首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of fluorescently labeled fatty acids of various chain lengths with 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me4-BODIPY-8) residue in the ω-position were synthesized. These acids were used to prepare new fluorescently labeled phosphatidylcholines, sphingomyelin, and galactosyl ceramide. The symmetry of the Me4-BODIPY-8-fluorophore suggests that, in most bilayer membrane systems, this fluorophore would be embedded into the bilayer.  相似文献   

2.
A series of lipid probes, phosphatidylcholines labeled with Me4-BODIPY-8 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacen-8-yl) fluorophore attached to the end of acyl residue at different distances from the polar head, were used as depth-dependent probes for the apolar zone of the model membrane systems, large unilamellar vesicles (LUV). Data on the anisotropy of probe fluorescence demonstrated a different mobility profiles for the fluorophore microenvironment in LUVs of different composition at various temperatures, which indicates a high sensitivity of these probes as tools for studying membrane systems. An interesting anomaly was observed for LUVs from dimiristoylphosphatidylcholine (DMPC) or from a DMPC-cholesterol mixture: the anisotropy of the fluorophore located near the bilayer center is larger than that of the fluorophore located further from the center; i.e., the mobility of the microenvironment is lower in the first case. This anomaly is supposed to result from the penetration of unlabeled long chain of the probes to the opposite bilayer leaflet. Such a possibility should be taken into account when constructing the fluorescent probes and interpreting the results.  相似文献   

3.
The synthesis of a series of new fluorescently labeled sphingolipids containing a 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me4-BODIPY-8) group at the ω-position of a fatty acyl residue is described. The obtained probes were used in studies of biological and model membrane systems.  相似文献   

4.
The ligand hydrotris(1,4-dihydro-3-methyl-4-phenyl-5-thioxo-1,2,4-triazolyl)borato (TrPh,Me) was synthetized as natrium salt and the complexes [Zn(TrPh,Me)2] · 7.5H2O · 1.5CH3CN (2a), [Zn(TrPh,Me)2] · 8DMF (2b), [Co(TrPh,Me)2] · 8DMF (3a), [Ni(TrPh,Me)2] · H2O · 6DMSO (4a), [Bi(TrPh,Me)2]NO3 (5), have been isolated and structurally characterized by X-ray diffraction. In the zinc derivatives the ligand adopts different denticity and coordination modes, η2 and [S2] for 2a and η3 and [N3] for 2b, depending on the crystallization solvent, giving rise to tetrahedral and octahedral geometry, respectively. In the octahedral cobalt and nickel complexes the ligand is η3 and [N3] coordinated whereas in the bismuth complex the η3 and [S3] coordination is exhibited.  相似文献   

5.
Aerial recrystallization of the mononuclear molybdenum(V) complex {HB(Me2pz)3}MoO(OC6H4-o-S) produced the novel binuclear Mo(VI) complex [{HB(Me2pz)3}MoO2(OC6H4- o-S)]2 which contains a disulfide bond. The dimer crystallizes as the dioxane solvate in the space group C2/c with cell parameters a=23.46(2), b=11.100(4), c=21.571(8) Å, β=104.23(4)°, Z=4. Final Rw=0.062 (2236 reflections with Fo>3σ(Fo), 301 variable parameters). The dimer contains two crystallographically identical distorted octahedral MoO22+ centers. One face of each octahedron is occupied by two oxo ligands and a phenolate oxygen atom; the opposite face is occupied by three nitrogens of the HB(Me2pz)3 ligand. The two Mo(VI) centers of the dimers are linked by a disulfide bond formed upon oxidation of the 2-mercaptophenolate ligand of the original molybdenum(V) compound.  相似文献   

6.
The reaction of [(η4-1,5-C8H12)2Ir2(μ-Cl)2] with 2-di-t-butylphosphino-2′-methylbiphenyl (t-Bu2PbiphMe) in the presence of AgBF4 afforded the dichlorido-bridged Ir–Ag complex [(η4-1,5-C8H12)Ir(μ-Cl)2Ag(t-Bu2PbiphMe)] (1) which was fully characterized by a single crystal X-ray diffraction study. Sequential treatment of the diiridium precursor first with the silver salt and then with the phosphine yielded cyclometalated [(η4-1,5-C8H12)Ir(t-Bu2PbiphMe–H+)] (2). Detailed DFT calculations gave evidence that the phosphine ligand of 2 forms a strained four-membered iridaheterocycle through orthometalation rather than a sterically congested six-membered chelate structure through C–H activation on the remote phenyl ring. The phosphonium salt [t-Bu2P(H)biphMe]BF4 was isolated as a by-product of the preparations of 1 and 2; its crystal structure was determined.  相似文献   

7.
Metal-sulfur complex fragments, to which small molecules like N2, N2H2, N2H4, NH3, or CO can bind, are desirable model compounds concerning enzymatic N2 fixation.This paper reports on the effects of the phosphane co-ligand on formation and reactivity of [Ru(L)(PR3)(`N2Me2S2')] [`N2Me2S2'2−=1,2-ethanediamine-N,N-dimethyl-N,N-bis(2-benzenethiolate)(2−)] complexes with nitrogenase relevant ligands, especially N2, N2H4, NH3, and CO.Treatment of [Ru(NCCH3)4Cl2] with Li2`N2Me2S2', excessive LiOMe, bulky PPh3 or PCy3, respectively, led to the formation of two series of [Ru(L)(PR3)(`N2Me2S2')] complexes [for R=Ph: 1b, 1c (L=NCCH3), 6b (L=N2H4), 7b (L=N2), 8b1-3 (L=CO), 9b (L=NH3); for R=Cy: 1a (L=NCCH3), 6a (L=N2H4), 7a (L=N2), 8a (L=CO), 9a (L=NH3)]. While the use of PPh3 (θ=145°) yielded cis,trans and cis,cis isomers of [Ru(NCCH3)(PPh3)(`N2Me2S2')] (1b, 1c), no isomer formation was observed with the bulkier phosphane PCy3 (θ=170°). Sterically less demanding phosphanes (θ=118-132°) afforded bisphosphane complexes [Ru(PR3)2(`N2Me2S2')] [2d (R=Me), 2e (R=Et), 2f (R=nPr), and 2g (R=nBu)], which were practically inert and could only be converted in two cases and under drastic reaction conditions into the CO complexes [Ru(CO)(PR3)(`N2Me2S2')] [4e (R=Et), 4f (R=nPr)]. The chelating bidentate phosphane dppe (bisdiphenylphosphanoethane) yielded exclusively the mononuclear complex [Ru(dppe)(`N2Me2S2')] (3).  相似文献   

8.
The building blocks fac-[99mTc{κ3-HB(timMe)3}(CO)3] and fac-[99mTc{κ3-R(μ-H)B(timMe)2}(CO)3] [R is H (4a), Ph (5a); timMe is 2-mercapto-1-methylimidazolyl] were obtained almost quantitatively by reacting fac-[99mTc(CO)3(H2O)3]+ with the corresponding scorpionate. These compounds cross the intact blood–brain barrier in mice, with significant retention in the case of 4a and 5a. Using 4a as the lead structure, we have synthesized the functionalized complexes fac-[M{κ3-H(μ-H)B(timBu-pip)2}(CO)3] [M is Re (8), 99mTc (8a); timBu-pip is methyl[4-((2-methoxyphenyl)-1-piperazinyl)butyl](2-mercapto-1-methylimidazol-5-yl)methanamide] and fac-[M{κ 3-H(μ-H)B(timMe)(timBu-pip)}(CO)3] [M is Re (9), 99mTc (9a)] and evaluated their potential as radioactive probes for the targeting of brain 5-HT1A serotonergic receptors. The Re complexes exhibit excellent affinity [IC50=0.172 ± 0.003 nM (8); IC50=0.65 ± 0.01 nM (9)] for the 5-HT1A receptor. The radioactive congeners (99mTc) have shown an initial brain uptake of 1.38 ± 0.46%ID g−1 (8a) and 0.43 ± 0.12%ID g−1 (9a), but suffer from a relatively fast washout.  相似文献   

9.
Myosin light chain kinase binding to plastic   总被引:3,自引:0,他引:3  
R B Pearson  C House  B E Kemp 《FEBS letters》1982,145(2):327-331
Methionine-81 and/or -8 of the transmembrane sialoglycoprotein, glycophorin A, have been specifically alkylated with 13CH3I to produce the sulfonium ion derivatives [S-[13C]methylmethionine-8]glycophorin A and [S-[13C]methylmethionine-8 and -81]glycophorin A. 13C NMR spectra of these species show that the resonances of the methyl groups of the modified glycophorins occur at 26.1 ppm downfield from Me4Si. A spin-lattice relaxation time of 0.4 was observed for the 13C-enriched methyl resonances of the sulfonium ion derivatives of Met-8 and -81, which corresponds to an effective correlation time of < 2× 10?10 s. Demethylation of the 2 glycophorin A sulfonium ion species with 2-mercaptoethanol produces native glycophorin A which now has the ε-carbon of the methionine residue(s) 45% isotopically enriched. The ε-carbon of Met-8 was found to occur at 15.7 ppm downfield from Me4Si whereas the ε-carbon of Met-81 exhibited an unusual chemical shift of 2.0 ppm downfield from Me4Si. The spin-lattice relaxation time of both resonances was found to be ~0.3 s.  相似文献   

10.
The preparation is reported of [(NH3)3Pt(9- MeA)] X2 (9-MeA = 9-methyladenine) with XCl (1a) and XClO4 (1b) and of trans-[(OH)2Pt(NH3)3- (9-MeA)]X2 with XCl (2a) and XClO4 (2b), and the crystal structure of 1b. [(NH3)3Pt(C6H7N5)](ClO4)2 crystallizes in space group P21/n with a = 20.810(7) Å, b = 7.697(3) Å, c = 10.567(4) Å, β = 91.57(6)°, Z = 4. The structure was refined to R = 0.054, Rw = 0.063. In all four compounds Pt coordination is through N7 of 9-MeA, as is evident from 3J coupling between H8 of the adenine ring and 195Pt. Pt(II) and Pt(IV) complexes can be differentiated on the basis of different 3J values, larger for Pt(II) than for Pt(IV) by a factor of 1.57 (av). In Me2SO-d6, hydrogen bonding occurs between Cl? and C(8)H of 9-MeA as weil as between Cl? and the NH3 groups in the case of the Pt(II) complex 1a. Protonation of the 9-MeA ligands was followed using 1H NMR spectroscopy and pKa values for the N1 protonated 9-MeA ligands were determined in D2O. They are 1.9 for 1a and 1.8 for 2a, which compares with 4.5 for the non-platinated 9-MeA. Possible consequences for hydrogen bonding with the complementary bases thymine or uracil are discussed briefly. Protonation of the OH groups in the Pt(IV) complexes has been shown not to occur above pH 1.  相似文献   

11.
[Pt(Me2pipdt)2](BF4)2 salts [Me2pipdt = N,N-dimethyl-piperazine-2,3-dithione] bearing cationic dithiolene complexes react with (Bu4N)2[Pt(X)4] (X = SCN, CN) to form [Pt(Me2pipdt)2][Pt(SCN)4 ] (1) and [Pt(Me2pipdt)2][Pt(CN)4] (2) salts by metathesis. Black crystals of 1 have been structurally characterized showing that the two metals lie on inversion centers and exhibit a square planar coordination. The Pt-S bond distances in the anion complex (2.324(2) Å) are longer than in the cation complex (2.280(2) Å) whereas the C-S bond distances are shorter in SCN (average 1.669 Å) than in Me2pipdt (average 1.694 Å). The chelating Me2Pipdt ligand is found disordered in the λ/δ conformations with site occupancies of 50/50, respectively. The cation and anion complexes run parallel to a.  相似文献   

12.
《Inorganica chimica acta》1986,119(2):177-186
Synthetic routes are described for the new halo- methyl complexes of the type [η-C5Me5M(CO)3- CH2X]. The complexes where M = Mo, X = Cl or OMe and M = W, X = Cl, I, OMe have been fully characterized. Reaction of [η-C5Me5Mo(CO)3CH2Cl] with PPh3 in methanol under reflux or acetonitrile at room temperature gives [η-C5Me5Mo(CO)2(PPh3)- Cl], whereas reaction of [η-C5Me5W(CO)3CH2I] with PPh3 under similar conditions gives the cationic phosphorus ylide complex [η-C5Me5W(CO)3CH2- PPh3]I. The structure of this ylide complex has been determined by X-ray crystallography. The complex crystallizes with half a molecule of CH2Cl2 in the monoclinic space group P21/n with a = 16.616- (8), b = 11.738(6), c = 18.126(9) Å, β = 101.74(2)° and Z = 4. The structure was solved and refined to R = 0.076. It confirms the formulation of the compound and the presence of the ylide ligand, WCylide 2.34(2) Å, PCylide 1.82(2) Å and the WCylideP angle of 119(1)°.  相似文献   

13.
Reaction of [1-{Me3SiNH}-2-{Me3SiNHCH2}]C6H4 (1) and [1-{tBuMe2SiNH}-2-{tBuMe2SiNHCH2}]C6H4 (2) in tetrahydrofuran with two equivalents of n-butyllithium gave the lithium amides [1-{Me3SiN(Li)}-2-{Me3SiN(Li)CH2}]C6H4(thf)3 (3) and [1-{tBuMe2SiN(Li)}-2-{tBuMe2SiN(Li)CH2}]C6H4(thf)2 (4). The molecular structures of both 3 and 4, which were established by X-ray diffraction studies, differ in the number of thf molecules coordinated to the Li centres. Depending on the size of the amidomethyl-bonded silyl groups two (4) or three thf-coligands (3) were found to bind to the lithium centres rendering them tri- or tetracoordinate, respectively. In the Me3Si-substituted derivative 3 a rare example of a thf molecule as a bridging ligand was found which appears to pertain as such in solution. The reaction of the lithium amides 3 and 4 with two molar equivalents of TlCl in n-pentane gave the thallium(I) amides [1-{Me3SiN(Tl)}-2-{Me3SiN(Tl)CH2}]C6H4 (5) and [1-{tBuMe2SiN(Tl)}-2-{tBuMe2SiN(Tl)CH2}]C6H4 (6) which are stable in hydrocarbon solutions but rapidly decompose in polar solvents.  相似文献   

14.
The reaction of 1,4-diaminobutane monohydroperchlorate with acetone gives trans-Me6[18]- dieneN4·2HClO4·2H2O. The diene can be reduced with NaBH4 under basic conditions to give a mixture of C-meso Me6[18]aneN4 (melting point (m.p.) 119–120 °C) and C-racemic Me6[18]aneN4 (m.p. 79 °C) which can be separated by fractional crystallisation from xylene (Me6[18]aneN4=2,4,4,11,13, 13-hexamethyl-1,5,10,14-tetraazacyclooctadecane). The free base form of Me6[18]dieneN4 has been characterised and molecular weight measurements by vapour pressure osmometry confirm the 18-membered tetraaza structure rather than the alternative 9- membered diaza structure. Blue copper(II) complexes [CuL](ClO4)2 have been characterised with both C- meso and C-racemic Me6[18] aneN4 which have a dd band at 680 nm. These blue complexes are converted to the more thermodynamically stable red isomers (λmax 488 nm) on stirring aqueous suspensions of the blue perchlorate salts. The red isomers are believed to have the trans III or RSSR configuration of the sec- NH centres.  相似文献   

15.
Many fluorescent lipid probes tend to loop back to the membrane interface when attached to a lipid acyl chain rather than embedding deeply into the bilayer. To achieve maximum embedding of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorophore into the bilayer apolar region, a series of sn-2 acyl-labeled phosphatidylcholines was synthesized bearing 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene-8-yl (Me(4)-BODIPY-8) at the end of C(3)-, C(5)-, C(7)-, or C(9)-acyl. A strategy was used of symmetrically dispersing the methyl groups at BODIPY ring positions 1, 3, 5, and 7 to decrease fluorophore polarity. Iodide quenching of the phosphatidylcholine probes in bilayer vesicles confirmed that the Me(4)-BODIPY-8 fluorophore was embedded in the bilayer. Parallax analysis of Me(4)-BODIPY-8 fluorescence quenching by phosphatidylcholines containing iodide at different positions along the sn-2 acyl chain indicated that the penetration depth of Me(4)-BODIPY-8 into the bilayer was determined by the length of the linking acyl chain. Evaluation using monolayers showed minimal perturbation of <10 mol% probe in fluid-phase and cholesterol-enriched phosphatidylcholine. Spectral characterization in monolayers and bilayers confirmed the retention of many features of other BODIPY derivatives (i.e., absorption and emission wavelength maxima near 498 nm and approximately 506-515 nm) but also showed the absence of the 620-630 nm peak associated with BODIPY dimer fluorescence and the presence of a 570 nm emission shoulder at high Me(4)-BODIPY-8 surface concentrations. We conclude that the new probes should have versatile utility in membrane studies, especially when precise location of the reporter group is needed.  相似文献   

16.
Reaction of PPN[W(CO)3(R2PC2H4PR2)(SH)] (PPN=Ph3PNPPh3; R=Me, 1; R=Ph, 2) with aromatic aldehydes in the presence of trifluoroacetic acid gave tungsten complexes of thiobenzaldehydes mer-[W(CO)3(R2PC2H4PR2)(η2-SCHR)] (R=Me, 3a-3f; R=Ph, 4a-4e) in high yields. Analogous complexes of aliphatic thioaldehydes mer-[W(CO)3(Me2PC2H4PMe2)(η2-SCHR)] (3g-3l) could only be obtained from the highly electron-rich thiolate complex 1. The structure of 3i (R=i-Bu) was determined by X-ray crystallography. In solution the complexes 3 and 4 are in equilibrium with small quantities of their isomers fac-[W(CO)3(R2PC2H4PR2)(η2-SCHR)]. Reaction of complexes 3 with dimethylsulfate followed by salt metathesis with NH4PF6 gave the alkylation products mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCHR)]PF6 (5a-5l) as mixtures of E and Z isomers. The methylated thioformaldehyde complex mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCH2)]PF6 (5m) was prepared similarly. Nucleophilic addition of hydride (from LiAlH4) to 5 initially gave thioether complexes mer-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R)] (mer-6) which rapidly isomerized to fac-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R)] (fac-6).  相似文献   

17.
The aims of our program are to develop coordination complexes that can be used as selective probes, fluorescent agents and inorganic medicinal agents. In order to accomplish this, the design, synthesis, characterization and X-ray structure of new water-soluble monofunctional Pt(II) complexes with useful spectroscopic properties for assessing metal binding to biomolecules were investigated. Two diethylenetriamine (dien) derivatives, 2-(bis(2-aminoethyl)amino)acetic acid (acdien) and N′-[7-(acetamido)-4-(trifluoromethyl)coumarin]diethylenetriamine (atfcdien), were used. The latter was designed to allow the fluorophore group, 7-amino-4-(trifluoromethyl)coumarin (atfc), to be attached to metal centers through the dien moiety. 1H NMR spectroscopy and X-ray crystallography were employed to characterize the [Pt(atfcdien)Br][Pt(Me2SO)Br3] (8a) and [Pt(acdien)Br]Br (9a) complexes. 1H NMR and fluorescence spectroscopic methods were used to characterize the [Pt(atfcdien)Br]Br (8b) and [Pt(acdien)Br]Br (9a) complexes. 1H NMR studies of the monofunctional [Pt(acdien)Br]Br (9a) complex conducted to examine its interaction with guanosine 5′-monophosphate (5′-GMP) in D2O solutions revealed one downfield-shifted H8 and one downfield-shifted H1′ signal, consistent with 5′-GMP binding via N7 and fast rotation about the Pt-N7 bond.  相似文献   

18.
The reaction of cis-[Os(CO)4Me2] with Me3NO in the THF or MeCN yields the complexes fac-[Os(CO)3(L)Me2] (where L = THF or MeCN). Whereas the THF complex is unstable and only characterised spectroscopically, fac-[Os(CO)3(MeCN)Me2] has been isolated as a white solid and fully characterized by both analytical and spectroscopic methods. These complexes fac-[Os(CO)3(L)Me2] are shown to be useful intermediates. Thus, reaction with PPh3 gives fac-[Os(CO)3(PPh3)Me2] in good yield.Reactions of fac-[Os(CO)3(L)Me2] (L = CO or MeCN) with CPh3PF6 or B(C6F5)3 have been investigated. Whereas cis-[Os(CO)4Me2] showed no reaction with either CPh3PF6 or B(C6F5)3, the reaction of fac-[Os(CO)3(MeCN)Me2] with CPh3PF6 in CH2Cl2 occurred over 16 h at room temperature to give an unstable cationic product and CPh3Me. The reaction was monitored by both IR and NMR spectroscopies. When this reaction of fac-[Os(CO)3(MeCN)Me2] was carried out in the presence of a trapping ligand such as MeCN, the stable cationic product [Os(CO)3(MeCN)2Me]+ could be isolated and identified spectroscopically.  相似文献   

19.
《Inorganica chimica acta》1988,141(2):211-220
The reaction of CrCl3 · 6H2O (dehydrated in DMSO) with 1,5,9-triazanonane (3,3-tri) gives mer- CrCl3(3,3-tri), the configuration being established by isomorphism with the corresponding Co(III) complex. This non-electrolyte is hydrolyzed in aqueous acidic solution and mer-[CrCl2(3,3-tri)- (OH2)]ClO4 can be isolated by anation with HCl in the presence of HClO4. Reaction of mer-CrCl3- (3,3-tri) in DMF with diamines produces complexes of the type [CrCl(diamine)(3,3-tri)] Cl2 [diamine= 1,2-diaminoethane (en), 1.2-diaminopropane (pn), 1,3-diaminopropane (tn), 2,2-dimethyl-1,3-diaminopropane (Me2tn) and cyclohexanediamine (chxn, cis plus trans mixture; two isomers A and B)] and these have been characterized as the ZnCl42− salts. The configuration of the triamine ligand in these complexes has been established as mer-(H↓)- by a single crystal X-ray analysis of [CrCl(en)(3,3-tri)]- ZnCl4, monoclinic, P21, a=7.932, b= 14.711, c= 8.312 Å, β=104.6° and Z=2, refined to a conventional R factor of 0.034. The kinetics of the Hg2+- assisted chloride release from [CrCl(diamine)(3,3- tri)]ZnCl4 salts were measured spectrophotometrically (μ=1.0 M HClO4 or HNO3) over 15 K temperature ranges to give, in order, 104kHg (298.2 K) (M−1 s−1), Ea(kJ mol−1), ΔS# (J K−1 mol−1): en- (HClO4): 5.95, 78.1, -53; pn(HClO4); 5.24, 81.2; -44; tn(HClO4): 26.7, 85.6, -15; Me2tn(HClO4): 21.8, 78.6, -40; A-chxn(HNO3): 7.60, 81.0,-41; B-chxn(HNO3): 18.3, 56.8, -115. A ‘non-replaced ligand effect’ on the rate is observed for the first time in this series of homologous Cr(III) complexes. The kinetics of the thermal aquation (kH, 0.1 M HClO4) were measured titrimetrically for CrCl(diamine) (3,3-tri)2+ to give the following kinetic parameters: diamine=en: 107 kH (298.2)=5.34 s−1, Ea=99.2 kJ mol−1, ΔS#=-40 J K−1 mol-1; diamine =tn: 107 kH (298.2)=5.04 s−1, Ea= 82.8, ΔS#= -96.  相似文献   

20.
Raman, infra-red and multinuclear NMR spectroscopy were used to establish the structure of several TiX4·2L adducts (X=F, Cl, Br; L=Lewis base) in inert solvents. In contrast to the analogous SnX4·2L adducts where a cis-trans equilibrium prevails, most of the TiX4·2L adducts studied were found to have only the cis configuration. Trans isomers were observed but their formation was dependent on the donor ability of the ligand. In dichloromethane solution, the adducts with L=Me2O, Me2S, (MeOCH2-)2, Et2S, THT, Me2Se, MeCN, Me2CO, Cl(MeO)2PO, Cl2(MeO)PO, Cl3PO and Cl2(Me2N)PO were found to have the cis configuration only. For the adducts with L=THF, Cl(Me2N)2PO and TMPA, a cis-trans equilibrium was observed. The thermodynamic parameters were measured for cis-trans isomerization for TiCl4·2TMPA in CHCl3; these parameters are: Kiso277=[trans] / [cis]=0.36, ΔH°iso=− 1.3 ± 1.3 kJ/mol, ΔS°iso=−13.1 + 7.5 J/mol K, and ΔV°iso= − 1.3+0.8 cm3/mol. A complex equilibrium involving cis and trans isomers and the ionic complex [TiCl3·3HMPA]Cl was found to occur for the TiCl4 adduct with L=HMPA. 1H NMR was used to establish the relative stabilities of the cis adducts and the following sequence was obtained: Me2O ∼ MeCN < Me2CO < Me2S < Me2Se < Cl(MeO)2PO < TMPA < CI(Me2N)2PO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号