首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

The serotypes and patterns of antibiotic resistance of Streptococcus pneumoniae (S. pneumoniae) strains that cause invasive pneumococcal disease (IPD) in infants were analyzed to provide guidance for clinical disease prevention and treatment.

Methods

The clinical features of confirmed IPD were evaluated in 61 patients, less than 5 years of age, who were admitted to our hospital between January 2009 and December 2011. The serotypes and antibiotic resistance of strains of S.pneumoniae were determined using the capsular swelling method and the E-test.

Results

A total of 61 invasive strains were isolated. The serotype distribution of those isolates were 19A (41.0%), 14 (19.7%), 19F (11.5%), 23F (9.8%), 8 (4.9%), 9V (4.9%), 1 (3.3%), and 4, 6B, and 20 (each 1.6%). The percentage of S. pneumoniae strains resistant to erythromycin, clindamycin, and cotrimoxazole were 100%, 86.9%, and 100%, respectively. The percentage of S. pneumoniae strains resistant to penicillin, amoxicillin/clavulanic acid, cefuroxime, ceftriaxone, cefotaxime, cefepime, and meropenem were 42.6%, 18.0%, 82.0%, 18.0%, 13.1%, 13.1%, and 36.1%, respectively. The percentage of multidrug-resistant strains was 95.6%. Strains of all serotypes isolated in this study were highly resistant to erythromycin, cotrimoxazole, and clindamycin. Strains with serotype 19A had the highest rates of resistance.

Conclusions

Serotype 19A strains were most frequently isolated from children with IPD treated in our hospital. The strains causing IPD are highly resistant to antibiotics.  相似文献   

2.

Key message

An efficient mannose selection system was established for transformation of Indica cultivar IR58025B . Different selection pressures were required to achieve optimum transformation frequency for different PMI selectable marker cassettes.

Abstract

This study was conducted to establish an efficient transformation system for Indica rice, cultivar IR58025B. Four combinations of two promoters, rice Actin 1 and maize Ubiquitin 1, and two manA genes, native gene from E. coli (PMI-01) and synthetic maize codon-optimized gene (PMI-09) were compared under various concentrations of mannose. Different selection pressures were required for different gene cassettes to achieve corresponding optimum transformation frequency (TF). Higher TFs as 54 and 53 % were obtained when 5 g/L mannose was used for selection of prActin-PMI-01 cassette and 7.5 g/L mannose used for selection of prActin-PMI-09, respectively. TFs as 67 and 56 % were obtained when 7.5 and 15 g/L mannose were used for selection of prUbi-PMI-01 and prUbi-PMI-09, respectively. We conclude that higher TFs can be achieved for different gene cassettes when an optimum selection pressure is applied. By investigating the PMI expression level in transgenic calli and leaves, we found there was a significant positive correlation between the protein expression level and the optimal selection pressure. Higher optimal selection pressure is required for those constructs which confer higher expression of PMI protein. The single copy rate of those transgenic events for prActin-PMI-01 cassette is lower than that for other three cassettes. We speculate some of low copy events with low protein expression levels might not have been able to survive in the mannose selection.  相似文献   

3.

Introduction

Streptococcus pneumoniae is a worldwide occurring pathogen Nasopharyngeal carriage of Streptococcus pneumoniae precedes pneumonia and other pneumococcal diseases in the community. Little is known about S. pneumoniae carriage in Indonesia, complicating strategies to control pneumococcal diseases. We investigated nasopharyngeal carriage of S. pneumoniae in Semarang, Indonesia.

Methods

A population-based survey was performed in Semarang, Indonesia. Nasopharyngeal swabs and questionnaires were taken from 496 healthy young (6–60 month-old) children and 45–70 year-old adults.

Results

Forty-three percent of children aged 6–60 months and 11% of adults aged 45–75 years carried S. pneumoniae. Determinants of carriage were being a child (OR 7.7; 95% CI = 4.5–13.0), passive smoking (OR 2.1; 95% CI = 1.3–3.4), and contact with toddler(s) at home (OR 3.0; 95% CI = 1.9–4.7). The most frequent serotypes found were 6A/B and 15B/C. The current commercially available vaccines cover <50% serotypes found in children. Twenty-four percent of S. pneumoniae strains were penicillin non-susceptible, and 45% were resistant to cotrimoxazol.

Conclusions

The limited coverage of commercially available vaccines against the serotypes found in this population, and the high proportion of non-susceptibility to penicillin and cotrimoxazol suggest the need for region-specific information and strategies to control S. pneumoniae.  相似文献   

4.

Background and aims

Selenium is an essential micro-nutrient for animals, humans and microorganisms; it mainly enters food chains through plants. This study proposes to explore effect of inorganic Se forms on its uptake and accumulation in Zea mays.

Methods

Zea mays was grown in a controlled-atmosphere chamber for 2 weeks in a hydroponic solution of low-concentration selenium (10 μg/L (i.e.0.12 μM) or 50 μg/L (i.e. 0.63 μM) of Se). For each concentration, four treatments were defined: control (without selenium), selenite alone, selenate alone and selenite and selenate mixed.

Results

At low concentrations, selenium did not affect the biomass production of Zea mays. However, for both concentrations, Se accumulation following a selenite-only treatment was always higher than with selenate-only. Moreover, in the selenate-only treatment, Se mainly accumulated in shoots whereas in the selenite-only treatment, Se was stocked more in the roots. Interactions between selenate and selenite were observed only at the higher concentration (0.63 μM of selenium in the nutrient solution).

Conclusions

Se form and concentration in the nutrient solution strongly influenced the absorption, allocation and metabolism of Se in Zea mays. Selenate seems to inhibit selenite absorption by the roots.  相似文献   

5.

Background

There is limited understanding of the dysregulation of the innate immune system in multiple myeloma (MM). We analysed the expression of the activating receptor NKG2D on NK cells and T cells of MM patients and investigated the impact of soluble versus membrane-bound NKG2D ligands on the expression of NKG2D.

Design

NKG2D expression on NK cells and CD8+ αβ T cells from patients with MM or monoclonal gammopathy of uncertain significance and healthy controls was examined flow-cytometrically. Sera from patients and controls were analysed for soluble NKG2D ligands (sNKG2D ligands).

Results

Significantly fewer NK cells and CD8+ αβ T cells from patients expressed NKG2D compared to healthy controls (NK cells: median 54% interquartile range (IQR) 32–68 versus 71% IQR 44–82%, P = 0.017, CD8+ αβ T cells: median 63% IQR 52–81 versus 77% IQR 71–90%, P = 0.018). The sNKG2D ligand sMICA was increased in patients [median 175 (IQR 87–295) pg/ml] versus controls [median 80 (IQR 32–129) pg/ml, P < 0.001], but levels of sMICA did not correlate with NKG2D expression on effector cells. To elucidate the mechanism of NKG2D down-regulation, we incubated lymphocytes from healthy donors in the presence of sNKG2D ligands or in co-culture with MM cell lines. sNKG2D ligands in clinically relevant concentrations did not down-regulate NKG2D expression, but co-culture of effector cells with myeloma cells with high surface expression of NKG2D ligands reduced NKG2D expression significantly.

Conclusions

These results indicate that MM is associated with a significant reduction in NKG2D expression which may be contact-mediated rather than caused by soluble NKG2D ligands.  相似文献   

6.

Background

Immunity to infections caused by Streptococcus pneumoniae is dependent on complement. There are wide variations in sensitivity to complement between S. pneumoniae strains that could affect their ability to cause invasive infections. Although capsular serotype is one important factor causing differences in complement resistance between strains, there is also considerable other genetic variation between S. pneumoniae strains that may affect complement-mediated immunity. We have therefore investigated whether genetically distinct S. pneumoniae strains with the same capsular serotype vary in their sensitivity to complement mediated immunity.

Methodology and Principal Findings

C3b/iC3b deposition and neutrophil association were measured using flow cytometry assays for S. pneumoniae strains with different genetic backgrounds for each of eight capsular serotypes. For some capsular serotypes there was marked variation in C3b/iC3b deposition between different strains that was independent of capsule thickness and correlated closely to susceptibility to neutrophil association. C3b/iC3b deposition results also correlated weakly with the degree of IgG binding to each strain. However, the binding of C1q (the first component of the classical pathway) correlated more closely with C3b/iC3b deposition, and large differences remained in complement sensitivity between strains with the same capsular serotype in sera in which IgG had been cleaved with IdeS.

Conclusions

These data demonstrate that bacterial factors independent of the capsule and recognition by IgG have strong effects on the susceptibility of S. pneumoniae to complement, and could therefore potentially account for some of the differences in virulence between strains.  相似文献   

7.
The current research study deals with the screening of a potent vanillin-producing microorganism among 96 isolated strains. Biochemical characterization and molecular identification confirmed that the isolated strain belongs to the Klebsiella pneumoniae bacteria, so it was denoted as Klebsiella pneumoniae P27. The optimization of medium components for the enhanced production of vanillin was carried out using two-stage statistical experimental designs, in which the significant medium components for vanillin production were screened using a Plackett-Burman experimental design. And the optimal levels of those noteworthy factors were determined by using central composite design. The statistical optimization of medium components resulted in increases in vanillin production and vanillyl alcohol oxidase activity of 2.05-fold and 3.055-fold, respectively. The highest vanillin production (30.88 mg/L) and vanillyl alcohol oxidase activity (0.044 U/mL) was observed after 16 h of incubation in the presence of 0.26 mL/L creosol, 8.06 g/L yeast extract and 2.77 g/L NH4NO3 in the production medium. The optimally produced vanillin was extracted and confirmed using FTIR and LCMS spectral analysis. The results of the current study support a statistical process optimization approach as a potential technique for the enhanced production of vanillin from creosol by using newly isolated Klebsiella pneumoniae P27 bacterial strain.  相似文献   

8.
With the growing microbial resistance to conventional antimicrobial agents, the development of novel and alternative therapeutic strategies are vital. During recent years novel peptide antibiotics with broad spectrum activity against many Gram-positive and Gram-negative bacteria have been developed. In this study, antibacterial activity of CM11 peptide (WKLFKKILKVL-NH2), a short cecropin–melittin hybrid peptide, is evaluated against antibiotic-resistant strains of Klebsiella pneumoniae and Salmonella typhimurium as two important pathogenic bacteria. To appraise the antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal killing assay were utilized with different concentrations (2–128 mg/L) of peptide. To evaluate cytotoxic effect of peptide, viability of RAJI, Hela, SP2/0, CHO, LNCAP cell lines and primary murine macrophage cells were also investigated with MTT assay in different concentrations (3–24 and 0.5–16 mg/L, respectively). MICs of K. pneumoniae and S. typhimurium isolates were in range of 8–16 and 4–16 mg/L, respectively. In bactericidal killing assay no colonies were observed at 2X MIC for K. pneumoniae and S. typhimurium isolates after 80–90 min, respectively. Despite the fact that CM11 reveals no significant cytotoxicity on RAJI, Hela, SP2/0, and CHO cell lines beneath 6 mg/L at first 24 and 48 h, the viability of LNCAP cells are about 50 % at 3 mg/L, which indicates strong cytotoxicity of the peptide. In addition, macrophage toxicity by MTT assay showed that LD50 of CM11 peptide is 12 μM (16 mg/L) after 48 h while in this concentration after 24 h macrophage viability was about 70 %.  相似文献   

9.

Background

The aim of the present study was to investigate the genetic relatedness and the antimicrobial resistance profiles of a collection of Austrian Streptococcus pneumoniae isolates from companion animals and horses. A total of 12 non-repetitive isolates presumptively identified as S. pneumoniae were obtained during routinely diagnostic activities between March 2009 and January 2017.

Results

Isolates were confirmed as S. pneumoniae by bile solubility and optochin susceptibility testing, matrix-assisted laser desorption-ionization-time of flight (MALDI-TOF) mass spectrometry and sequence analysis of a part recA and the 16S rRNA genes. Isolates were further characterized by pneumolysin polymerase chain reaction (PCR) and genotyped by multilocus sequence typing (MLST). Antimicrobial susceptibility testing was performed and resistance genes were detected by specific PCR assays. All isolates were serotyped. Four sequence types (ST) (ST36, ST3546, ST6934 and ST6937) and four serotypes (3, 19A, 19F and 23F) were detected. Two isolates from twelve displayed a multidrug-resistance pheno- and genotype.

Conclusions

This study represents the first comprehensive investigation on characteristics of S. pneumoniae isolates recovered from Austrian companion animals and horses. The obtained results indicate that common human sero- (23F) and sequence type (ST36) implicated in causing invasive pneumococcal disease (IPD) may circulate in dogs. Isolates obtained from other examined animals seem to be host-adapted.
  相似文献   

10.

Key message

Our study shows that the expression of AtCBF3 and AtCOR15A improved the chilling tolerance in transgenic eggplant.

Abstract

In an attempt to improve chilling tolerance of eggplant (Solanum melongena L) plants, Arabidopsis C-repeat binding factor 3 (AtCBF3) and cold-regulated 15A (AtCOR15A) genes both driven by an Arabidopsis RESPONSIVE TO DESSICATION 29A promoter (AtRD29A) were transferred into the plants of eggplant cultivar Sanyueqie. Two independent homozygous transgenic lines were tested for their cold tolerance. The leaves of the transgenic plants in both lines withered much slower and slighter than the wild-type plants after exposure to cold stress treatment at 2 ± 1 °C. The gene expression of AtCBF3 and AtCOR15A was significantly increased as well as the proline content and the levels of catalase and peroxidase activities, while the relative electrical conductivity and the malondialdehyde content were remarkably decreased in the transgenic plants compared with the wild type at 4 ± 0.5 °C. The results showed that the expression of the exogenous AtCBF3 and AtCOR15A could promote the cold adaptation process to protect eggplant plants from chilling stress.  相似文献   

11.

Background

In a subpopulation of patients with essential hypertension, therapeutic targets are not met, despite the use of multiple types of medication. In this paper we describe our first experience with a novel percutaneous treatment modality using renal artery radiofrequency (RF) ablation.

Methods

Patients who were resistant to at least three types of antihypertensive medical therapy (office systolic blood pressure?≥?160 mmHg; n?=?9) or who did not tolerate medication (n?=?2) were selected. Between July and November 2010, a total of 11 patients received percutaneous RF treatment. Patients were followed up for 1 month after treatment. Urine and blood samples were taken to evaluate the effects on renal function and neurohumeral factors.

Results

No periprocedural complications or adverse events during follow-up were noted. A reduction of mean office blood pressure was seen from 203/109?±?32/19 mmHg at baseline to 178/97?±?28/21 mmHg at 1 month follow-up (mean difference 25?±?12 mmHg, p?<?0.01). Also, we noted a significant decrease in aldosterone level (391?±?210 pmol/L versus 250?±?142 pmol/L; p?=?0.03), while there was no decrease in plasma renin activity (190?±?134 fmol/L/s versus 195?±?163 fmol/L/s; p?=?0.43). No change in renal function was noted.

Conclusion

Catheter-based renal denervation seems an attractive novel minimally invasive treatment option in patients with resistant hypertension, with a low risk of serious adverse events.  相似文献   

12.
Streptococcus pneumoniae is an important pathogen that causes otitis media, pneumonia, meningitis and bacteremia. As an important virulence factors of S. pneumoniae, pneumolysin (PLY) can penetrate cell membranes and lead to cell lysis and inflammation, which is one of the main causes of infection and damage of S. pneumoniae. Therefore, using pneumolysin as a target to study its inhibitors can provide a new treatment strategy for pneumococcal disease. This study analyzed the inhibitory effect of the natural compound hederagenin on PLY in vitro. The results show that hederagenin has great potential as a new strategy for the treatment of pneumococcal diseases.  相似文献   

13.
A thermophilic Bacillus coagulans WCP10-4 with tolerance to high concentration of glucose was isolated from soil and used to produce optically pure l-lactic acid from glucose and starch. In batch fermentation at pH?6.0, 240 g/L of glucose was completely consumed giving 210 g/L of l-lactic acid with a yield of 95 % and a productivity of 3.5 g/L/h. In simultaneous saccharification and fermentation at 50 °C without sterilizing the medium, 200 g/L of corn starch was completely consumed producing 202.0 g/L of l-lactic acid. To the best of our knowledge, this strain shows the highest osmotic tolerance to glucose among the strains ever reported for lactic acid production. This is the first report of simultaneous saccharification and fermentation of starch for lactic acid production under a non-sterilized condition.  相似文献   

14.
Ying-qiu Bao  Zhe Wan  Ruo-yu Li 《Mycopathologia》2013,175(1-2):141-145

Aims

The aims of this study are to investigate the in vitro activities of micafungin and caspofungin that are two new echinocandin antifungal drugs against clinically isolated dermatophytes in China and to define MEC (minimal effective concentration) as the reading endpoints of this study in accordance with (Clinical and laboratory Standards Institute) CLSI M38-A2 reference.

Methods

Minimal effective concentrations (MECs) of micafungin and caspofungin for 82 dermatophyte strains were determined according to CLSI (formerly NCCLS) M38-A2 broth microdilution methods.

Results

(1) The MEC90s of micafungin for Trichophyton violaceum and Trichophyton tonsurans were 0.25 μg/mL, and for Microsporum canis and Trichophyton verrucosum were 0.06 μg/mL. The MEC90s for Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum gypseum and Epidermophyton floccosum were 0.03 μg/mL. (2) The MEC90s of caspofungin for T. rubrum, T. violaceum and T. tonsurans were 1 μg/mL, and for T. mentagrophytes, M. canis, M. gypseum, E. floccosum and T. verrucosum were 0.5 μg/mL. (3) Compared with caspofungin, micafungin demonstrated lower MEC value to dermatophytes (P < 0.05).

Conclusions

Micafungin has stronger in vitro antifungal activity than caspofungin.  相似文献   

15.
16.
P. aeruginosa and S. pneumoniae are major bacterial causes of corneal ulcers in industrialized and in developing countries. The current study examined host innate immune responses at the site of infection, and also expression of bacterial virulence factors in clinical isolates from patients in south India. Corneal ulcer material was obtained from 49 patients with confirmed P. aeruginosa and 27 patients with S. pneumoniae, and gene expression of Toll Like Receptors (TLR), cytokines and inflammasome proteins was measured by quantitative PCR. Expression of P. aeruginosa type III secretion exotoxins and S. pneumoniae pneumolysin was detected by western blot analysis. We found that neutrophils comprised >90% cells in corneal ulcers, and that there was elevated expression of TLR2, TLR4, TLR5 and TLR9, the NLRP3 and NLRC4 inflammasomes and the ASC adaptor molecule. IL-1α IL-1β and IFN-γ expression was also elevated; however, there was no significant difference in expression of any of these genes between corneal ulcers from P. aeruginosa and S. pneumoniae infected patients. We also show that 41/49 (84%) of P. aeruginosa clinical isolates expressed ExoS and ExoT, whereas 5/49 (10%) of isolates expressed ExoS, ExoT and ExoU with only 2/49 isolates expressing ExoT and ExoU. In contrast, all 27 S. pneumoniae clinical isolates produced pneumolysin. Taken together, these findings demonstrate that ExoS/T expressing P. aeruginosa and pneumolysin expressing S. pneumoniae predominate in bacterial keratitis. While P. aeruginosa strains expressing both ExoU and ExoS are usually rare, these strains actually outnumbered strains expressing only ExoU in the current study. Further, as neutrophils are the predominant cell type in these corneal ulcers, they are the likely source of cytokines and of the increased TLR and inflammasome expression.  相似文献   

17.

Background

Streptococcus pneumoniae is one of the most important causes of microbial diseases in humans. The genomes of 44 diverse strains of S. pneumoniae were analyzed and compared with strains of non-pathogenic streptococci of the Mitis group.

Results

Despite evidence of extensive recombination, the S. pneumoniae phylogenetic tree revealed six major lineages. With the exception of serotype 1, the tree correlated poorly with capsular serotype, geographical site of isolation and disease outcome. The distribution of dispensable genes - genes present in more than one strain but not in all strains - was consistent with phylogeny, although horizontal gene transfer events attenuated this correlation in the case of ancient lineages. Homologous recombination, involving short stretches of DNA, was the dominant evolutionary process of the core genome of S. pneumoniae. Genetic exchange occurred both within and across the borders of the species, and S. mitis was the main reservoir of genetic diversity of S. pneumoniae. The pan-genome size of S. pneumoniae increased logarithmically with the number of strains and linearly with the number of polymorphic sites of the sampled genomes, suggesting that acquired genes accumulate proportionately to the age of clones. Most genes associated with pathogenicity were shared by all S. pneumoniae strains, but were also present in S. mitis, S. oralis and S. infantis, indicating that these genes are not sufficient to determine virulence.

Conclusions

Genetic exchange with related species sharing the same ecological niche is the main mechanism of evolution of S. pneumoniae. The open pan-genome guarantees the species a quick and economical response to diverse environments.  相似文献   

18.

Background

Increasing antimicrobial resistance among the key pathogens responsible for community-acquired respiratory tract infections has the potential to limit the effectiveness of antibiotics available to treat these infections. Since there are regional differences in the susceptibility patterns observed and treatment is frequently empirical, the selection of antibiotic therapy may be challenging. PROTEKT, a global, longitudinal multicentre surveillance study, tracks the activity of telithromycin and comparator antibacterial agents against key respiratory tract pathogens.

Methods

In this analysis, we examine the prevalence of antibacterial resistance in 1,336 bacterial pathogens, isolated from adult and paediatric patients clinically diagnosed with acute bacterial sinusitis (ABS).

Results and discussion

In total, 58.0%, 66.1%, and 55.8% of S. pneumoniae isolates were susceptible to penicillin, cefuroxime, and clarithromycin respectively. Combined macrolide resistance and reduced susceptibility to penicillin was present in 200/640 (31.3 %) of S. pneumoniae isolates (128 isolates were resistant to penicillin [MIC >= 2 mg/L], 72 intermediate [MIC 0.12–1 mg/L]) while 99.5% and 95.5% of isolates were susceptible to telithromycin and amoxicillin-clavulanate, respectively. In total, 88.2%, 87.5%, 99.4%, 100%, and 100% of H. influenzae isolates were susceptible to ampicillin, clarithromycin, cefuroxime, telithromycin, and amoxicillin-clavulanate, respectively. In vitro, telithromycin demonstrated the highest activity against M. catarrhalis (MIC50 = 0.06 mg/L, MIC90 = 0.12 mg/L).

Conclusion

The high in vitro activity of against pathogens commonly isolated in ABS, together with a once daily dosing regimen and clinical efficacy with 5-day course of therapy, suggest that telithromycin may play a role in the empiric treatment of ABS.  相似文献   

19.

Objectives

To improve the production of 2,3-butanediol (2,3-BD) in Klebsiella pneumoniae, the genes related to the formation of lactic acid, ethanol, and acetic acid were eliminated.

Results

Although the cell growth and 2,3-BD production rates of the K. pneumoniae ΔldhA ΔadhE Δpta-ackA strain were lower than those of the wild-type strain, the mutant produced a higher titer of 2,3-BD and a higher yield in batch fermentation: 91 g 2,3-BD/l with a yield of 0.45 g per g glucose and a productivity of 1.62 g/l.h in fed-batch fermentation. The metabolic characteristics of the mutants were consistent with the results of in silico simulation.

Conclusions

K. pneumoniae knockout mutants developed with an aid of in silico investigation could produce higher amounts of 2,3-BD with increased titer, yield, and productivity.
  相似文献   

20.

Background

Infection with Streptococcus pneumoniae is a major cause of childhood morbidity and mortality worldwide, especially in low income countries where pneumococcal conjugate vaccines (PCVs) are still underused. In countries where PCVs have been introduced, much of their efficacy has resulted from their impact on nasopharyngeal carriage in vaccinated children. Understanding the epidemiology of carriage for S. pneumoniae and other common respiratory bacteria in developing countries is crucial for implementing appropriate vaccination strategies and evaluating their impact.

Methods and Findings

We have systematically reviewed published studies reporting nasopharyngeal or oropharyngeal carriage of S. pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Neisseria meningitidis in children and adults in low and lower-middle income countries. Studies reporting pneumococcal carriage for healthy children <5 years of age were selected for a meta-analysis. The prevalences of carriage for S. pneumoniae, H. influenzae, and M. catarrhalis were generally higher in low income than in lower-middle income countries and were higher in young children than in adults. The prevalence of S. aureus was high in neonates. Meta-analysis of data from young children before the introduction of PCVs showed a pooled prevalence estimate of 64.8% (95% confidence interval, 49.8%–76.1%) in low income countries and 47.8% (95% confidence interval, 44.7%–50.8%) in lower-middle income countries. The most frequent serotypes were 6A, 6B, 19A, 19F, and 23F.

Conclusions

In low and lower-middle income countries, pneumococcal carriage is frequent, especially in children, and the spectrum of serotypes is wide. However, because data are limited, additional studies are needed to adequately assess the impact of PCV introduction on carriage of respiratory bacteria in these countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号