首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The enzymatic properties of the three types of microsomal acyl-CoA desaturases, delta 6-, delta 9- and delta 5-desaturases, were immunologically compared using a monospecific antibody raised against the purified linoleoyl-CoA desaturase (delta 6-desaturase). By the double immunodiffusion technique, the anti-delta 6-desaturase antibody showed a single precipitin line to the purified delta 6-desaturase and microsomes treated with Triton X-100, but no line was observed with the partially purified delta 9-desaturase. The antibody even inhibited definitely delta 6-desaturase activity in microsomes, but neither stearoyl-CoA (delta 9-) nor eicosatrienoic acid (delta 5-) desaturations were inhibited. By these immunological investigations it was confirmed that terminal delta 6-desaturase is different enzyme from desaturases delta 9- and delta 5.  相似文献   

2.
The oxidative metabolism of procarbazine, its azo, hydrazone, and two azoxy derivatives, and methylhydrazine by hepatic microsomes from phenobarbital-pretreated rats was investigated to elucidate the pathway of metabolism that resulted in methane formation from procarbazine. When incubated with microsomal reaction mixtures fortified with NADPH, all of the compounds, except the azoxy isomers, were metabolized to yield methane. A lag phase in methane formation was noted for procarbazine, but not for the other compounds. Kinetic and inhibition studies utilizing methimazole and ethylhydrazine precluded methylhydrazine as an intermediate in methane formation from procarbazine. When the azo derivative was oxidatively metabolized in the presence of liver microsomes, no hydrazone tautomer was detected. Upon monitoring the production of the azo and hydrazone metabolites formed during microsomal metabolism of procarbazine, the azo derivative was formed in sufficient quantities to account for the majority of the methane produced. In addition, small amounts of hydrazone were also detected. It was concluded that both the azo and hydrazone metabolites of procarbazine contribute to methane formation from the terminal methyl group of the hydrazine with the azo derivative being the predominant source and the hydrazone derivative being a minor source of methane. Consideration of the chemical and enzymatic pathways of procarbazine oxidation and the implication of a methyl radical intermediate in methane formation are discussed.  相似文献   

3.
Rabbit liver microsomes were found to catalyze oxidation of 11-hydroxy-Δ8-tetrahydrocannabinol to 11-oxo-Δ8-tetrahydrocannabinol. This enzyme reaction required NADPH and molecular oxygen, and it was partially inhibited by CO. Pyrazole, potassium cyanide and sodium azide showed no effect on this oxidation, but SKF-525 A caused a significant inhibition. Thus, it is concluded that this enzymatic reaction is mediated by a mixed function oxidase involving cytochrome P-450.  相似文献   

4.
Three isoenzymes of UDP-glucuronyltransferase (UDPGT) have been separated and purified from liver microsomes of untreated female rats or female rats pretreated with 3-methylcholanthrene. The UDPGT isoenzymes were purified utilizing Chromatofocusing, column isoelectric focusing, and UDP-hexanolamine Sepharose 4B affinity chromatography. UDPGT activities could also be separated during UDP-hexanolamine affinity chromatography by elution with different UDPGA (UDP-glucuronic acid) concentrations. One isoenzyme exhibits a subunit molecular weight of 56,000 and is capable of conjugating p-nitrophenol, 1-naphthol, and 4-methylumbelliferone. This isoenzyme is inducible by 3-methylcholanthrene treatment and requires high UDPGA concentrations for elution from the UDP-hexanolamine affinity column in contrast to the other UDPGT isoenzymes. A second isoenzyme was purified and displayed a subunit molecular weight of 50,000. This isoenzyme was not induced by 3-methylcholanthrene and was active towards testosterone, the 17-OH position of beta-estradiol, p-nitrophenol, and 1-naphthol. A third isoenzyme was also purified and exhibited a subunit molecular weight of 52,000. This isoenzyme conjugated androsterone and etiocholanolone and was not induced by 3-methylcholanthrene treatment. This study reports the purification of two separate and distinct rat liver UDPGT isoenzymes capable of conjugating p-nitrophenol, only one of which is inducible by 3-methylcholanthrene treatment. Also, this is the first report of the purification of a UDPGT isoenzyme active towards the 3-OH position of androgens.  相似文献   

5.
The comparative substrate specificities of five purified serine hydrolases from rat liver microsomes have been investigated, especially their action upon natural lipoids. All enzymes had high carboxylesterase activities with simple aliphatic and aromatic esters and thioesters. The broad pH optima were in the range of pH 6-10. Synthetic amides were less potent substrates. The hydrolytic activities towards palmitoyl-CoA and monoacyl glycerols were generally high, whereas phospholipids and palmitoyl carnitine were cleaved at moderate rates. Acetyl-CoA, acetyl carnitine, and ceramides were not cleaved at all. The closely related hydrolases with the highest isoelectric points (pI 6.2 and 6.4) were most active with palmitoyl-CoA and palmitoyl glycerol. One of these enzymes might also be responsible for the low cholesterol oleate-hydrolyzing capacity of rat liver microsomes. Among the other hydrolases, that with pI 6.0 showed significant activities with simple butyric acid esters, 1-octanoyl glycerol, and octanoylamide. The esterase with pI 5.6 had the relatively highest activities with palmitoyl carnitine and lysophospholipids. The purified enzyme with pI 5.2 showed some features of the esterase pI 5.6, but generally had lower specific activities, except with 4-nitrophenyl acetate. The lipoid substrates competitively inhibited the arylesterase activity of the enzymes. The varying activities of the individual hydrolases were influenced in parallel by a variety of inhibitors, indicating that the purified hydrolases possessed a relatively broad specificity and were not mixtures of more specific enzymes. The nomenclature of the purified hydrolases is discussed.  相似文献   

6.
Two procedures have been developed for the solubilization of vitamin K epoxide reductase from rat liver microsomal membranes using the detergent Deriphat 160 at pH 10.8. The methods are applicable to both normal and Warfarin-resistant-strain rat liver microsomes and yield material suitable for further purification. The preparations retain dithiothreitol-dependent vitamin K quinone reductase activity as well as vitamin K epoxide reductase and are free of vitamin K-dependent carboxylase and epoxidase activities. Optimal epoxide reductase activity is obtained at 0.1 M KCl and pH 9 in the presence of sodium cholate. Artifactual formation of vitamin K metabolites was eliminated through the use of mercuric chloride to remove excess dithiothreitol prior to extraction and metabolite assay. Using the solubilized enzyme, valid initial velocities were measured, and reproducible kinetic data was obtained. The substrate initial velocity patterns were determined and are consistent with a ping-pong kinetic mechanism. The kinetic parameters obtained are a function of the cholate concentration, but do not vary drastically from those obtained using intact microsomal membranes. At 0.8% cholate, the enzymes solubilized from normal Warfarin-sensitive- and Warfarin-resistant-strain rat livers exhibit respective values of Vmax = 3 and 0.75 nmol/min/g liver; Km for vitamin K epoxide = 9 and 4 microM; and Km for dithiothreitol of 0.6 and 0.16 mM.  相似文献   

7.
The chemical and immunological properties of five closely related microsomal serine hydrolases (carboxylesterases) from rat liver have been compared to evaluate whether they are variants of a single protein or independent proteins. These enzymes represent medium-chain-length acylcarnitine hydrolase, palmitoyl carnitine hydrolase, medium-chain-length monoglyceride hydrolase, and two long-chain monoglyceride hydrolases. All enzymes have similar subunit Mr's (58,000-61,000) and bear one active site per protein subunit, as could be shown by active sites with radioactive bis(4-nitrophenyl)phosphate, and have subsequently been cleft by proteases or by BrCN. The patterns of radioactive peptides obtained after electrophoresis or thin-layer chromatography indicated that the two long chain monoglyceride hydrolases were closely related, while all other hydrolases differed from these and from each other. The two long-chain monoglyceride hydrolases also had identical N- and C-termini that differed from those of the other hydrolases. All hydrolases contain low amounts of hexoses. It is concluded that the hydrolases investigated represent four independent enzymes with differing amino acid sequences. Three of the four hydrolases were microheterogenous. These results were confirmed with an immunological study using rabbit antisera against three of the hydrolases. Heparin-releasable liver lipase was not cross-reactive with the lipolytic enzymes investigated here.  相似文献   

8.
Uninduced rat liver microsomes and NADPH-Cytochrome P-450 reductase, purified from phenobarbital-treated rats, catalyzed an NADPH-dependent oxidation of hydroxyl radical scavenging agents. This oxidation was not stimulated by the addition of ferric ammonium sulfate, ferric citrate, or ferric-adenine nucleotide (AMP, ADP, ATP) chelates. Striking stimulation was observed when ferric-EDTA or ferric-diethylenetriamine pentaacetic acid (DTPA) was added. The iron-EDTA and iron-DTPA chelates, but not unchelated iron, iron-citrate or iron-nucleotide chelates, stimulated the oxidation of NADPH by the reductase in the absence as well as in the presence of phenobarbital-inducible cytochrome P-450. Thus, the iron chelates which promoted NADPH oxidation by the reductase were the only chelates which stimulated oxidation of hydroxyl radical scavengers by reductase and microsomes. The oxidation of aminopyrine, a typical drug substrate, was slightly stimulated by the addition of iron-EDTA or iron-DTPA to the microsomes. Catalase inhibited potently the oxidation of scavengers under all conditions, suggesting that H2O2 was the precursor of the hydroxyl radical in these systems. Very high amounts of superoxide dismutase had little effect on the iron-EDTA-stimulated rate of scavenger oxidation, whereas the iron-DTPA-stimulated rate was inhibited by 30 or 50% in microsomes or reductase, respectively. This suggests that the iron-EDTA and iron-DTPA chelates can be reduced directly by the reductase to the ferrous chelates, which subsequently interact with H2O2 in a Fenton-type reaction. Results with the reductase and microsomal systems should be contrasted with results found when the oxidation of hypoxanthine by xanthine oxidase was utilized to catalyze the production of hydroxyl radicals. In the xanthine oxidase system, ferric-ATP and -DTPA stimulated oxidation of scavengers by six- to eightfold, while ferric-EDTA stimulated 25-fold. Ferric-desferrioxamine consistently was inhibitory. Superoxide dismutase produced 79 to 86% inhibition in the absence or presence of iron, indicating an iron-catalyzed Haber-Weiss-type of reaction was responsible for oxidation of scavengers by the xanthine oxidase system. These results indicate that the ability of iron to promote hydroxyl radical production and the role that superoxide plays as a reductant of iron depends on the nature of the system as well as the chelating agent employed.  相似文献   

9.
10.
R Somanathan  S Krisans 《Steroids》1984,43(6):651-655
Synthesis of a mixture of the 25(R) and 25(S) isomers of 5 beta-cholestane-3 alpha,7 alpha,12 alpha, 26(27)-tetrol from cholic acid in four steps, including a Wittig reaction, is described.  相似文献   

11.
A liver UDP glucuronosyltransferase (GT) enzyme from either phenobarbital- or 3-methylcholanthrene-treated C57BL/6N mice was isolated by phenyl-Sepharose, DEAE-ion exchange, and UDP hexanolamine chromatographic steps. This enzyme had a broad substrate specificity and was mainly responsible for the microsomal capacity to glucuronidate testosterone, 1-naphthol, and morphine. This UDP glucuronosyltransferase ( GTM1 ) appeared to be at least 95% homogeneous and had a subunit molecular weight of 51,000 using sodium dodecyl sulfate-polyacrylamide gel and two-dimensional gel electrophoreses. Antibodies prepared against the purified protein developed a single immunoprecipitin line by double-diffusion analysis with purified antigen and with solubilized microsomes from both control and drug-induced C57BL/6N and DBA/2N mice. A precipitin line was also observed with microsomal proteins which isoelectrofocused at approximately pH 6.7, but not with those which isoelectrofocused at approximately pH 8.5. GTM1 was, therefore, designated at low-pI form. Immunopurified antibody preferentially inhibited and immunoprecipitated GT activities toward testosterone, 1-naphthol, and morphine. To a lesser extent, activities toward phenolphthalein, 3-hydroxybenzo[a]pyrene, and estrone were inhibited while activities toward 4-nitrophenol and 4-methylumbelliferone were not affected. All activities, however, were immunoadsorbed in the presence of protein A-Sepharose. This observation can be explained by the following results. Immunoprecipitates from labeled microsomes contained primarily a 51,000-Da protein. When the immune complexes were adsorbed with protein A-Sepharose, a 54,000-Da protein as well as the expected 51,000-Da GTM1 was detected. This 54,000-Da protein was associated with the glucuronidation of 3-hydroxybenzo[a]pyrene and 4-nitrophenol, and was designated GTM2 .  相似文献   

12.
The liberation of free fluoride ion from fluoroacetate (FAc) proceeds as an enzyme-catalyzed dehalogenation reaction in the soluble fractions of several organs of the CFW Swiss mouse. Liver contained the highest FAc defluorinating activity. The enzyme activity in other organs decreased in the order kidney greater than lung greater than heart greater than testes. No activity was detected in the brain. Experiments were designed to characterize and identify the enzyme species responsible for FAc metabolism in liver. Enzyme activity was dependent on the concentration of glutathione (GSH) in the assay mixture, with maximal activity occurring above 5 mM. The dehalogenation of FAc had an apparent Km of 7.0 mM when measured in the presence of a saturating concentration of GSH. An increase in the pH of the assay mixture enhanced fluoride release in both phosphate and borate buffer. The defluorination activity was reduced to negligible levels when stored for 24 h at 4 degrees C. The addition of either GSH, dithiothreitol, or 2-mercaptoethanol increased stability, with the latter providing protection for greater than 150 h at a concentration of 15 mM. DEAE anion-exchange chromatography separated the defluorinating activity from 90% of the soluble GSH S-transferase activity measured with 1-chloro-2,4-dinitrobenzene. FAc defluorination activity did not bind to a GSH affinity column which selectively separates it from a group of anionic GSH S-transferases. The GSH-dependent enzyme which dehalogenates FAc has unique properties and can be separated from the liver GSH S-transferases previously described in the literature.  相似文献   

13.
R- and S-warfarin metabolite profiles (regio- and stereoselectivity) have been determined with hepatic microsomes from untreated rats and rats treated with nine individual polybrominated biphenyl (PBB) congeners, a commercial mixture of PBBs, and, for comparison with phenobarbital and 3-methylcholanthrene. The metabolic rates have been correlated with cytochrome P-450 (P-450) isozyme concentrations in the microsomes determined by immunochemical quantitation techniques (G. A. Dannan, F. P. Guengerich, L. S. Kaminsky, and S. D. Aust, (1983) J. Biol. Chem., 258, 1282–1288). The warfarin hydroxylase activities of the P-450 isozyme components of the various microsomal preparations (F. P. Guengerich, G. A. Dannan, S. T. Wright, M. V. Martin, and L. S. Kaminsky (1982) Biochemistry, 21, 6019–6030) were multiplied by the corresponding isozyme concentrations to obtain an assessment of the potential warfarin hydroxylase capacity of the microsomes, and the results were compared with actual activities. The results of these studies and comparisons indicate that substrate regio- and stereoselectivities of microsomal-bound P-450s are essentially retained on purification of the isozymes to homogeneity and reconstitution, that warfarin metabolism by microsomal preparations can be used to predict microsomal P-450 isozyme compositions, and that microsomal warfarin hydroxylase activity is greater than would be predicted based on the approx 20:1 ratio of P-450 to NADPH-P-450 reductase in the microsomes and on the known activities of constituent isozymes. Two P-450 isozymes which are induced by treatment of rats with phenobarbital appear to be more tightly linked to NADPH-P-450 reductase than does an isozyme induced by β-naphthoflavone.  相似文献   

14.
The effects of centrophenoxine, SaH-42-348, and DH-990 on several enzymes involved in aminophospholipid biosynthesis in brain have been examined in vitro. Relatively high concentrations of centrophenoxine were required to achieve 50% inhibition of the microsomal enzymes CDP-ethanolamine:1,2-diacylglycerol ethanolaminephosphotransferase (EPT), CDP-choline:1,2-diacylglycerol cholinephosphotransferase (CPT), phosphatidyl-N-methylethanolamine N-methyltransferase (PME-NMT), and phosphatidyl-N,N-dimethylethanolamine N-methyltransferase (PDE-NMT). Intermediate concentrations of SaH-42-348 inhibited CPT (IC50 = 2.0 mM), EPT (IC50 = 1.9 mM), PME-NMT (IC50 = 0.19 mM), and PDE-NMT (IC50 = 0.17 mM). Of the three drugs tested, DH-990 was the most potent inhibitor of the phospholipid-synthesizing enzymes. Phosphatidylserine decarboxylase, a mitochondrial inner-membrane enzyme [A. K. Percy, J. F. Moore, M. A. Carson, and C. J. Waechter (1983) Arch. Biochem. Biophys. 223, 484-494], was virtually unaffected by the three drugs added at millimolar concentrations. Kinetic analyses indicated that the inhibitory action of DH-990 on the brain enzymes was noncompetitive with respect to all substrates. The relatively high sensitivity of CPT (IC50 = 0.6 mM), EPT (IC50 = 2.2 mM), PME-NMT (IC50 = 2.5 microM), and PDE-NMT (IC50 = 2.5 microM) to inhibition by DH-990 in brain microsomes suggests that this compound may be useful for cellular studies on the possible relationships between phospholipid metabolism and neurobiological functions.  相似文献   

15.
1-Naphthol has recently been shown to be selectively toxic to short-term organ cultures of human colorectal tumor tissue. The mechanism underlying 1-naphthol's selective toxicity is as yet unknown, but may be due to the formation of naphthoquinone metabolites, which are known to be highly toxic to tumor cells. By using high-performance liquid chromatography with reductive electrochemical detection, it has been possible to show that 1-naphthol is converted to naphthoquinone metabolites by rat liver microsomes. At least two metabolic pathways, independent of cytochrome P-450, appear to be involved. Iron-dependent lipid peroxidation appears to be responsible for at least part of the conversion of 1-naphthol to predominantly 1,4-naphthoquinone, and it seems likely that superoxide anion radical generation by NADPH-cytochrome P-450 reductase could also catalyze this conversion. 1-Naphthol therefore seems to be converted to cytotoxic naphthoquinone metabolites by mechanism(s) dependent upon the generation of free radicals in rat liver microsomes. The results also demonstrate the utility of HPLC with reductive electrochemical detection for investigations of quinone metabolite formation and the measurement of quinones of both physiological and environmental interest.  相似文献   

16.
Microsomes exposed to the propanal/horseradish peroxidase/O2 system develop a weak chemiluminescence. The underlying process is distinct from that occurring during lipid peroxidation because the emission intensity peaks at around 560 nm, rather than in the red, and no malonaldehyde is formed. Triplet acetaldehyde appears to be responsible for the induction of the process, which in turn leads to excitation of a component in microsomes, possibly a flavoprotein.  相似文献   

17.
Formaldehyde can be metabolized primarily by two different pathways, one involving oxidation by the low-Km mitochondrial aldehyde dehydrogenase, the other involving a specific, glutathione-dependent, formaldehyde dehydrogenase. To estimate the roles played by each enzyme in formaldehyde metabolism by rat hepatocytes, experiments with acetaldehyde and cyanamide, a potent inhibitor of the low-Km aldehyde dehydrogenase were carried out. The glutathione-dependent oxidation of formaldehyde by 100,000g rat liver supernatant fractions was not affected by either acetaldehyde or by cyanamide. By contrast, the uptake of formaldehyde by intact mitochondria was inhibited 75 to 90% by cyanamide. Acetaldehyde inhibited the uptake of formaldehyde by mitochondria in a competitive fashion. Formaldehyde was a weak inhibitor of the oxidation of acetaldehyde by mitochondria, suggesting that, relative to formaldehyde, acetaldehyde was a preferred substrate. In isolated hepatocytes, cyanamide, which inhibited the oxidation of acetaldehyde by 75 to 90%, produced only 30 to 50% inhibition of formaldehyde uptake by cells as well as of the production of 14CO2 and of formate from [14C]formaldehyde. The extent of inhibition by cyanamide was the same as that produced by acetaldehyde (30-40%). In the presence of cyanamide, acetaldehyde was no longer inhibitory, suggesting that acetaldehyde and cyanamide may act at the same site(s) and inhibit the same formaldehyde-oxidizing enzyme system. These results suggest that, in rat hepatocytes, formaldehyde is oxidized by cyanamide- and acetaldehyde-sensitive (low-Km aldehyde dehydrogenase) and insensitive (formaldehyde dehydrogenase) reactions, and that both enzymes appear to contribute about equally toward the overall metabolism of formaldehyde.  相似文献   

18.
D Kupfer  W H Bulger 《Life sciences》1979,25(11):975-983
A method for demonstrating proestrogens invitro has been developed. The method involves the incubation of the potential proestrogen with liver microsomes and NADPH in the presence of rat uteri, followed by examination of the effects of metabolism of the compound on the distribution of uterine estrogen receptor (R) in the cytosol (Rc) and in the nucleus (Rn). Thus, we examined whether DDT derivatives, which possess estrogenic activity invivo, exhibit pro-estrogenic properties invitro. Using this method, it appears that methoxychlor is a proestrogen, since the presence of microsomal enzymatic activity is required for methoxychlor to elicit translocation of uterine Rc into the nucleus, namely, the lowering of Rc and elevation of Rn. By contrast, o,p'DDT was active perse in translocating Rc and did not require the presence of microsomal enzymes for activity.  相似文献   

19.
Nine distinct monoclonal antibodies raised against purified rat liver cytochrome P-450c react with six different epitopes on the antigen, and one of these epitopes is shared by cytochrome P-450d. None of these monoclonal antibodies recognize seven other purified rat liver isozymes (cytochromes P-450a, b, and e-i) or other proteins in the cytochrome P-450 region of "Western blots" of liver microsomes. Each of the monoclonal antibodies was used to probe "Western blots" of liver microsomes from untreated, or 3-methylcholanthrene-, or isosafrole-treated animals to determine if laboratory animals other than rats possess isozymes immunochemically related to cytochromes P-450c and P-450d. Two protein-staining bands immunorelated to cytochromes P-450c and P-450d were observed in all animals treated with 3-methylcholanthrene (rabbit, hamster, guinea pig, and C57BL/6J mouse) except the DBA/2J mouse, where no polypeptide immunorelated to cytochrome P-450c was detected. The conservation of the number of rat cytochrome P-450c epitopes among these species varied from as few as two (guinea pig) to as many as five epitopes (C57BL/6J mouse and rabbit). The relative mobility in sodium dodecyl sulfate-gels of polypeptides immunorelated to cytochromes P-450c and P-450d was similar in all species examined except the guinea pig, where the polypeptide related to cytochrome P-450c had a smaller Mr than cytochrome P-450d. With the use of both monoclonal and polyclonal antibodies, we were able to establish that purified rabbit cytochromes P-450 LM4 and P-450 LM6 are immunorelated to rat cytochromes P-450d and P-450c, respectively.  相似文献   

20.
A radioimmunoassay has been developed for the folate binding protein from rat liver cytosol with a molecular weight of 150,000 which was recently purified to homogeneity (Suzuki, N., and Wagner, C., 1980, Arch. Biochem. Biophys.199, 236–248). This method has indicated that the binding protein (FBP-CII) is found primarily in the liver. A significant amount of FBP-CII was also found in the kidney and much reduced levels in spleen, serum, brain, lung, and heart. No FBP-CII could be detected in small intestine, skeletal muscle, or testes. Small amounts of cross-reacting material were found in the livers of mouse, dog, chick, and humans. Levels of FBP-CII were not decreased in the livers of folate-deficient rats. Assays of rat fetal liver and kidney 2 days prior to birth showed much lower levels which increased rapidly at birth. These data are consistent with the FBP-CII fulfilling a role as a folate storage protein in rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号