首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A computational approach to designing a peptide-based ligand for the purification of human serum albumin (HSA) was undertaken using molecular docking and molecular dynamics (MD) simulation. A three-step procedure was performed to design a specific ligand for HSA. Based on the candidate pocket structure of HSA (warfarin binding site), a peptide library was built. These peptides were then docked into the pocket of HSA using the GOLD program. The GOLDscore values were used to determine the affinity of peptides for HSA. Consequently, the dipeptide Trp–Trp, which shows a high GOLDscore value, was selected and linked to a spacer arm of Lys[CO(CH2)5NH] on the surface of ECH-lysine sepharose 4 gel. For further evaluation, the Autodock Vina program was used to dock the linked compound into the pocket of HSA. The docking simulation was performed to obtain a first guess of the binding structure of the spacer–Trp–Trp–HSA complex and subsequently analyzed by MD simulations to assess the reliability of the docking results. These MD simulations indicated that the ligand–HSA complex remains stable, and water molecules can bridge between the ligand and the protein by hydrogen bonds. Finally, absorption spectroscopic studies were performed to illustrate the appropriateness of the binding affinity of the designed ligand toward HSA. These studies demonstrate that the designed dipeptide can bind preferentially to the warfarin binding site. Graphical Abstract
Three-step computational approach to the design of a dipeptide ligand for human serum albumin purification exploiting structure-based docking and molecular dynamics simulation  相似文献   

2.
Several drugs interact with the major plasma proteins serum albumin and alpha‐1 acid glycoprotein. Such binding may be either beneficial or disadvantageous from a pharmacokinetic perspective. In the present paper, we investigate the thermodynamics involved in the binding of a series of promising cationic antimicrobial peptides to the alpha‐1 acid glycoprotein using isothermal titration calorimetry. The drug‐like peptides are able to effectively destroy multiresistant bacterial strains, and members of this peptide class are currently in clinical phase II trials. Similar peptides, in a previous study, have been shown to bind to serum albumin resulting in a 10‐fold reduction in the peptides ability to kill bacteria in vitro. Here, it is shown that the peptides also are ligands for alpha‐1 glycoprotein with moderate binding affinities. The binding mode is investigated in detail using molecular docking, which maps the interaction to sub‐pockets I, II and III of the binding site. Despite this interaction, protein binding is shown to have little or no effect on the ability of the peptides to kill bacteria in vitro, either at normal physiological or acute phase concentrations. The results show that although the peptides interact with the binding pocket of alpha‐1 acid glycoprotein, the low stoichiometric binding ratio ensures that the interaction is not an obstacle for further development of these promising peptides as antimicrobial therapies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Curcumin has been reported to be therapeutically active but has poor bioavailability, half life, and high rate of metabolic detoxifcation. Most of the hydrophobic and acidic drugs get transported through human serum albumin (HSA). Binding of drugs to serum protein increases their half-life. The present study is focused to analyze interaction of curcumin with HSA by NMR and docking studies. In order to investigate the binding affinity of curcumin with HSA, NMR based diffusion techniques and docking study have been carried out. We report that curcumin has shown comparable binding affinity value vis-a-vis standard, the accessible surface area (ASA) of human serum albumin (uncomplexed) and its docked complex with curcumin at both binding sites was calculated and found to be close to that of warfarin and diazepam respectively. Conclusion drawn from our study demonstrates that curcumin interacts with HSA strongly thereby its poor half life is due to high rate of its metabolic detoxification as reported in literature.
In diffusion NOE process the signals of small molecules remain (tryptophan and curcumin) which interact with macromolecules. However, the signals of molecules which do not interact disappear. This indicates curcumin and tryptophan molecule bind with human serum albumin  相似文献   

4.
Binding affinities of fluconazole and its analogue 2-(2,4-dichlorophenyl)-1,3-di(1H-1,2,4-triazol-yl)-2-propanol (DTP) to human serum albumin (HSA) were investigated under approximately human physiological conditions. The obtained result indicated that HSA could generate fluorescent quenching by fluconazole and DTP because of the formation of non-fluorescent ground-state complexes. Binding parameters calculated from the Stern–Volmer and the Scatchard equations showed that fluconazole and DTP bind to HSA with binding affinities of the order 104 L/mol. The thermodynamic parameters revealed that the binding was characterized by negative enthalpy and positive entropy changes, suggesting that the binding reaction was exothermic. Hydrogen bonds and hydrophobic interaction were found to be the predominant intermolecular forces stabilizing the drug–protein. The effect of metal ions on the binding constants of fluconazole–HSA complex suggested that the presence of Mg2+ and Zn2+ ions could decrease the free drug level and extend the half-life in the systematic circulation. Docking experiments revealed that fluconazole and DTP binds in HSA mainly by hydrophobic interaction with the possibility of hydrogen bonds formation between the drugs and the residues Arg 222, Lys 199 and Lys 195 in HSA.  相似文献   

5.

Background

Human serum albumin (HSA) is an abundant plasma protein that binds a wide variety of hydrophobic ligands including fatty acids, bilirubin, thyroxine and hemin. Although HSA-heme complexes do not bind oxygen reversibly, it may be possible to develop modified HSA proteins or heme groups that will confer this ability on the complex.

Results

We present here the crystal structure of a ternary HSA-hemin-myristate complex, formed at a 1:1:4 molar ratio, that contains a single hemin group bound to subdomain IB and myristate bound at six sites. The complex displays a conformation that is intermediate between defatted HSA and HSA-fatty acid complexes; this is likely to be due to low myristate occupancy in the fatty acid binding sites that drive the conformational change. The hemin group is bound within a narrow D-shaped hydrophobic cavity which usually accommodates fatty acid; the hemin propionate groups are coordinated by a triad of basic residues at the pocket entrance. The iron atom in the centre of the hemin is coordinated by Tyr161.

Conclusion

The structure of the HSA-hemin-myristate complex (PDB ID 1o9x) reveals the key polar and hydrophobic interactions that determine the hemin-binding specificity of HSA. The details of the hemin-binding environment of HSA provide a structural foundation for efforts to modify the protein and/or the heme molecule in order to engineer complexes that have favourable oxygen-binding properties.
  相似文献   

6.
The interaction of carbonylcyanide p‐(trifluoromethoxy) phenylhydrazone (FCCP) with human serum albumin (HSA) and human transferrin (HTF) was investigated using multiple spectroscopy, molecular modeling, zeta‐potential and conductometry measurements of aqueous solutions at pH 7.4. The fluorescence, UV/vis and polarization fluorescence spectroscopy data disclosed that the drug–protein complex formation occurred through a remarkable static quenching. Based on the fluorescence quenching, two sets of binding sites with distinct affinities for FCCP existed in the two proteins. Steady‐state and polarization fluorescence analysis showed that there were more affinities between FCCP and HSA than HTF. Far UV‐CD and synchronous fluorescence studies indicated that FCCP induced more structural changes on HSA. The resonance light scattering (RLS) and zeta‐potential measurements suggested that HTF had a greater resistance to drug aggregation, whereas conductometry measurements expressed the presence of free ions improving the resistance of HSA to aggregation. Thermodynamic measurements implied that a combination of electrostatic and hydrophobic forces was involved in the interaction between FCCP with both proteins. The phase diagram plots indicated that the presence of second binding site on HSA and HTF was due to the existence of intermediate structures. Site marker competitive experiments demonstrated that FCCP had two distinct binding sites in HSA which were located in sub‐domains IIA and IIIA and one binding site in the C‐lobe of HTF as confirmed by molecular modeling. The obtained results suggested that both proteins could act as drug carriers, but that the HSA potentially had a higher capacity for delivering FCCP to cancerous tissues. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Interaction between ulipristal acetate (UPA) and human serum albumin (HSA) was investigated in simulated physiological environment using multi-spectroscopic and computational methods. Fluorescence experiments showed that the quenching mechanism was static quenching, which was confirmed by the time-resolved fluorescence. Binding constants (Ka) were found to be 1?×?105 L mol?1, and fluorescence data showed one binding site. Thermodynamic constants suggested the binding process was mainly controlled by electrostatic interactions. Results from the competition experiments indicated that UPA bound to site I of HSA. Fourier transform infrared spectra, circular dichroism spectra, synchronous fluorescence spectra, and 3D fluorescence indicated that UPA can induce conformation change in the HSA. The content of α-helix and β-sheet increased, while β-turn decreased. Hydrophobicity around the tryptophan residues declined, whereas its polarity increased. Molecular docking results were consistent with the experimental results. Results suggested that UPA located at the hydrophobic cavity site I of HSA, and hydrophobic force played the key role in the binding process. Moreover, molecular dynamics simulation was performed to determine the stability of free HSA and HSA-UPA system. Results indicated that UPA can stabilize HSA to a certain degree and enhance the flexibility of residues around site I.

Communicated by Ramaswamy H. Sarma  相似文献   


8.
The interaction of many lytic cationic antimicrobial peptides with their target cells involves electrostatic interactions, hydrophobic effects, and the formation of amphipathic secondary structures, such as alpha helices or beta sheets. We have shown in previous studies that incorporating approximately 30%d-amino acids into a short alpha helical lytic peptide composed of leucine and lysine preserved the antimicrobial activity of the parent peptide, while the hemolytic activity was abolished. However, the mechanisms underlying the unique structural features induced by incorporating d-amino acids that enable short diastereomeric antimicrobial peptides to preserve membrane binding and lytic capabilities remain unknown. In this study, we analyze in detail the structures of a model amphipathic alpha helical cytolytic peptide KLLLKWLL KLLK-NH2 and its diastereomeric analog and their interactions with zwitterionic and negatively charged membranes. Calculations based on high-resolution NMR experiments in dodecylphosphocholine (DPCho) and sodium dodecyl sulfate (SDS) micelles yield three-dimensional structures of both peptides. Structural analysis reveals that the peptides have an amphipathic organization within both membranes. Specifically, the alpha helical structure of the L-type peptide causes orientation of the hydrophobic and polar amino acids onto separate surfaces, allowing interactions with both the hydrophobic core of the membrane and the polar head group region. Significantly, despite the absence of helical structures, the diastereomer peptide analog exhibits similar segregation between the polar and hydrophobic surfaces. Further insight into the membrane-binding properties of the peptides and their depth of penetration into the lipid bilayer has been obtained through tryptophan quenching experiments using brominated phospholipids and the recently developed lipid/polydiacetylene (PDA) colorimetric assay. The combined NMR, FTIR, fluorescence, and colorimetric studies shed light on the importance of segregation between the positive charges and the hydrophobic moieties on opposite surfaces within the peptides for facilitating membrane binding and disruption, compared to the formation of alpha helical or beta sheet structures.  相似文献   

9.
A chiral stationary phase for high-performance liquid chromatography, based upon immobilized human serum albumin (HSA), was used to investigate the effect of octanoic acid on the simultaneous binding of a series of drugs to albumin. Octanoic acid was found to bind with high affinity to a primary binding site, which in turn induced an allosteric change in the region of drug binding Site II, resulting in the displacement of compounds binding there. Approximately 80% of the binding of suprofen and ketoprofen to HSA was accounted for by binding at Site II. Octanoic acid was found to also bind to a secondary site on HSA, with much lower affinity. This secondary site appeared to be the warfarin—azapropazone binding area (drug binding Site I), as both warfarin and phenylbutazone were displaced in a competitive manner by high levels of octanoic acid. The enantioselective binding to HSA exhibited by warfarin, suprofen and ketoprofen was found to be due to differential binding of the enantiomers at Site I; the primary binding site for suprofen and ketoprofen was not enantioselective.  相似文献   

10.

Objectives

To biochemically characterize synthetic peptides to control harmful algal blooms (HABs) that cause red tides in marine water ecosystems.

Results

We present an analysis of several short synthetic peptides and their efficacy as algicidal agents. By altering the amino acid composition of the peptides we addressed the mode of algicidal action and determine the optimal balance of cationic and hydrophobic content for killing. In a controlled setting, these synthetic peptides disrupted both plasma and chloroplast membranes of several species known to result in HABs. This disruption was a direct result of the hydrophobic and cationic content of the peptide. Furthermore, by using an anti-HAB bioassay in scallops, we determined that these peptides were algicidal without being cytotoxic to other marine organisms.

Conclusions

These synthetic peptides may prove promising for general marine ecosystem remediation where HABs have become widespread and resulted in serious economic loss.
  相似文献   

11.

Background

Curcumin has emerged to be utilized as a superb beneficial agent, due to its naturally occurring anti-oxidant, anti-inflammatory and anti-carcinogenic property.

Methods

The interaction of curcumin with human serum albumin, the main in vivo transporter of exogenous substances, was investigated using absorption spectroscopy, steady-state fluorescence, excited state life-time studies and circular dichroism spectroscopy.

Results

Isothermal titration calorimetry techniques inferred one class of binding site with binding constant ~1.74×105M?1 revealing a strong interaction. The binding profile was analyzed through the evaluation of the thermodynamic parameters, which indicated the involvement of hydrophobic interactions (burial of non-polar group). Fluorescence lifetime of tryptophan residue was observed to decrease to 1.94 ns from 2.84 ns in presence of Curcumin. Percentage of α helicity of human serum albumin was also reduced significantly upon binding with curcumin as evidenced by circular dichroism measurement leading to conformational modification of the protein molecule.

Conclusions

On the basis of such complementary results, it may be concluded that curcumin shows strong binding affinity for human serum albumin, probably at the hydrophobic cavities of the protein and at or around the tryptophan residue. Molecular Docking analysis of HSA and curcumin provided light on the number of binding sites at an atomic level, which were already determined at a molecular level in spectroscopic measurements. Our study unfolds the modes of interaction of curcumin with human serum albumin in the light of different biophysical techniques and molecular modeling analysis.
  相似文献   

12.
Fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), and molecular modeling methods were employed to analyze the binding of glycyrrhetinic acid (GEA) to human serum albumin (HSA) under physiological conditions with GEA concentrations from 4.0x10(-6) to 4.5x10(-5) mol L(-1). The binding of GEA to HSA was via two types of sites: the numbers of binding site for the first type was near 0.45 and for the second type it was approximately 0.75. The binding constants of the second type binding site were lower than those of the first type binding site at corresponding temperatures, the results suggesting that the first type of binding site had high affinity and the second binding site involved other sites with lower binding affinity and selectivity. The fluorescence titration results indicated that GEA quenched the fluorescence intensity of HSA through static mechanism. The FTIR spectra evidence showed that the protein secondary structure changed with reduction of alpha-helices about 26.2% at the drug to protein molar ratio of 3. Thermodynamic analysis showed that hydrogen bonds were the mainly binding force in the first type of binding site, and hydrophobic interactions might play a main role in the second type of binding site. Furthermore, the study of computational modeling indicated that GEA could bind to the site I of HSA and hydrophobic interaction was the major acting force for the second type of binding site, which was in agreement with the thermodynamic analysis.  相似文献   

13.
Surface-enhanced Raman spectroscopy was employed in this work to study the interaction between the antitumoral drug emodin and human serum albumin (HSA), as well as the influence of fatty acids in this interaction. We demonstrated that the drug/protein interaction can take place through two different binding sites which are probably localized in the IIA and IIIA hydrophobic pockets of HSA and which correspond to Sudlow's I and II binding sites, respectively. The primary interaction site of this drug seems to be site II in the defatted albumin. Fatty acids seem to displace the drug from site II to site I in nondefatted HSA, due to the high affinity of fatty acids for site II. The drug interacts with the protein through its dianionic form in defatted HSA (when placed in the site II) and through its neutral form in the site I of nondefatted albumins.  相似文献   

14.
Bacterial exopolysaccharides provide protection against phagocytosis, opsonization, and dehydration and act as a major structural component of the extracellular matrix in biofilms. They contribute to biofilm-related resistance by acting as a diffusion barrier to positively charged antimicrobial agents including cationic antimicrobial peptides (CAPs). We previously created novel CAPs consisting of a nonamphipathic hydrophobic core flanked by Lys residues and containing a Trp residue in the hydrophobic segment as a fluorescent probe. Peptides of this type above a specific hydrophobicity threshold insert spontaneously into membranes and have antimicrobial activity against Gram-positive and Gram-negative bacteria at micromolar concentrations. Here we show that alginate, a polymer of beta-d-mannuronate and alpha-l-guluronate secreted by the cystic fibrosis pathogen Pseudomonas aeruginosa, induces an alpha-helical conformation detected by circular dichroism spectroscopy and blue shifts in Trp fluorescence maxima in peptides above the hydrophobicity threshold, changes typically observed upon association of such peptides with nonpolar (membrane) environments. Parallel effects were observed in the archetypical CAPs magainin II amide and cecropin P1. Fluorescence resonance energy transfer studies indicated that alginate induces peptide-peptide association only in peptides above the hydrophobicity threshold, suggesting that the hydrophilic alginate polymer behaves as an "auxiliary membrane" for the bacteria, demonstrating a unique protective role for biofilm matrices against CAPs.  相似文献   

15.
5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone is one of the bioactive components isolated from Artemisia plants possessing antitumor therapeutic activities. In this paper, its binding properties and binding sites located on human serum albumin (HSA) have been studied using UV absorption spectroscopy, fluorescence spectroscopy and Fourier transform infrared (FT-IR) spectra. The results of fluorescence titration revealed that 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone could strongly quench the intrinsic fluorescence of HSA by static quenching and there was only one class of binding sites on HSA for this drug. The binding constants at four different temperatures (289, 298, 310, and 318 K) were 1.93, 1.56, 1.22, and 0.93x10(5) L mol-1, respectively. The FT-IR spectra evidence showed that the protein secondary structure changed with reduction of alpha-helices about 27.6% at the drug to protein molar ratio of 3. The thermodynamic functions standard enthalpy change (DeltaH0) and standard entropy change (DeltaS0) for the reaction were calculated to be -18.70 kJ mol-1 and 36.62 J mol-1 K-1 according to the van't Hoff equation. These results and the molecular modeling study suggested that hydrophobic interaction was the predominant intermolecular force stabilizing the complex, and 5,7,4'-trihydroxy-6,3',5'-trimethoxyflavone could bind to the site I of HSA (the Warfarin Binding site).  相似文献   

16.
Human serum albumin (HSA) is a potent inhibitor of Aβ self-association and this novel, to our knowledge, function of HSA is of potential therapeutic interest for the treatment of Alzheimer’s disease. It is known that HSA interacts with Aβ oligomers through binding sites evenly partitioned across the three albumin domains and with comparable affinities. However, as of this writing, no information is available on the HSA-Aβ interactions beyond domain resolution. Here, we map the HSA-Aβ interactions at subdomain and peptide resolution. We show that each separate subdomain of HSA domain 3 inhibits Aβ self-association. We also show that fatty acids (FAs) compete with Aβ oligomers for binding to domain 3, but the determinant of the HSA/Aβ oligomer interactions are markedly distinct from those of FAs. Although salt bridges with the FA carboxylate determine the FA binding affinities, hydrophobic contacts are pivotal for Aβ oligomer recognition. Specifically, we identified a site of Aβ oligomer recognition that spans the HSA (494–515) region and aligns with the central hydrophobic core of Aβ. The HSA (495–515) segment includes residues affected by FA binding and this segment is prone to self-associate into β-amyloids, suggesting that sites involved in fibrilization may provide a lead to develop inhibitors of Aβ self-association.  相似文献   

17.
Mothes E  Faller P 《Biochemistry》2007,46(8):2267-2274
Human serum albumin (HSA) is the most abundant protein in the blood plasma and is involved in the transport of metal ions. Four metal-binding sites with different specificities have been described in HSA: (i) the N-terminal site provided by Asp1, Ala2, and His3, (ii) the site at the reduced Cys34, (iii) site A, including His67 as a ligand, and (iv) the nonlocalized site B. HSA can bind CoII, and HSA was proposed to be involved in CoII transport. Recently, binding of CoII to HSA has attracted much interest due to the so-called albumin cobalt binding (ACB) test approved by the Food and Drug Administration for evaluation of myocardial ischemia. Although the binding of CoII to HSA is important, the binding of CoII to HSA is not well-characterized. Here the binding of CoII to HSA was studied under anaerobic conditions to prevent CoII oxidation. Electronic absorption, EPR, and NMR spectroscopies indicate three specific and well-separated binding sites for CoII in HSA. CoII ions in all three sites are in a high-spin state and coordinated in a distorted octahedral geometry. Competition experiments with CdII (known to bind to sites A and B) and CuII (known to bind to the N-terminal site) were used to identify the sites of binding of CoII to HSA. They revealed that the first two equivalents of CoII bind to sites A and B. Only the third may be bound to the N-terminal site. The repercussions of these results on the understanding of the ACB test and hence the myocardial ischemia are discussed.  相似文献   

18.
The chronicity of Pseudomonas aeruginosa infections in cystic fibrosis (CF) patients is characterized by overproduction of the exopolysaccharide alginate, in which biofilm bacteria are embedded. Alginate apparently contributes to the antibiotic resistance of bacteria in this form by acting as a diffusion barrier to positively charged antimicrobial agents. We have been investigating cationic antimicrobial peptides (CAPs) (prototypic sequence: KKAAAXAAAAAXAAWAAXAAAKKKK-NH(2), where X is any of the 20 commonly occurring amino acids) that were originally designed as transmembrane mimetic peptides. Peptides of this group above a specific hydrophobicity threshold insert spontaneously into membranes and have antibacterial activity at micromolar concentrations. While investigating the molecular basis of biofilm resistance to peptides, we found that the anionic alginate polysaccharide induces conformational changes in the most hydrophobic of these peptides typically associated with insertion of such peptides into membrane environments [Chan et al., J. Biol. Chem. (2004) vol. 279, pp. 38749-38754]. Through a combination of experiments measuring release of the fluorescent dye calcein from phospholipid vesicles, peptide interactions with vesicles in the presence and absence of alginate, and affinity of peptides for alginate as a function of net peptide core hydrophobicity, we show here that alginate offers a microenvironment that provides a protective mechanism for the encased bacteria by both binding and promoting the self-association of the CAPs. The overall results indicate that hydrophilic alginate polymers contain a significant hydrophobic compartment, and behave as an 'auxiliary membrane' for bacteria, thus identifying a unique protective role for biofilm exopolysaccharide matrices.  相似文献   

19.
The binding affinity of human serum albumin (HSA) to three antimalarial indolone-N-oxide derivatives, INODs, was investigated under simulated physiological conditions using fluorescence spectroscopy in combination with UV-vis absorption and circular dichroism (CD) spectroscopy. Analysis of fluorescence quenching data of HSA by these compounds at different temperatures using Stern-Volmer and Lineweaver-Burk methods revealed the formation of a ground state indolone-HSA complex with binding affinities of the order 10(4) M(-1). The thermodynamic parameters ΔG, ΔH, and ΔS, calculated at different temperatures, indicated that the binding reaction was endothermic and hydrophobic interactions play a major role in this association. The conformational changes of HSA were investigated qualitatively using synchronous fluorescence and quantitatively using CD. Site marker competitive experiments showed that the binding process took place primarily at site I (subdomain IIA) of HSA. The number of binding sites and the apparent binding constants were also studied in the presence of different ions.  相似文献   

20.

Background

Certain legume plants produce a plethora of AMP-like peptides in their symbiotic cells. The cationic subgroup of the nodule-specific cysteine-rich (NCR) peptides has potent antimicrobial activity against gram-negative and gram-positive bacteria as well as unicellular and filamentous fungi.

Findings

It was shown by scanning and atomic force microscopies that the cationic peptides NCR335, NCR247 and Polymyxin B (PMB) affect differentially on the surfaces of Sinorhizobium meliloti bacteria. Similarly to PMB, both NCR peptides caused damages of the outer and inner membranes but at different extent and resulted in the loss of membrane potential that could be the primary reason of their antimicrobial activity.

Conclusions

The primary reason for bacterial cell death upon treatment with cationic NCR peptides is the loss of membrane potential.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号