首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexes of 7-aminoactinomycin D (7AAMD), a fluorescent analogue of the natural antitumor antibiotic actinomycin D (AMD), with its potential carriers: purine nucleotides (guanine and adenine), caffeine, and fragmented DNA have been studied by fluorescence spectroscopy. It has been shown that 7AAMD binds on the surface of purine aggregates and caffeine clusters and is particularly well incorporated into unwound DNA regions. The process is accompanied by a strong long-wavelength shift of the excitation spectrum of 7AAMD. From the magnitude of the shift, the energy of interaction has been found. In the case of the interaction of 7AAMD with guanine, adenine, and caffeine, it is about 7 kcal/mol, which differs little from the energy of its interaction with DNA (7.7 kcal/mol). This indicates that the contribution of deoxyribose and phosphate to the energy of interaction is very small. On interaction with all compounds examined, except DNA, 7AAMD emits from the water phase, as judged from emission spectra. It has been concluded that, upon photoexcitation, 7AAMD passes readily from all clusters to the polar water phase but does not leave DNA and remains in the hydrophobic surroundings. Presumably, the rigidity of the binding of 7AAMD is determined not only by the enthalpic energy of interaction but also the entropic steric factor, the location of the antibiotic in the hydrophobic part of the unwound region.  相似文献   

2.
Pulse-labeling of the nucleotide pool in Entamoeba histolytica with radioactive precursors, and subsequent high performance liquid chromatographic (HPLC) analysis of the radiolabeled nucleotides, indicate that E. histolytica is incapable of de novo synthesis of purine nucleotides. Hypoxanthine, inosine and xanthine could not be converted to nucleotides in E. histolytica, which suggests the absence of interconversion between adenine nucleotides and guanine nucleotides through formation of IMP. Adenosine was actively incorporated into nucleotides at an initial rate of 130 pmoles per minute per 10(6) trophozoites. Adenine, guanosine and guanine were also incorporated at much lower rates. The rate of adenine incorporation was enhanced by the presence of guanosine; the rate of guanine incorporation was significantly increased by adenosine. These stimulatory effects suggest that the ribose moiety of adenosine or guanosine can be transferred to another purine base to form a new nucleoside, and that the purine nucleosides are the immediate precursors of E. histolytica nucleotides. HPLC results showed that the radiolabel in adenine was exclusively incorporated into adenine nucleotides and that guanine was found only among guanine nucleotides, whereas the radioactivity associated with the ribose moiety of adenosine or guanosine was distributed among both adenine and guanine nucleotides.  相似文献   

3.
1. Pentatrichomonas hominis was found incapable of de novo synthesis of purines. 2. Pentatrichomonas hominis can salvage adenine, guanine, hypoxanthine, adenosine, guanosine and inosine, but not xanthine for the synthesis of nucleotides. 3. HPLC tracing of radiolabelled purines or purine nucleosides revealed that adenine, adenosine and hypoxanthine are incorporated into adenine nucleotides and IMP through a similar channel while guanine and guanosine are salvaged into guanine nucleotides via another route. There appears to be no direct interconversion between adenine and guanine nucleotides. Interconversion between AMP and IMP was observed. 4. Assays of purine salvage enzymes revealed that P. hominis possess adenosine kinase; adenosine, guanosine and inosine phosphotransferases; adenosine, guanosine and inosine phosphorylases and AMP deaminase.  相似文献   

4.
To determine the metabolic profiles of purine nucleotides and related compounds in leaves and roots of tea (Camellia sinensis), we studied the in situ metabolic fate of 10 different (14)C-labeled precursors in segments from tea seedlings. The activities of key enzymes in tea leaf extracts were also investigated. The rates of uptake of purine precursors were greater in leaf segments than in root segments. Adenine and adenosine were taken up more rapidly than other purine bases and nucleosides. Xanthosine was slowest. Some adenosine, guanosine and inosine was converted to nucleotides by adenosine kinase and inosine/guanosine kinase, but these compounds were easily hydrolyzed, and adenine, guanine and hypoxanthine were generated. These purine bases were salvaged by adenine phosphoribosyltransferase and hypoxanthine/guanine phosphoribosyltransferase. Salvage activity of adenine and adenosine was high, and they were converted exclusively to nucleotides. Inosine and hypoxanthine were salvaged to a lesser extent. In situ (14)C-tracer experiments revealed that xanthosine and xanthine were not salvaged, although xanthine phosphoribosyltransferase activity was found in tea extracts. Only some deoxyadenosine and deoxyguanosine was salvaged and utilized for DNA synthesis. However, most of these deoxynucleosides were hydrolyzed to adenine and guanine and then utilized for RNA synthesis. Purine alkaloid biosynthesis in leaves is much greater than in roots. In situ experiments indicate that adenosine, adenine, guanosine, guanine and inosine are better precursors than xanthosine, which is a direct precursor of a major pathway of caffeine biosynthesis. Based on these results, possible routes of purine metabolism are discussed.  相似文献   

5.
Theacrine (1,3,7,9-tetramethyluric acid) and caffeine were the major purine alkaloids in the leaves of an unusual Chinese tea known as kucha (Camellia assamica var. kucha). Endogenous levels of theacrine and caffeine in expanding buds and young leaves were ca. 2.8 and 0.6-2.7% of the dry wt, respectively, but the concentrations were lower in the mature leaves. Radioactivity from S-adenosyl-L-[methyl-14C]methionine was incorporated into theacrine as well as theobromine and caffeine by leaf disks of kucha, indicating that S-adenosyl-L-methionine acts as the methyl donor not only for caffeine biosynthesis but also for theacrine production. [8-14C]Caffeine was converted to theacrine by kucha leaves with highest incorporation occurring in expanding buds. When [8-14C]adenosine, the most effective purine precursor for caffeine biosynthesis in tea (Camellia sinensis), was incubated with young kucha leaves for 24 h, up to 1% of total radioactivity was recovered in theacrine. However, pulse-chase experiments with [8-14C]adenosine demonstrated much more extensive incorporation of label into caffeine than theacrine, possibly because of dilution of [14C]caffeine produced by the large endogenous caffeine pool. These results indicate that in kucha leaves theacrine is synthesized from caffeine in what is probably a three-step pathway with 1,3,7-methyluric acid acting an intermediate. This is a first demonstration that theacrine is synthesized from adenosine via caffeine.  相似文献   

6.
W M Kati  S A Acheson  R Wolfenden 《Biochemistry》1992,31(32):7356-7366
Nebularine undergoes hydration at the active site of adenosine deaminase, in a reaction analogous to a partial reaction in the displacement of ammonia from adenosine by water, to generate an inhibitory complex that captures much of the binding affinity expected of an ideal transition-state analogue. Enzyme affinities of several compounds related to nebularine 1,6-hydrate, and to its stable analog 2'-deoxycoformycin, were compared in an effort to identify the structural origins of strong binding. Binding of the stable transition-state analog inhibitor 2'-deoxycoformycin was rendered 9.8 kcal/mol less favorable by removal of substituent ribose, 9.7 kcal/mol less favorable by inversion of the 8-hydroxyl substituent of the diazepine ring, and 10.0 kcal/mol less favorable by removal of atoms 4-6 of the diazepine ring. Binding of the unstable transition-state analog nebularine hydrate was rendered at least 9.9 kcal/mol less favorable by removal of the 6-hydroxyl group and 10.2 kcal/mol less favorable by removal of atoms 1-3 of the pyrimidine ring. In each case, the enzyme exhibited only modest affinity (Kd greater than or equal to 10(-2) M) for the "missing piece", indicating that incorporation of 2 binding determinants within a single molecule permits an additional 7-12 kcal/mol of intrinsic binding energy to be manifested as observed binding energy. These results are consistent with earlier indications that adenosine deaminase may use 10.5 kcal/mol of the intrinsic free energy of binding of the two substrates to place them in positions appropriate for reaction at the active site, overcoming the unfavorable entropy change of -35 eu for the equilibrium of 1,6-hydration of purine ribonucleoside and reducing the equilibrium constant for attainment of the transition state in deamination of adenosine. Thus, adenosine deaminase may achieve up to 8 orders of magnitude of its catalytic power by converting the nonenzymatic, bimolecular, hydration reaction to a monomolecular reaction at its active site. Several new 6-substituted 1,6-dihydropurine ribonucleosides, prepared by photoaddition of formate and by low-temperature addition of organolithium reagents to a derivative of purine ribonucleoside, exhibited Ki values of 9-1400 microM against adenosine deaminase, in accord with the active site's considerable tolerance of bulky leaving groups in substrates. Inhibition by one diastereomer of 6-carboxy-1,6-dihydropurine ribonucleoside was found to be time-dependent, progressing from a weakly bound to a more strongly bound complex.  相似文献   

7.
《Phytochemistry letters》2008,1(4):195-198
To determine whether caffeine biosynthesis is controlled by the availability of purine precursors and/or methyl-donors, we examined the effect of some purine compounds on purine alkaloid accumulation, using tea callus cultures. No stimulation of caffeine biosynthesis was observed when the calli were cultured with 0.5 mM adenosine, guanosine or hypoxanthine for 3 weeks. However, 0.5 mM paraxanthine doubled the caffeine level relative to controls. Adenosine stimulated the growth of callus and reduced the caffeine concentration 3 months after inoculation. These results indicate that methylation of xanthosine by 7-methylxanthosine synthase is the most plausible rate-limiting step of caffeine biosynthesis; the supply of non-methylated purine precursors or availability of S-adenosyl-l-methionine are not the principal controlling factors of caffeine biosynthesis. Adenosine salvage to adenine nucleotide synthesis may contribute to the growth of tea calli, but not to caffeine biosynthesis.  相似文献   

8.
Nazario GM  Lovatt CJ 《Plant physiology》1993,103(4):1195-1201
The capacity of Coffea arabica leaves (5- x 5-mm pieces) to synthesize de novo and catabolize purine nucleotides to provide precursors for caffeine (1,3,7-trimethylxanthine) was investigated. Consistent with de novo synthesis, glycine, bicarbonate, and formate were incorporated into the purine ring of inosine 5[prime]-monophosphate (IMP) and adenine nucleotides ([sigma]Ade); azaserine, a known inhibitor of purine de novo synthesis, inhibited incorporation. Activity of the de novo pathway in C. arabica per g fresh weight of leaf tissue during a 3-h incubation period was 8 [plus or minus] 4 nmol of formate incorporated into IMP, 61 [plus or minus] 7 nmol into [sigma]Ade, and 150 nmol into caffeine (the latter during a 7-h incubation). Coffee leaves exhibited classical purine catabolism. Radiolabeled formate, inosine, adenosine, and adenine were incorporated into hypoxanthine and xanthine, which were catabolized to allantoin and urea. Urease activity was demonstrated. Per g fresh weight, coffee leaf squares incorporated 90 [plus or minus] 22 nmol of xanthine into caffeine in 7 h but degraded 102 [plus or minus] 1 nmol of xanthine to allantoin in 3 h. Feedback control of de novo purine biosynthesis was contrasted in C. arabica and Cucurbita pepo, a species that does not synthesize purine alkaloids. End-product inhibition was demonstrated to occur in both species but at different enzyme reactions.  相似文献   

9.
Purine deoxynucleoside salvage in Giardia lamblia   总被引:3,自引:0,他引:3  
Giardia lamblia is dependent on the salvage of preformed purines and pyrimidines, including deoxythymidine. Dependence on deoxynucleoside salvage is extremely unusual among eucaryotic cells (Moore, E. C., and Hurlbert, R. B. (1985) Pharmacol & Ther. 27, 167-196). The present study investigates the possibility that giardia lacks ribonucleotide reductase and depends entirely on deoxynucleoside salvage. A ribonucleotide reductase inhibitor, hydroxyurea, at concentrations up to 2 mM had no effect on the growth of giardia. This is 15-20 times the ED50 of hydroxyurea for the protozoans Trypanosoma cruzi, Trypanosoma gambiense, and Leishmania donovani. A lysate of giardia had no detectable ribonucleotide reductase. Although radiolabeled adenine, adenosine, guanine, and guanosine were readily incorporated into RNA by cultured cells, no adenine or adenosine and only trace amounts of guanine and guanosine were detectable in DNA. This is in contrast to deoxynucleosides, where 58% of deoxyadenosine and 10% of deoxyguanosine incorporated into nucleic acid were found in DNA. Phosphorylation of both deoxyadenosine and deoxyguanosine was catalyzed by a cell lysate of giardia when nucleoside kinase co-substrates were included in the assay but not when phosphotransferase co-substrates were present. The absence of detectable ribonucleotide reductase, the failure to incorporate purine nucleobases and nucleosides into DNA to any significant extent, the ready incorporation of deoxynucleosides into DNA, and the demonstration of a purine deoxynucleoside kinase suggest that giardia are dependent on the salvage of exogenous deoxynucleosides.  相似文献   

10.
Purine metabolism by intracellular Chlamydia psittaci.   总被引:1,自引:0,他引:1       下载免费PDF全文
Purine metabolism was studied in the obligate intracellular bacterium Chlamydia psittaci AA Mp in the wild type and a variety of mutant host cell lines with well-defined deficiencies in purine metabolism. C. psittaci AA Mp cannot synthesize purines de novo, as assessed by its inability to incorporate exogenous glycine into nucleic acid purines. C. psittaci AA Mp can take ATP and GTP, but not dATP or dGTP, directly from the host cell. Exogenous hypoxanthine and inosine were not utilized by the parasite. In contrast, exogenous adenine, adenosine, and guanine were directly salvaged by C. psittaci AA Mp. Crude extract prepared from highly purified C. psittaci AA Mp reticulate bodies contained adenine and guanine but no hypoxanthine phosphoribosyltransferase activity. Adenosine kinase activity was detected, but guanosine kinase activity was not. There was no competition for incorporation into nucleic acid between adenine and guanine, and high-performance liquid chromatography profiles of radiolabelled nucleic acid nucleobases indicated that adenine, adenosine, and deoxyadenosine were incorporated only into adenine and that guanine, guanosine, and deoxyguanosine were incorporated only into guanine. Thus, there is no interconversion of nucleotides. Deoxyadenosine and deoxyguanosine were cleaved to adenine and guanine before being utilized, and purine (deoxy)nucleoside phosphorylase activity was present in reticulate body extract.  相似文献   

11.
The overall metabolism of purines was studied in tobacco (Nicotiana tabacum) mesophyll protoplasts. Metabolic pathways were studied by measuring the conversion of radioactive adenine, adenosine, hypoxanthine and guanine into purine ribonucleotides, ribonucleosides, bases and nucleic acid constituents. Adenine was extensively deaminated to hypoxanthine, whereupon it was also converted into AMP and incorporated into nucleic acids. Adenosine was mainly hydrolysed to adenine. Inosinate formed from hypoxanthine was converted into AMP and GMP, which were then catabolized to adenine and guanosine respectively. Guanine was mainly deaminated to xanthine and also incorporated into nucleic acids via GTP. Increased RNA synthesis in the protoplasts resulted in enhanced incorporation of adenine and guanine, but not of hypoxanthine and adenosine, into the nucleic acid fraction. The overall pattern of purine-nucleotide metabolic pathways in protoplasts of tobacco leaf mesophyll is proposed.  相似文献   

12.
The activation energies for the pseudorotation of the furanose ring in adenosine, guanosine, inosine and xanthosine dissolved in liquid deuteroammonia have been determined by analysis of the longitudinal relaxation rates of the single tertiary carbons between +40 degrees C and minus 60 degrees C. For the purine ribosides the average activation energy was found to be 4.7 plus or minus 0.5 kcal x mol-1 (20 plus or minus 2 kJ x mol-1). For the pyrimidine nucleosides cytidine and uridine the respective activation energy should be higher since it could not be determined by 13-C relaxation measurements. This result can be explained by the formation of a hydrogen bond between the 5'-hydroxymethyl group and the base. In adenosine, guanosine, inosine and xanthosine the relaxation rates of C(5') are smaller than all others thus excluding the formation of a hydrogen bond between the purine base and the 5'-hydroxymethyl group of a strength comparable to the one suggested for cytidine and uridine.  相似文献   

13.
Purine riboside (nebularine, 9-beta-ribofuranosylpurine) is a naturally occurring base analog which closely resembles adenosine. It inhibits carcinogenic growth. Purine riboside strongly inhibits RNA and DNA synthesis in different cancer ascites cells. Gel electrophoretic analysis of RNA synthesis in vivo in the presence of purine riboside shows the ribosomal components to be inhibited the most. A method for assaying purine riboside or its phosphates intracellularly has been devised, and by using this it has been shown that purine riboside is extensively phosphorylated in the cells. The triphosphate derivative of purine riboside has been isolated and tested in the Escherichia coli RNA polymerase assay. It appears not to be incorporated into this type of RNA and to competitively inhibit this reaction with regard to ATP.  相似文献   

14.
The processes underlying DNA degradation are central to various disciplines, including cancer research, forensics and archaeology. The sequencing of ancient DNA molecules on next-generation sequencing platforms provides direct measurements of cytosine deamination, depurination and fragmentation rates that previously were obtained only from extrapolations of results from in vitro kinetic experiments performed over short timescales. For example, recent next-generation sequencing of ancient DNA reveals purine bases as one of the main targets of postmortem hydrolytic damage, through base elimination and strand breakage. It also shows substantially increased rates of DNA base-loss at guanosine. In this review, we argue that the latter results from an electron resonance structure unique to guanosine rather than adenosine having an extra resonance structure over guanosine as previously suggested.  相似文献   

15.
Nucleotides are important for RNA and DNA synthesis and, despite a de novo synthesis by bacteria, uptake systems are crucial. Streptococcus pneumoniae, a facultative human pathogen, produces a surface-exposed nucleoside-binding protein, PnrA, as part of an ABC transporter system. Here we demonstrate the binding affinity of PnrA to nucleosides adenosine, guanosine, cytidine, thymidine and uridine by microscale thermophoresis and indicate the consumption of adenosine and guanosine by 1H NMR spectroscopy. In a series of five crystal structures we revealed the PnrA structure and provide insights into how PnrA can bind purine and pyrimidine ribonucleosides but with preference for purine ribonucleosides. Crystal structures of PnrA:nucleoside complexes unveil a clear pattern of interactions in which both the N- and C- domains of PnrA contribute. The ribose moiety is strongly recognized through a conserved network of H-bond interactions, while plasticity in loop 27–36 is essential to bind purine- or pyrimidine-based nucleosides.Further, we deciphered the role of PnrA in pneumococcal fitness in infection experiments. Phagocytosis experiments did not show a clear difference in phagocytosis between PnrA-deficient and wild-type pneumococci. In the acute pneumonia infection model the deficiency of PnrA attenuated moderately virulence of the mutant, which is indicated by a delay in the development of severe lung infections. Importantly, we confirmed the loss of fitness in co-infections, where the wild-type out-competed the pnrA-mutant. In conclusion, we present the PnrA structure in complex with individual nucleosides and show that the consumption of adenosine and guanosine under infection conditions is required for virulence.  相似文献   

16.
Toxoplasma gondii, growing exponentially in heavily infected mutant Chinese hamster ovary cells that had a defined defect in purine biosynthesis, did not incorporate [U-14C]glucose or [14C]formate into the guanine or adenine of nucleic acids. Intracellular parasites therefore must be incapable of synthesizing purines and depend on their host cells for them. Extracellular parasites, which are capable of limited DNA and RNA synthesis, efficiently incorporated adenosine nucleotides, adenosine, inosine, and hypoxanthine into their nucleic acids; adenosine 5′-monophosphate was the best utilized precursor. Extracellular parasites incubated with ATP labeled with 3H in the purine base and 32P in the α-phosphate incorporated the purine ring 50-fold more efficiently than they did the α-phosphate. Thus, ATP is largely degraded to adenosine before it can be used by T. gondii for nucleic acid synthesis. Two pathways for the conversion of adenosine to nucleotides appear to exist, one involving adenosine kinase, the other hypoxanthine—guanine phosphoribosyl transferase. In adenosine kinase-less mutant parasites, the efficiency of incorporation of ATP or adenosine was reduced by 75%, which indicates the adenosine kinase pathway was predominant. Extracellular parasites incorporated ATP into both the adenine and the guanine of their nucleic acids, so ATP from the host cell could supply the entire purine requirement of T. gondii. However, ATP generated by oxidative phosphorylation in the host cell is not essential for parasites because they grew normally in a cell mutant that was deficient in aerobic respiration and almost completely dependent upon glycolysis.  相似文献   

17.
Corynebacterium species lacks the ability to convert either xanthine or guanine to adenine. This defect and the use of the purine nucleoside antibiotic decoyinine, which blocks the conversion of xanthosine monophosphate --> guanosine monophosphate, permit an experimental design in which the interconversion of purines is largely prevented. Cultures of this organism were grown in the presence of decoyinine and various purine supplements. Data obtained by comparing the radioactivity incorporated from guanine-2-(14)C or xanthine-2-(14)C into bacterial guanine, xanthine, and riboflavine indicate that guanine or a close derivative of guanine is the purine precursor of riboflavine.  相似文献   

18.
Purine metabolism in Toxoplasma gondii   总被引:11,自引:0,他引:11  
We have studied the incorporation and interconversion of purines into nucleotides by freshly isolated Toxoplasma gondii. They did not synthesize nucleotides from formate, glycine, or serine. The purine bases hypoxanthine, xanthine, guanine, and adenine were incorporated at 9.2, 6.2, 5.1, and 4.3 pmol/10(7) cells/h, respectively. The purine nucleosides adenosine, inosine, guanosine, and xanthosine were incorporated at 110, 9.0, 2.7, and 0.3 pmol/10(7) cells/h, respectively. Guanine, xanthine, and their respective nucleosides labeled only guanine nucleotides. Inosine, hypoxanthine, and adenine labeled both adenine and guanine nucleotide pools at nearly equal ratios. Adenosine kinase was greater than 10-fold more active than the next most active enzyme in vitro. This is consistent with the metabolic data in vivo. No other nucleoside kinase or phosphotransferase activities were found. Phosphorylase activities were detected for guanosine and inosine; no other cleavage activities were detected. Deaminases were found for adenine and guanine. Phosphoribosyltransferase activities were detected for all four purine nucleobases. Interconversion occurs only in the direction of adenine to guanine nucleotides.  相似文献   

19.
Adenosine and the adenine nucleotides have a potent depressant action on cerebral cortical neurons, including identified corticospinal cells. Other purine and pyrimidine nucleotides were either weakly depressant (inosine and guanosine derivatives) or largely inactive (xanthine, cytidine, thymidine, uridine derivatives). The 5'-triphosphates and to a lesser extent the 5'-diphosphates of all the purine and pyrimidines tested had excitant actions on cortical neurons. Adenosine transport blockers and deaminase inhibitors depressed the firing of cortical neurons and potentiated the depressant actions of adenosine and the adenine nucleotides. Methylxanthines (theophylline, caffeine, and isobutylmethylxanthine) antagonized the depressant effects of adenosine and the adenine nucleotides and enhanced the spontaneous firing rate of cerebral cortical neurons. Intracellular recordings showed that adenosine 5'-monophosphate hyperpolarizes cerebral cortical neurons and suppresses spontaneous and evoked excitatory postsynaptic potentials in the absence of any pronounced alterations in membrane resistance or of the threshold for action potential generation. It is suggested that adenosine depresses spontaneous and evoked activity by inhibiting the release of transmitter from presynaptic nerve terminals. Furthermore, the depressant effects of potentiators and excitant effects of antagonists of adenosine on neuronal firing are consistent with the hypothesis that cortical neurons are subject to control by endogenously released purines.  相似文献   

20.
A xanthosine-inducible enzyme, inosine-guanosine phosphorylase, has been partially purified from a strain of Escherichia coli K-12 lacking the deo-encoded purine nucleoside phosphorylase. Inosine-guanosine phosphorylase had a particle weight of 180 kilodaltons and was rapidly inactivated by p-chloromercuriphenylsulfonic acid (p-CMB). The enzyme was not protected from inactivation by inosine (Ino), 2'-deoxyinosine (dIno), hypoxanthine (Hyp), Pi, or alpha-D-ribose-1-phosphate (Rib-1-P). Incubating the inactive enzyme with dithiothreitol restored the catalytic activity. Reaction with p-CMB did not affect the particle weight. Inosine-guanosine phosphorylase was more sensitive to thermal inactivation than purine nucleoside phosphorylase. The half-life determined at 45 degrees C between pH 5 and 8 was 5 to 9 min. Phosphate (20 mM) stabilized the enzyme to thermal inactivation, while Ino (1 mM), dIno (1 mM), xanthosine (Xao) (1 mM), Rib-1-P (2 mM), or Hyp (0.05 mM) had no effect. However, Hyp at 1 mM did stabilize the enzyme. In addition, the combination of Pi (20 mM) and Hyp (0.05 mM) stabilized this enzyme to a greater extent than did Pi alone. Apparent activation energies of 11.5 kcal/mol and 7.9 kcal/mol were determined in the phosphorolytic and synthetic direction, respectively. The pH dependence of Ino cleavage or synthesis did not vary between 6 and 8. The substrate specificity, listed in decreasing order of efficiency (V/Km), was: 2'-deoxyguanosine, dIno, guanosine, Xao, Ino, 5'-dIno, and 2',3'-dideoxyinosine. Inosine-guanosine phosphorylase differed from the deo operon-encoded purine nucleoside phosphorylase in that neither adenosine, 2'-deoxyadenosine, nor hypoxanthine arabinoside were substrates or potent inhibitors. Moreover, the E. coli inosine-guanosine phosphorylase was antigenically distinct from the purine nucleoside phosphorylase since it did not react with any of 14 monoclonal antisera or a polyvalent antiserum raised against deo-encoded purine nucleoside phosphorylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号