首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hitherto, there are only few studies that have analysed the variation of P contents in individual tree rings to reconstruct fluctuations in soil P availability. Therefore, this pilot study aimed to assess the relationship between changes in P content in tree rings and known changes in soil P availability resulting from fertilization of Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) in fertilization trials at two different sites. We compared P contents in single tree rings from fertilized and unfertilized plots formed before and after P fertilization and assessed (1) whether fertilization leads to an immediate increase in P uptake and higher P contents in tree rings formed after fertilization, and (2) whether P is translocated to older tree rings that were formed before fertilization.After application of 70 kg P ha−1, a prompt and extended increase in relative wood P contents could be observed in both Norway spruce and Scots pine. However, only at the Norway Spruce site, this increase could be properly assigned to a P fertilization signal in heartwood rings formed after fertilization. In sapwood rings, however, P fertilization signals were masked by the inherent increase in P content from older towards younger sapwood rings, which was at least one order of magnitude higher than the increase from fertilization. We could not observe a P translocation into older tree rings, which existed as sapwood rings at the time of fertilization.This pilot study underlines the potential of dendrochemistry for reconstructing changes in soil P availability and improves the conceptual basis for further dendrochemical research, not only in fertilized but also in unfertilized forest ecosystems.  相似文献   

2.
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.  相似文献   

3.
Natural decay resistance of teak wood grown in home-garden forestry and the factors influencing decay resistance were determined in comparison with that of a typical forest plantation. Accelerated laboratory tests were conducted on 1800 wood samples drawn from 15 trees of three planted sites. Analysis of variance based on a univariate mixed model showed that planted site, fungal species, and their interaction terms were important sources of variation in decay resistance. With increasing decay resistance from centre to periphery of the heartwood, radial position was a critical factor and the interaction effect of fungal species × radial position was significant in influencing the durability. No significant differences were found in decay resistance either between the opposite radii or due to the various possible interaction terms of radii with the site, fungal species and radial position. There were significant differences in decay resistance against brown-rot fungi between wet and dry sites of home-garden teak although differences against white-rot fungi were non-significant among the three planted sites. Polyporus palustris was the more aggressive brown-rot fungus than Gloeophyllum trabeum. The higher susceptibility of wet site home-garden teak to brown-rot decay was associated with a paler colour of the wood and lower extractive content.  相似文献   

4.
The early colonization of Scots pine (Pinus sylvestris L.) sapwood exposed above ground (staple bed) was studied. Two different types of exposures were used, one in an open field and the other in a shaded field. Decay type and degree of degradation due to soft rot, and mass and strength loss of wood were correlated. Fungal species in Scots pine sapwood were identified by sequencing, using the fungal nuclear ribosomal DNA (nrDNA) after 24 months.The most abundant decay type found was soft rot, which also agreed with the mass loss (7–8%). Pine sapwood did not differ significantly between the two sites regarding the average mass loss during the time of exposure. The early colonization of wood by soft rot fungi together with mass loss indicates that this fungal type might be more common in above-ground conditions than recognized earlier.  相似文献   

5.
Extractable materials from some timber species have been identified which prevent wood decay; however, little has been reported on the effect(s) of such materials against mould species that colonize timber. With increasing interest in the use of Trichoderma species, both as agents of permeability enhancement and biological control, more information is required on how chemical components within fresh and processed timber influence growth of Trichoderma. Fresh and dried samples of Scots pine and Sitka spruce sapwood and heartwood were leached in a Soxhlet apparatus and the resulting extract was combined with malt extract agar and inoculated with Trichoderma. Trichoderma isolates were inhibited to varying degrees by extractives removed from fresh and dried heartwood of the two timbers. Growth on sapwood extractives, however, showed a lesser degree of inhibition. The implications of the results for applications of Trichoderma in timber are discussed.  相似文献   

6.
Variation in the amount of triacylglycerols and steryl esters was analysed enzymatically in the outer sapwood of Scots pine (Pinus sylvestris L.). Increment borings were taken at breast height from 40 stems of different diameter. Wood samples from outer sapwood (10 mm from the cambium) were extracted with acetone. Triacylglycerols and steryl esters were separated on TLC and the levels of glycerol and sterol were analysed enzymatically. The average amount of triacylglycerols and steryl esters was approximately 25 and 0.83 mg/g dry weight, respectively. However, variation between the stems studied was fairly large. The sapwood of young and small-diameter stems was not found to store larger amounts of either triacylglycerols or steryl esters than the sapwood of old stems. Neither was there any relationship between the amount of triacylglycerols and steryl esters in the outer sapwood. The possible role of these compounds in heartwood formation is discussed.  相似文献   

7.
Precise dating of the year of felling is one intended outcome of dendrochronology. However, occasionally some or all sapwood rings might be missing, either due to deterioration or because they were carved off, or for some other reason. Consequently, while heartwood is preserved, sapwood might be fully or partially missing. In such cases, the year of felling must be estimated by adding a suitable number of sapwood rings. A heartwood age rule (HAR) has been advocated for Scots pine and adapted to European larch and Cembra pine, implying a linear relationship between sapwood ring count and the square root of heartwood ring count, largely irrespective of position in the stem. The same rule applied to all observations of a species, irrespective of silviculture, location or fertility of the growth site. Scots pine had twice or thrice as many sapwood rings as Cembra pine, which had 10% more rings than larch. The magnitude of model residuals was proportional to estimated sapwood ring count. Relative residuals were roughly normally distributed. To be applicable in Bayesian modelling in dendrochronology analyses, detailed information on model errors has been provided.  相似文献   

8.
张瑜  金光泽 《植物生态学报》2016,40(12):1276-1288
倒木是森林生态系统的重要组成部分, 在地力维护、生物多样性保持以及碳(C)和养分循环等方面具有重要意义, 但倒木物理化学性质随其腐烂等级和径级而变化。为了深入理解腐烂等级和径级对倒木物理化学性质的影响, 该研究以典型阔叶红松林的建群种——红松(Pinus koraiensis)的倒木为研究对象, 将其每个腐烂等级(I-V)下的倒木分为4个径级(径级i ≤ 10.0 cm、径级ii 10.1-30.0 cm、径级iii 30.1-50.0 cm、径级iv >50.0 cm), 研究了不同腐烂等级、径级及两者交互作用对倒木心材和边材物理化学性质的影响。结果表明: 心材和边材具有相似的变化规律。倒木心材和边材含水率随着腐烂等级增加而增加, 而木材密度随腐烂等级和径级的增加均呈下降趋势; 边材C含量以及心材和边材的氮(N)、磷(P)含量随腐烂等级增加呈上升趋势, 心材N、P含量随径级增加呈先增加后减少的趋势; 纤维素含量随腐烂等级增加呈下降趋势, 而木质素含量呈上升趋势, 纤维素和木质素含量随径级增加没有明显变化规律。倒木含水率与C、N、P、木质素含量(除心材P含量)显著正相关, 与纤维素含量显著负相关; 木材密度与C、N、P、木质素含量显著负相关, 与纤维素含量显著正相关。由此可见, 倒木物理化学性质受不同腐烂等级和径级的影响有各自的变化规律, 且倒木的物理性质(含水率和木材密度)是影响化学含量变化的重要因素。  相似文献   

9.
《植物生态学报》2016,40(12):1276
AimsLog is an important component for most of forest ecosystems. It plays crucial roles in maintaining soil fertility, sustaining biodiversity and cycling of carbon (C) and nutrient. However, physico-chemical properties of logs vary with decay classes and diameter classes. Our objective was to study effects of decay classes and diameter classes on physico-chemical properties of logs in a typical mixed broadleaved-Korean pine forest in northern China.MethodsIn this study, logs of Pinus koraiensis were chosen as it was the constructive species in the typical mixed broadleaved-Korean pine forest. Logs of P. koraiensis at each decay classes (I-V) were divided into four diameter classes, including diameter class i ≤ 10.0 cm, diameter class ii: 10.1-30.0 cm, diameter class iii: 30.1-50.0 cm, and diameter class iv > 50.0 cm. Then, we explored effects of different decay classes, diameter classes and their interactions on the physico-chemical properties of logs for both the heartwood and sapwood.Important findings The results showed that the physico-chemical properties of heartwood and sapwood generally exhibited similar variations. Their moisture content both increased with an increasing decay class, whereas wood density both decreased with an increased decay class and diameter class. The carbon concentrations of the sapwood showed a trend of gradual increasing during decomposition, and there was an accumulation in nitrogen (N) and phosphorus (P) concentrations of the heartwood and sapwood with an increased decay class, simultaneously. Only N and P concentrations of the heartwood increased and then decreased with an increasing diameter class. The cellulose content decreased with an increasing decay class. In contrast to the cellulose, the lignin content increased with an increased decay class. However, cellulose and lignin contents exhibited no distinct trend among diameter classes. The moisture content of logs had a significant positive correlation with C, N, P concentrations and lignin content (except P concentrations of the heartwood), but had a significant negative correlation with the cellulose content (p< 0.05). The wood density was negatively correlated with C, N, P concentrations and the lignin content, but it was positively correlated with the cellulose content (p< 0.05). Therefore, physico-chemical properties of logs had unique patterns along both decay classes and diameter classes, and the physical properties of logs (the moisture content and wood density) were important factor affecting the variations of their chemical contents.  相似文献   

10.
The initiation and progress of wood degradation of Pinus sylvestris sapwood exposed to the brown-rot fungus Antrodia vaillantii was studied on a cellular level by scanning UV microspectrophotometry (UMSP 80, Zeiss, MSP 800 Spectralytics). This improved analytical technique enables direct imaging of lignin modification within individual cell wall layers. The topochemical analyses were supplemented by light and transmission electron microscopy (TEM) studies in order to characterize morphological changes during the first days of degradation. Small wood blocks (1.5 × 1.5 × 5 mm) of Scots pine (P. sylvestris) were exposed to fungal decay by A. vaillantii for 3, 7, 11, 16, and 22 days. No significant weight loss was determined in the initial decay periods within three up to 7 days. After three days of decay the topochemical investigation revealed that the lignin modification starts at the outermost part of the secondary wall layer, especially in the region of the latewood tracheids. During advanced degradation after exposure of 22 days, lignin modification occurs non-homogeneously throughout the tissue. Even among the significantly damaged cells, some apparently unmodified cells still exist. Knowledge about lignin modification at initial stages of wood degradation is of fundamental importance to provide more information on the progress of brown-rot decay.  相似文献   

11.
The aim of this study was to compare natural durability of Siberian larch heartwood grown in Siberia and Sweden as well as European larch and Scots pine heartwood grown in Sweden. The study was based on standard in- and above ground tests lasting 12 years but laboratory decay tests with white and brown rot fungi was also included. Field test results showed that Siberian larch heartwood from Siberia was the most durable among the studied heartwoods with a decay index of 60 after 12 years in Simlångsdalen (Sweden), while European larch heartwood grown in Sweden, was decayed to failure before the end of the test. Scots pine heartwood was found to perform similarly to Siberian larch from Siberia. No relationship could be established between natural durability of examined heartwoods and their water absorption behavior; however, strong correlation to the total amount of extractives was observed. Scots pine and Siberian larch heartwood from Siberia had 12.7 and 19.6% total extractives content respectively but the extractives composition differs. The study revealed also that lignin and monosaccharide content could not explain the variations in decay resistance of the studied heartwoods. No similarities in the natural durability revealed by laboratory and field tests were observed.  相似文献   

12.
 Radial distribution of soluble phenolics was investigated at different heights in stems of Juglans nigra, J. regia and hybrids J. nigra 23 × J. regia. Four major phenolic compounds were studied: hydrojuglone glucoside (HJG), quercitrin (QUER) and two unknown compounds characterized as two ellagic acid derivatives E1 and E2. HJG and E1 content increased gradually in the sapwood, peaked in the sapwood-heartwood transition zone, and decreased drastically in the heartwood. QUER was accumulated preferentially around the transition zone, and its content was relatively low in the outer part of the sapwood and in the inner part of the heartwood. E2 content was low in the sapwood and increased in the heartwood. The heartwood formation was marked by the accumulation of new soluble compounds. The relationship between wood extractives and wood colour were evaluated and discussed. HJG was considered to be a major precursor of heartwood colour providing chromophores through hydrolysis (deglucosylation), oxidation and polymerization processes. Received: 2 September 1997 / Accepted: 23 November 1997  相似文献   

13.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

14.
Larch heartwood is appreciated for its good mechanical properties, its colour and its texture, and it is often used outdoors because of its natural durability (decay resistance). In this study the colour of larch heartwood was studied in relation to extractives and decay resistance, with the aim to estimate durability of larch heartwood from its colour. On a total of 293 trees colour in the CIE L*a*b* space (L* lightness, a* red/green axis, b* yellow/blue axis), extractives content (acetone and hot-water extractives, amount of phenolics) and the brown-rot decay resistance were determined. For calculating the relative decay resistance ( x), mass loss after inoculation for 16 weeks with two fungi [ Coniophora puteana (Schum.ex.Fr.) Karst., Poria placenta (Fr.) Cke, European standard EN 113] of larch heartwood samples was compared to Scots pine ( Pinus sylvestris L) sapwood reference samples (EN 350-1). Different species [Japanese larch ( Larix kaempferi Lamb.), Hybrid larch (Larix deciduax L. kaempferi) and European larch ( L. decidua Mill.)], provenances and age classes (38-year, >150-year) were included. Japanese larch heartwood turned out to be significantly more reddish (higher a*-values) compared to the European larch provenances. Reddishness of the hybrids was intermediate. The red hue (+a*) was strongly correlated with the amount of phenols ( r =0.84) and decay resistance ( r =0.63) and therefore suitable for prediction of both parameters. The results suggest that colour measurements of larch heartwood could be of benefit in tree breeding programs and for an optimised utilization of larch timber.  相似文献   

15.
Changes in pinosylvin concentration and distribution across the sapwood/heartwood boundary were studied on Scots pine (Pinus sylvestris L.) tree stems to detect seasonal activity in heartwood formation. Pinosylvin concentrations were measured with FT-(NIR) Raman spectroscopy for a total of 96 trees equally distributed on 16 different sampling occasions. In another experiment, cores were sampled every month from six individual Scots pine trees from June to October and analysed for pinosylvin. There was a great between-tree variation in concentration and spatial distribution of pinosylvin. No seasonal trend in the distribution pattern or concentration of pinosylvin was found. Therefore, the results indicate that there is no specific period during the year when heartwood is formed. Received: 12 February 1998 / Accepted: 3 May 1999  相似文献   

16.
Summary Starch, soluble sugars, triacylglycerols, diacylglycerols and free fatty acids were measured in 30-year-old Scots pine (Pinus sylvestris L.) trees during an annual cycle in the sapwood (youngest ten xylem rings). The radial distribution of carbohydrates and lipids was studied in the trunkwood of 90 -to 150-year-old Scots pine trees collected at the end of the growing season. Determination of the compounds was performed using specific enzymatic assays, capillary gas chromatography and thin layer chromatography. The amounts of glucose, fructose, sucrose, and galactose/arabinose in the sapwood were slightly higher in winter than in summer. Raffinose/stachyose increased up to 5-fold during the cold period. At the beginning of the growing season starch amounts rose, and then decreased in summer and autumn. No concentration changes were observed in the total amounts of diacylglycerols and fatty acids throughout the year. Triacylglycerol levels were slightly higher in February than in summer and autumn. Relative frequencies of individual fatty acids were similar in all lipid fractions. Glucose, fructose, sucrose, starch and triacylglycerols disappeared almost entirely at the transition zone from sapwood to heartwood. In contrast, free fatty acids and galactose/arabinose rose in centripetal direction, and diacylglycerols remained constant across trunk cross-sections. The relative amounts of individual fatty acids changed markedly in the free fatty acid fraction and in the triacylglycerols when crossing the sapwood-heartwood boundary. Concentration changes of reserve materials are discussed in relation to season, mobilization and translocation processes, dormancy, frost resistance, and heartwood formation. The results are compared to those found in needles.  相似文献   

17.
The field test of alkaline copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.) and Mongolian Scots pine (Pinus sylvestris Linn. var. mongolica Litv.) stakes after different post-treatments was performed in two test plots (Chengdu and Guangzhou, China). The ACQ-D treatments used two concentration levels (0.5 and 1.1%) and four different post-treatments: air drying for 1 month (AD), conditioning at 70 °C and 80% relative humidity for 24 h (HC), oven drying at 110 °C for 24 h (DO) and boiling in water for 15 h (HW). The decay and termite ratings of the stakes after 6 and 20 months of exposure were recorded according to the method described in AWPA standard E07-07. The copper retention and compression strength parallel to grain before and after exposure were also compared. The results showed that Chinese fir had slightly better natural durability than Mongolian Scots pine but the untreated sapwood stakes for both wood species were mostly destroyed after 20 months exposure. After ACQ-D treatment, the sapwood of both wood species showed much better biological performance. Among the four post-treatments, HC exhibited the best performance by showing excellent biological resistance, less copper depletion and a slight reduction in compression strength after 20 months outdoor exposure. While the performance of the other post-treated stakes were impaired heavily in some cases in terms of wood species, test plots and the concentration levels of ACQ-D solutions. Furthermore, the study confirms that ACQ-D treated plantation-grown Chinese fir could be used for outdoor above ground and ground-contact applications.  相似文献   

18.
《Annals of botany》1997,79(5):473-478
Dissection and mechanical bending experiments showed that the cross-sectional area and elastic moduli of sap- and heartwood varied within the trunk and branches as a function of the distance from the top of a 43-year-old black locust tree (Robinia pseudoacaciaL.). Wood in branches less than 1 m from the top of the tree consisted entirely of sapwood; the majority of the wood from more basipetal (and older) parts of the tree was heartwood. The Young's elastic moduli of sap- and heartwood increased towards the base of the trunk, and, on average, the modulus of the sapwood was 35%less than that of the heartwood. Younger, more distal tree limbs, therefore, were more flexible than older portions of the same tree. Simple bending experiments showed that the flexural rigidity of young limbs was governed by the location, physical properties, and the relative quantities of the two types of wood. The rigidity of limbs increased toward the base of the tree, and was dominated by sapwood in young limbs and by heartwood in the oldest parts of the tree. These trends predict that the younger, distal limbs of this tree can more easily deflect and bend in the wind, thereby reducing drag and the total bending moment on the tree trunk, while older limbs and the trunk are sufficiently rigid to support static self-loadings. Further study, however, is required to determine whether the trends reported here apply to all trees of this species and to trees of different species.  相似文献   

19.
Heartwood and sapwood development in maritime pine (Pinus pinaster Ait.) is reported based on 35 trees randomly sampled in four sites in Portugal. It was possible to model the number of heartwood rings with cambial age. The heartwood initiation age was estimated to be 13 years and the rate of sapwood transformation into heartwood was 0.5 and 0.7 rings year–1 for ages below and above 55 years, respectively. Reconstruction of heartwood volume inside the tree stem was made by visual identification by image analysis in longitudinal boards along the sawn surfaces. This volume was integrated into the 3D models of logs and stems developed for this species representing the external shape and internal knots. Heartwood either follows the stem profile or shows a maximum value at 3.8 m in height, on average, while sapwood width is greater at the stem base and after 3 m remains almost constant up the stem. Up to 50% of tree height heartwood represents 17% of stem volume, in 83-year-old trees and 12–13% in 42 to 55-year-old trees. Tree variables such as stem diameter, DBH and tree total height were found to correlate significantly with the heartwood content.  相似文献   

20.
The formation and vertical distribution of sapwood and heartwood were studied with a 45-year-old Cryptomeria japonica D. Don. The tree was grown at a plantation with 1.5 m × 3.0 m spacing near Miao-Li, Taiwan and was felled on 27 February 1992. The thickness of sapwood and heartwood was expressed by a ring count and a linear measurement. The east-west (E-W) wood strips were collected from 0.3 m above ground upwards to the top of the tree at 2.5 m intervals. The sapwood thicknesses from the base to the 10.3 m tree level height are around 20–22 growth rings and 42±2 mm. At the top of the tree, the sapwood thickness is narrower. The heartwood, which decreases in thickness with increasing tree level heights is not found at the top of the tree. The heartwood appears as a conical shape in the tree trunk. There is no statistical difference in sapwood/heartwood thickness between E-W aspects. Tree level heights and the tree level age were found to be important parameters in determining the thickness of sapwood/heartwood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号