absorbance at 340 nm. The retention times of rifampin and internal standard are approximately 4.4 and 7.8 min, respectively. The assay is linear in concentration ranges of 50 to 35 000 ng/ml. The quantitation limit is 50 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

12.
A gradient reversed-phase high-performance liquid chromatographic technique is described for the easy separation and quantification of some retinoids; all-trans-retinoic acid, 13-cis-retinoic acid, 9-cis-retinoic acid and their corresponding 4-oxometabolites, in plasma. The method involved a diethyl ether-ethyl acetate (50:50, v/v) mixture extraction at pH 7 with acitretin and 13-cis-acitretin as internal standards. A Nova-Pak C18 steel cartridge column was used. The mobile phase was methanol-acetonitrile (65:35, v/v) and 5% tetrahydrofuran (solvent A) and 2% aqueous acetic acid (solvent B) at 1 ml/min. The gradient composition was (only the percentages of solvent B are mentioned): I, 25% solvent B at the time of injection; II, 12% solvent B at 11 min until 30 min; III, 25% solvent B and maintenance of 25% solvent B for 10 min until a new injection. Total time between injections was 40 min. Detection was by absorbance at 350 nm. The precision calculated for plasma concentrations ranging from 2 to 250 ng/ml was better than 15% and the accuracy was less than 12%. The linearity of the method was in the range of 2 to 400 ng/ml of plasma. The limit of quantification was 2 ng/ml for each of the compounds. The HPLC method was applied to plasma specimens collected from animals receiving single dose administrations of all-trans-retinoic acid, 13-cis-retinoic acid and 9-cis-retinoic acid.  相似文献   

13.
A sensitive and highly specific method for the determination of LSD and N-demethyl-LSD in urine, using combined liquid chromatography and mass spectrometry (LC-MS) with electrospray ionization, has been developed. Extrelut-3 extraction cartridges were used for a basic sample clean-up. Elution was obtained by toluene-diethyl ether (60:40, v/v). A Nucleosil C18 (150×1 mm I.D.) reversed-phase column was used for the chromatographic separation, together with a mixture of 2 mM ammonium formate buffer (pH 3) and acetonitrile (70:30, v/v) as mobile phase. Recoveries were 93 and 80%, detection limits 0.025 and 0.035 ng/ml for LSD and N-demethyl-LSD, respectively. Intra-assay precision, studied at four concentrations, was better than 9% at the ng/ml range and better than 14% at 0.10 ng/ml for both compounds. Limits of quantitation were 0.05 and 0.10 ng/ml for LSD and N-demethyl-LSD, respectively. Reproducibility was good and linearity excellent for LSD in the range from 0.05 to 20 ng/ml (r>0.9999, N=7).  相似文献   

14.
The present describes a new high-performance liquid chromatographic method with fluorescence detection for the analysis of levodropropizine [S-(−)-3-(4-phenylpiperazin-1-yl)-propane-1,2-diol] (Levotuss), an anti-tussive drug, in human serum and plasma. A reversed-phase separation of levodropropizine was coupled with detection of the native fluorescence of the molecule, using excitation and emission wavelengths of 240 nm and 350 nm respectively. The analytical column was packed with spherical 5 μm poly(styrene-divinylbenzene) particles and the mobile phase was 0.1 M NaH2PO4 pH 3-methanol (70:30, v/v), containing 0.5% (v/v) tetrahydrofuran. For quantitation, p-methoxylevodropropizine was used as the internal standard. Samples of 200 μl of either serum or plasma were mixed with 200 μl of 0.1 M Na2HPO4 pH 8.9 and extracted with 5 ml of chloroform-2-propanol (9:1, v/v). The dried residue from the organic extract was redissolved with distilled water and directly injected into the chromatograph. The limit of detection for levodropropizine, in biological matrix, was about 1–2 ng/ml, at a signal-to-noise ratio of 3. The linearity was satisfactory over a range of concentrations from 3 to 1000 ng/ml (r2 = 0.99910); within-day precision tested in the range 5–100 ng/ml as well as day-to-day reproducibility proved acceptable, with relative standard deviations better than 1% in most cases. Interferences from as many as 91 therapeutic or illicit drugs were excluded.  相似文献   

15.
A gas-liquid chromatographic (GLC) assay suitable for the analysis of the cis(Z)-stereoisomer of the antipsychotic drug flupentixol in human serum or plasma was developed. The minimal quantifiable concentration was 0.5 ng/ml and the day-to-day coefficient of variation was 11.2% at 1 ng/ml and 8.7% at 10 ng/ml. Following addition of perphenazine as the internal standard (I.S.) and aqueous NaOH, samples (2 ml) are extracted with n-hexane-isoamyl alcohol (98.5:1.5, v/v) (solvent), back-extracted to 0.1 M HCl and after one washing-step and addition of aqueous NaOH again extracted into 100 μl solvent. After evaporation to dryness, the extract is reconstituted in 20 μl solvent and evaporated to approximative 10 μl. A 4-μl aliquot is injected cool on-column onto the GLC system. A gas chromatograph HP 5890 with on-column injection port, nitrogen-phosphorus detector (NPD), a HP-1 25 m × 0.32 mm I.D., 0.5 μm capillary and hydrogen (3 ml/min, automated pressure control) as the carrier gas was applied. The negative influence of light on the assay was measured and discussed. The suitability of this method for clinical pharmacokinetic studies and therapeutic drug monitoring (TDM) was determined by the analysis of serum samples of 12 schizophrenic patients.  相似文献   

16.
A high-performance liquid chromatographic method for the measurement of bumetamide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol—water—glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5–2000 ng/ml.  相似文献   

17.
A sensitive and very specific method, using liquid chromatography–electrospray mass spectrometry (LC–ES-MS), was developed for the determination of epirubicin, doxorubicin, daunorubicin, idarubicin and the respective active metabolites of the last three, namely doxorubicinol, daunorubicinol and idarubicinol in human serum, using aclarubicin as internal standard. Once thawed, 0.5-ml serum samples underwent an automated solid-phase extraction, using C18 Bond Elut cartridges (Varian) and a Zymark Rapid-Trace robot. After elution of the compounds with chloroform–2-propanol (4:1, v/v) and evaporation, the residue was reconstituted with a mixture of 5 mM ammonium formate buffer (pH 4.5)–acetonitrile (60:40, v/v). The chromatographic separation was performed using a Symmetry C18, 3.5 μm (150×1 mm I.D.) reversed-phase column, and a mixture of 5 mM ammonium formate buffer (pH 3)–acetonitrile (70:30, v/v) as mobile phase, delivered at 50 μl/min. The compounds were detected in the selected ion monitoring mode using, as quantitation ions, m/z 291 for idarubicin and idarubicinol, m/z 321 for daunorubicin and daunorubicinol, m/z 361 for epirubicin and doxorubicin, m/z 363 for doxorubicinol and m/z 812 for aclarubicin (I.S.). Extraction recovery was between 71 and 105% depending on compounds and concentration. The limit of detection was 0.5 ng/ml for daunorubicin and idarubicinol, 1 ng/ml for doxorubicin, epirubicin and idarubicin, 2 ng/ml for daunorubicinol and 2.5 ng/ml for doxorubicinol. The limit of quantitation (LOQ) was 2.5 ng/ml for doxorubicin, epirubicin and daunorubicinol, and 5 ng/ml for daunorubicin, idarubicin, doxorubicinol and idarubicinol. Linearity was verified from these LOQs up to 2000 ng/ml for the parent drugs (r≥0.992) and 200 ng/ml for the active metabolites (r≥0.985). Above LOQ, the within-day and between-day precision relative standard deviation values were all less than 15%. This assay was applied successfully to the analysis of human serum samples collected in patients administered doxorubicin or daunorubicin intravenously. This method is rapid, reliable, allows an easy sample preparation owing to the automated extraction and a high selectivity owing to MS detection.  相似文献   

18.
A sensitive and accurate liquid chromatographic-electrospray mass spectrometric (LC-ES-MS) method for the determination of haloperidol (H) and reduced haloperidol (RH) in human plasma is presented, using chlorohaloperidol as the internal standard. A 2-ml volume of plasma subjected to basic (NaOH) extraction, acid (HCl) back-extraction, acid wash and basic (NaOH) re-extraction. The extraction solvent was hexane-isoamyl alcohol (99:1, v/v) for the whole procedure. A Nucleosil C18 column (150×1 mm) was used for high-performacne liquid chromatography, together with 2 mM HCOONH4-acetonitrile (55:45, v/v; pH 3.0) as the mobile phase. For each drug, four characteristic ions were monitored. Linearity was assessed in the ranges 0.1–50 and 0.25–50 ng/ml for H and RH, respectively. Recoveries were 58 and 70% and detection limits were 0.075 and 0.100 ng/ml for H and RH, respectively. Correlation coefficients were better than 0.999 for both compounds. R.S.D.s for repeatability and reproducibility at 0.25 ng/ml were 11.1 and 8.5% for H and 9.4 and 11.2% for RH, respectively. One of the main advantages of (LC-ES-MS) over other detection systems is the increase in selectivity obtained by monitoring three ions of confirmation for each of the drugs.  相似文献   

19.
A simple and sensitive column-switching HPLC method was developed for the simultaneous determination of two furocoumarin compounds, byak-angelicin and oxypeucedanin hydrate, which are the main components of hot water extract of Angelica dahurica root (AE), in rat plasma. Plasma sample was simply deproteinated with perchloric acid. After centrifugation, the supernatant was injected into a column-switching HPLC system consisting of a clean-up column (Symmetry Shield RP 8, 20×3.9 mm I.D.) and analytical column (Symmetry C18, 75×4.6 mm I.D.) which were connected with a six-port switching valve. The flow-rate of the mobile phase (acetonitrile–water, 20:80) was maintained at 1 ml/min. Detection was carried out at wavelength 260 nm with a UV detector. The column temperature was maintained at 40°C. The calibration curves of byak-angelicin and oxypeucedanin hydrate were linear over the ranges 19.6 to 980 ng/ml (r2>0.997). The accuracy of these analytes was less than 4.4%. The intra- and inter-day relative standard deviations of byak-angelicin and oxypeucedanin hydrate were within 12.0% and 12.7%, respectively. The present method was applied for the analysis of plasma concentration from rats after administration of AE.  相似文献   

20.
A robust, fully automated assay procedure for the determination of rosiglitazone (I, BRL-49653) in human plasma has been developed. Plasma concentrations of I were determined using automated sequential trace enrichment of dialysates (ASTED) coupled to reversed-phase high-performance liquid chromatography. Sequential automated dialysis of human plasma samples was followed by concentration of the dialysate by trace enrichment on a C18 cartridge. Drug and internal standard, SB-204882 (II) were eluted from the trace enrichment cartridge by mobile phase (0.01 M ammonium acetate, pH 8–acetonitrile, 65:35, v/v) onto the HPLC column (a Novapak C18, 4 μm, 100×5 mm radial compression cartridge) protected by a Guard-Pak C18 cartridge. The compounds were detected by fluorescence detection, using an excitation wavelength of 247 nm, and emission wavelength of 367 nm. The lower limit of quantitation of the method was 3 ng/ml (200 μl aliquot) with linearity demonstrated up to 100 ng/ml. Within- and between-run precision and accuracy of determination were better than 10% across the calibration range. There was no evidence of instability of I in human plasma following three complete freeze–thaw cycles and samples can be safely stored for at least 7 months at −20°C. This method has been successfully utilised to provide pharmacokinetic data throughout the clinical development of rosiglitazone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号