首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nuclear pore complex (NPC) is the sole gateway between the nucleus and the cytoplasm of interphase eukaryotic cells, and it mediates all trafficking between these 2 cellular compartments. As such, the NPC and nuclear transport play central roles in translocating death signals from the cell membrane to the nucleus where they initiate biochemical and morphological changes occurring during apoptosis. Recent findings suggest that the correlation between the NPC, nuclear transport, and apoptosis goes beyond the simple fact that NPCs mediate nuclear transport of key players involved in the cell death program. In this context, the accessibility of key regulators of apoptosis appears to be highly modulated by nuclear transport (e.g., impaired nuclear import might be an apoptotic trigger). In this review, recent findings concerning the unexpected tight link between NPCs, nuclear transport, and apoptosis will be presented and critically discussed.  相似文献   

2.
3.
The abundant coiled-coil protein NuMA is located in the nucleus during interphase, but when the nuclear envelope disassembles in prometaphase it rapidly redistributes to the developing spindle poles. Microinjection of antibodies to NuMA at or before metaphase can block spindle assembly or cause spindle collapse, indicating a role for NuMA in spindle function. NuMA must also play a key role in telophase, as NuMA antibodies or truncations of NuMA cause aberrant nuclear reassembly despite apparently normal chromosome segregation. Consistent with a structural role for NuMA in the nucleus, immunoelectron microscopy reveals NuMA to be a component of nuclear filaments.  相似文献   

4.
The proteins of rat liver cytoplasm, nuclear washes, matrix, membrane, heterogeneous nuclear (hn)RNA proteins and chromatin were examined by two-dimensional gel electrophoresis. The inclusion in the gels of six common protein standards of carefully selected molecular weight and isoelectric point allowed us to clearly follow the distribution of specific proteins during nuclear extraction. In the nuclear washes and chromatin, we observed five classes of proteins: (a) Exclusively cytoplasmic proteins, present in the first saline-EDTA wash but rapidly disappearing from subsequent washes; (b) ubiquitous proteins of 75,000, 68,000, 57,000, and 43,000 mol wt, the latter being actin, found in the cytoplasm, all nuclear washes and the final chromatin pellet; (c) proteins of 94,000, 25,000, and 20,500 mol wt specific to the nuclear washes; (d) proteins present in the nuclear washes and final chromatin, represented by species at 62,000, 55,000, 54,000, and 48,000 mol wt, primarily derived from the nuclear matrix; and (e) two proteins of 68,000 mol wt present only in the final chromatin. The major 65,000- 75,000-mol wt proteins seen by one-dimensional gel electrophoresis of nuclear matrix were very heterogeneous and contained a major acidic, an intermediate, and a basic group. A single 68,000-mol wt polypeptide constituted the majority of the membrane-lamina fraction, consistent with immunological studies indicating that a distinct subset of matrix proteins occurs, associated with heterochromatin, at the periphery of the nucleus. Actin was the second major nuclear membrane-lamina protein. Two polypeptides at 36,000 and 34,000 mol wt constituted 60% of the hnRNP. Approximately 80% of the mass of the nonhistone chromosomal proteins (NHP) from unwashed nuclei is contributed by nuclear matrix and hnRNPs, and essentially the same patterns were seen with chromatin NHP. The concept of NHP being a distinct set of DNA- bound proteins is unnecessarily limiting. Many are derived from the nuclear matrix or hnRNp particles and vary in the degree to which they share different intracellular compartments.  相似文献   

5.
6.
Probing of Dictyostelium discoideum cell extracts after SDS-PAGE using (35)S-recombinant calmodulin (CaM) as a probe has revealed approximately three-dozen Ca(2+)-dependent calmodulin binding proteins. Here, we report the molecular cloning, expression, and subcellular localization of a gene encoding a novel calmodulin-binding protein (CaMBP); we have called nucleomorphin, from D. discoideum. A lambdaZAP cDNA expression library of cells from multicellular development was screened using a recombinant calmodulin probe ((35)S-VU1-CaM). The open reading frame of 1119 nucleotides encodes a polypeptide of 340 amino acids with a calculated molecular mass of 38.7 kDa and is constitutively expressed throughout the Dictyostelium life cycle. Nucleomorphin contains a highly acidic glutamic/aspartic acid inverted repeat (DEED) with significant similarity to the conserved nucleoplasmin domain and a putative transmembrane domain in the carboxyl-terminal region. Southern blotting reveals that nucleomorphin exists as a single copy gene. Using gel overlay assays and CaM-agarose we show that bacterially expressed nucleomorphin binds to bovine CaM in a Ca(2+)-dependent manner. Amino-terminal fusion to the green fluorescence protein (GFP) showed that GFP-NumA localized to the nucleus as distinct arc-like patterns similar to heterochromatin regions. GFP-NumA lacking the acidic DEED repeat still showed arc-like accumulations at the nuclear periphery, but the number of nuclei in these cells was increased markedly compared with control cells. Cells expressing GFP-NumA lacking the transmembrane domain localized to the nuclear periphery but did not affect nuclear number or gross morphology. Nucleomorphin is the first nuclear CaMBP to be identified in Dictyostelium. Furthermore, these data present the first identification of a member of the nucleoplasmin family as a calmodulin-binding protein and suggest nucleomorphin has a role in nuclear structure in Dictyostelium.  相似文献   

7.
Despite rapid advances in our understanding of the function of the nuclear pore complex in nuclear transport, little is known about the role the nuclear envelope itself may play in this critical process. A small number of integral membrane proteins specific to the envelope have been identified in budding yeast, however, none has been reported to affect transport. We have identified an essential gene, BRR6, whose product, Brr6p, behaves like a nuclear envelope integral membrane protein. Notably, the brr6-1 mutant specifically affects transport of mRNA and a protein reporter containing a nuclear export signal. In addition, Brr6p depletion alters nucleoporin distribution and nuclear envelope morphology, suggesting that the protein is required for the spatial organization of nuclear pores. BRR6 interacts genetically with a subset of nucleoporins, and Brr6-green fluorescent protein (GFP) localizes in a punctate nuclear rim pattern, suggesting location at or near the nuclear pore. However, Brr6-GFP fails to redistribute in a (Delta)nup133 mutant, distinguishing Brr6p from known proteins of the pore membrane domain. We hypothesize that Brr6p is located adjacent to the nuclear pore and interacts functionally with the pore and transport machinery.  相似文献   

8.
Transvection, nuclear structure, and chromatin proteins   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

9.
10.
11.
12.
M S Moore  G Blobel 《Cell》1992,69(6):939-950
We have isolated two cytosolic fractions from Xenopus oocytes that contain all of the activity necessary to support both steps of nuclear import in digitonin-permeabilized mammalian cells: binding at the nuclear envelope and translocation through the nuclear pore. The first cytosolic fraction (fraction A) interacts with an import-competent, but not a mutant, nuclear localization sequence-bearing conjugate and stimulates its accumulation at the nuclear envelope in an ATP-independent fashion. The second cytosolic fraction (fraction B) gives no discernible effect when added alone; but when added either together with fraction A, or after fraction A, stimulates the passage of the conjugate from the outer nuclear envelope to the interior of the nucleus in an ATP-dependent fashion.  相似文献   

13.
A number of recent studies have demonstrated a salt-, nuclease, and detergent-resistant subnuclear structure termed the nuclear protein matrix which consists of a fibrogranular intranuclear network, residual components of the nucleolus, and a peripheral lamina. Other workers, however, have shown that somewhat similar methods result in the isolation of the peripheral lamina devoid of the intranuclear components. In this report we demonstrate that seemingly slight changes in the isolation procedure cause major changes in the morphology of the residual structures obtained. When freshly purified rat liver nuclei were digested with DNase I and RNase A and then extracted with buffers of low magnesium ion concentration (LS buffer) and high ionic strength (HS buffer), the resulting structures isolated prior to or after Triton X-100 extraction lacked the extensive intranuclear network and the easily identifiable residual nucleoli present in the nuclear protein matrix. Systematic modification of this extraction procedure revealed that morphologically identifiable residual nucleoli were present when digestion with RNase A followed extraction with HS buffer but were absent when the order of these steps was reversed. The removal of the nucleolus by RNase A and HS buffer correlated with the removal of nuclear RNA by the same treatments. These coordinate events could not be prevented by treatment with protease inhibitors but were prevented by treatment of the RNase A with diethylpyrocarbonate, an RNase inhibitor. The extensive intranuclear network seen in the nuclear protein matrix was sparse or absent when residual structures were prepared from DNase- and RNase-treated nuclei under conditions which minimized the oxidation of protein sulfhydryl groups. In contrast, an extensive non-chromatin intranuclear network was seen if the formation of intermolecular protein disulfide bonds was promoted by extraction of nuclei with cationic detergents, by overnight incubation, or by treatment with oxidizing agents like sodium tetrathionate prior to nuclease digestion and subsequent extraction. By varying the order of extraction steps and the extent of disulfide cross-linking, it is possible to isolate from a single batch of nuclei residual structures with a wide range of morphologies and compositions.  相似文献   

14.
The nuclear pore complex (NPC) is both the major conduit for nucleocytoplasmic trafficking and a platform for organizing macromolecules at the nuclear envelope. We report that yeast Esc1, a non-NPC nuclear envelope protein, is required both for proper assembly of the nuclear basket, a structure extending into the nucleus from the NPC, and for normal NPC localization of the Ulp1 SUMO protease. In esc1Delta cells, Ulp1 and nuclear basket components Nup60 and Mlp1 no longer distribute broadly around the nuclear periphery, but co-localize in a small number of dense-staining perinuclear foci. Loss of Esc1 (or Nup60) alters SUMO conjugate accumulation and enhances ulp1 mutant defects. Similar to previous findings with Mlp1, both Esc1 and Ulp1 help retain unspliced pre-mRNAs in the nucleus. Therefore, these proteins are essential for proper nuclear basket function, which includes mRNA surveillance and regulation of SUMO protein dynamics. The results raise the possibility that NPC-localized protein desumoylation may be a key regulatory event preventing inappropriate pre-mRNA export.  相似文献   

15.
Numerous studies have implicated the role of gross genomic rearrangements in male infertility, e.g., constitutional aneuploidy, translocations, inversions, Y chromosome deletions, elevated sperm disomy, and DNA damage. The primary purpose of this paper is to review male fertility studies associated with such abnormalities. In addition, we speculate whether altered nuclear organization, another chromosomal/whole genome-associated phenomenon, is also concomitant with male factor infertility. Nuclear organization has been studied in a range of systems and implicated in several diseases. For many applications the measurement of the relative position of chromosome territories is sufficient to determine patterns of nuclear organization. Initial evidence has suggested that, unlike in the more usual 'size-related' or 'gene density-related' models, mammalian (including human) sperm heads display a highly organized pattern including a chromocenter with the centromeres located to the center of the nucleus and the telomeres near the periphery. More recent evidence, however, suggests there may be size- and gene density-related components to nuclear organization in sperm. It seems reasonable to hypothesize therefore that alterations in this pattern may be associated with male factor infertility. A small handful of studies have addressed this issue; however, to date it remains an exciting avenue for future research with possible implications for diagnosis and therapy.  相似文献   

16.
17.
18.
Kose S  Furuta M  Imamoto N 《Cell》2012,149(3):578-589
During heat shock stress, importin β family-mediated nucleocytoplasmic trafficking is downregulated, whereas nuclear import of the molecular chaperone Hsp70s is upregulated. Here, we identify a nuclear import pathway that operates during heat shock stress and is mediated by an evolutionarily conserved protein named "Hikeshi," which does not belong to the importin β family. Hikeshi binds to FG-Nups and translocates through nuclear pores on its own, showing characteristic features of nuclear transport carriers. In reconstituted transport, Hikeshi supports the nuclear import of the ATP form of Hsp70s, but not the ADP form, indicating the importance of the Hsp70 ATPase cycle in the import cycle. In living cells, depletion of Hikeshi inhibits heat shock-induced nuclear import of Hsp70s, reduces cell viability after heat shock stress, and significantly delays the attenuation and reversion of multiple heat shock-induced nuclear phenotypes. Nuclear Hsp70s rescue the effect of Hikeshi depletion at least in part. Thus, Hsp70s counteract heat shock-induced damage by acting inside of the nucleus.  相似文献   

19.
Some years ago, a lectin designated CBP70 that recognized glucose (Glc) but had a stronger affinity for N-acetylglucosamine (GlcNAc), was first isolated from HL60 cell nuclei. Recently, a cytoplasmic form of this lectin was described, and one 82 kDa nuclear ligand was characterized for the nuclear CBP70. In the present study, the use of Pronase digestion and the trifluoromethanesulphonic acid (TFMS) procedure strongly suggest that the nuclear and the cytoplasmic CBP70 have a same 23 kDa polypeptide backbone and, consequently, could be the same protein. In order to know the protein better and to obtain the best recombinant possible in the future, the post-translational modification of the nuclear and cytoplasmic CBP70 was analyzed in terms of glycosylation. Severals lines of evidence indicate that both forms of CBP70 are N- and O-glycosylated. Surprisingly, this glycosylation pattern differs between the two forms, as revealed by β-elimination, hydrazinolysis, peptide-N-glycosydase F (PNGase F), and TFMS reactions. The two preparations were analyzed by affinity chromatography on immobilized lectins [Ricinus communis-I agglutinin (RCA-I), Arachis hypogaea agglutinin (PNA), Galanthus nivalis agglutinin (GNA), and wheat germ agglutinin (WGA)] and by lectin-blotting analysis [Sambucus nigra agglutinin (SNA), Maackia amurensis agglutinin (MAA), Lotus tetragonolobus (Lotus), succinylated-WGA, and Psathyrella velutina agglutinin (PVA)]. Both forms of CBP70 have the following sugar moities: terminal βGal residues, Galβ1–3 GalNAc, Man α1–3 Man, sialic acid α2–6 linked to Gal or GalNAc; and sialic acid α2–3 linked to Gal. However, only nuclear CBP70 have terminal GlcNAc and α-L-fucose residues. All these data are consistent with the fact that different glycosylation pattern found for each form of CBP70 might act as a complementary signal for cellular targeting. J. Cell. Biochem. 66:370–385, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号