首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant mitochondria can differ in size, shape, number and protein content across different tissue types and over development. These differences are a result of signaling and regulatory processes that ensure mitochondrial function is tuned in a cell-specific manner to support proper plant growth and development. In the last decade, the processes involved in mitochondrial biogenesis are becoming clearer, including; how dormant seeds transition from empty promitochondria to fully functional mitochondria with extensive cristae structures and various biochemical activities, the regulation of nuclear genes encoding mitochondrial proteins via regulators of the diurnal cycle in plants, the mitochondrial stress response, the targeting of proteins to mitochondria and other organelles and connections between the respiratory chain and protein import complexes. All these findings indicate that mitochondrial function is a part of an integrated cellular network, and communication between mitochondria and other cellular processes extends beyond the known exchange or transport of metabolites. Our current knowledge now needs to be used to gain more insight into the molecular components at various levels of this hierarchical and complex regulatory and communication network, so that mitochondrial function can be predicted and modified in a rational manner.  相似文献   

2.
How do plants feel the heat?   总被引:4,自引:0,他引:4  
In plants, the heat stress response (HSR) is highly conserved and involves multiple pathways, regulatory networks and cellular compartments. At least four putative sensors have recently been proposed to trigger the HSR. They include a plasma membrane channel that initiates an inward calcium flux, a histone sensor in the nucleus, and two unfolded protein sensors in the endoplasmic reticulum and the cytosol. Each of these putative sensors is thought to activate a similar set of HSR genes leading to enhanced thermotolerance, but the relationship between the different pathways and their hierarchical order is unclear. In this review, we explore the possible involvement of different thermosensors in the plant response to warming and heat stress.  相似文献   

3.
4.
5.
One of the anthropogenic causes affecting species distribution is climate change, which has significant implications for species conservation. However, little is known about the effects of changes in parasitic plant distribution on community-level interactions. Parasitic flowering plants make a limited numerical contribution to biodiversity. Their lifestyle may exhibit a moderate to the high degree of host dependence. Because of this host dependence, parasites may be more affected by environmental changes, such as climate change, compared to autotrophic representatives. To our knowledge, the effects of different climate change scenarios and their environmental variables on parasitic plants and their hosts have not yet been studied. This study aimed to construct a model which shows the current and future potential effects of climate change on the distribution of the two holoparasitic plants Hydnora abyssinica A.Br., and H. africana Thunb. in comparison to their respective Fabaceae and Euphorbiaceae hosts. We projected the future distribution of these species and their host plants using five models, nine bioclimatic, and five environmental variables. The global circulation model (CMIP5) for the years 2050 and 2070, applying two representative concentration pathways scenarios (RCP4.5 and RCP8.5) projected a 41–64% contraction of suitable habitats for H. abyssinica. For H. africana, more stable conditions are estimated, with a 12–28% contraction in suitable habitats, making this species putatively less prone to climate change effects, although this species has a more restricted distribution compared to H. abyssinica. Because climate change could affect the host differently than the parasites, the impact on the parasite could potentially be exacerbated due to host plant dependence. The models predict that the host plant distribution will be less affected, except for Vachelia Karroo, Vachellia xanthophloea, and Euphorbia gregaria, which indicated high contraction (40–66%). The predicted host species distribution ranges will only partially overlap with the respective distribution of the parasite.  相似文献   

6.
7.
Past work involving the plastid genome (plastome) of holoparasitic plants has been confined to Scrophulariaceae (or Orobanchaceae) which have truncated plastomes owing to loss of photosynthetic and other genes. Nonasterid holoparasites from Balanophoraceae (Corynaea), Hydnoraceae (Hydnora) and Cytinaceae (Cytinus) were tested for the presence of plastid genes and a plastome. Using PCR, plastid 16S rDNA was successfully amplified and sequenced from the above three holoparasites. The sequence of Cytinus showed 121 single base substitutions relative to Nicotiana (8% of the molecule) whereas higher sequence divergence was observed in Hydnora and Corynaea (287 and 513 changes, respectively). Secondary structural models for these 16S rRNAs show that most changes are compensatory, thus suggesting they are functional. Probes constructed for 16S rDNA and for four plastid-encoded ribosomal protein genes (rps2, rps4, rps7 and rpl16) were used in Southern blots of digested genomic DNA from the three holoparasites. Positive hybridizations were obtained using each of the five probes only for Cytinus. For SmaI digests, all plastid gene probes hybridized to a common fragment ca. 20 kb in length in this species. Taken together, these data provide preliminary evidence suggestive of the retention of highly diverged and truncated plastid genome in Cytinus. The greater sequence divergence for 16S rDNA and the negative hybridization results for Hydnora and Corynaea suggests two possibilities: the loss of typically conserved elements of their plastomes or the complete absence of a plastome.  相似文献   

8.
9.
10.
Interactions between vascular plants and bryophytes determine plant community composition in many ecosystems. Yet, little is known about the importance of interspecific differences between bryophytes with respect to their effects on vascular plants. We compared the extent to which species-specific bryophyte effects on vascular plant generative recruitment depend on the following underlying mechanisms: allelopathy, mechanical obstruction, soil moisture and temperature control. We sowed 10 vascular plant species into monospecific mats of six chemically and structurally diverse bryophytes, and examined 1-yr seedling recruitment. Allelopathic effects were also assessed in a laboratory phyto-assay. Although all bryophytes suppressed vascular plant regeneration, there were significant differences between the bryophyte species. The lack of interactions indicated the absence of species-specific adaptations of vascular plants for recruitment in bryophyte mats. Differences between bryophyte species were best explained by alterations in temperature regime under bryophyte mats, mostly by reduced temperature amplitudes during germination. The temperature regime under bryophyte mats was well predicted by species-specific bryophyte cushion thickness. The fitness of established seedlings was not affected by the presence of bryophytes. Our results suggest that climatically or anthropogenically driven changes in the species' composition of bryophyte communities have knock-on effects on vascular plant populations via generative reproduction.  相似文献   

11.
How do plants respond to nutrient shortage by biomass allocation?   总被引:11,自引:0,他引:11  
Plants constantly sense the changes in their environment; when mineral elements are scarce, they often allocate a greater proportion of their biomass to the root system. This acclimatory response is a consequence of metabolic changes in the shoot and an adjustment of carbohydrate transport to the root. It has long been known that deficiencies of essential macronutrients (nitrogen, phosphorus, potassium and magnesium) result in an accumulation of carbohydrates in leaves and roots, and modify the shoot-to-root biomass ratio. Here, we present an update on the effects of mineral deficiencies on the expression of genes involved in primary metabolism in the shoot, the evidence for increased carbohydrate concentrations and altered biomass allocation between shoot and root, and the consequences of these changes on the growth and morphology of the plant root system.  相似文献   

12.
Despite seminal papers that stress the significance of silicon (Si) in plant biology and ecology, most studies focus on manipulations of Si supply and mitigation of stresses. The ecological significance of Si varies with different levels of biological organization, and remains hard to capture. We show that the costs of Si accumulation are greater than is currently acknowledged, and discuss potential links between Si and fitness components (growth, survival, reproduction), environment, and ecosystem functioning. We suggest that Si is more important in trait-based ecology than is currently recognized. Si potentially plays a significant role in many aspects of plant ecology, but knowledge gaps prevent us from understanding its possible contribution to the success of some clades and the expansion of specific biomes.  相似文献   

13.
How perennial are perennial plants?   总被引:13,自引:0,他引:13  
Johan Ehrln  Kari Lehtil 《Oikos》2002,98(2):308-322
Trade-offs involving life span are important in the molding of plant life histories. However, the empirical examination of such patterns has so far been limited by the fact that information on life span is mainly available in terms of discrete categories; annuals, semelparous perennials and iteroparous perennials. We used transition matrix models to project continuous estimates of conditional life spans from published information on size- or stage-structured demography for 71 perennial plant species. The projected life span ranged from 4.3 to 988.6 years and more than half of the species had a life span of more than 35 years. Woody plants had on average a projected life span more than four times as long as non-woody plants. Life spans were higher in forests than in open habitats and individuals of non-clonal species tended to have a longer life span than ramets of clonal species. Self-incompatible plants on average lived longer than self-compatible plants. There were no clear relations between life span and geographical region, dispersal syndrome, pollination mode, seed size or the presence of a seed bank. We conclude that accurate estimates of life span are central to understand how longevity is correlated to other traits within the group of perennial plants.  相似文献   

14.
15.
16.
Wissuwa M 《Plant physiology》2003,133(4):1947-1958
Genotypic differences in phosphorus (P) uptake from P-deficient soils may be due to higher root growth or higher external root efficiency (micrograms of P taken up per square centimeter of root surface area). Both factors are highly interrelated because any additional P provided by externally efficient roots will also stimulate root growth. It will be necessary to separate both factors to identify a primary mechanism to formulate hypotheses on pathways and genes causing genotypic differences in P uptake. For this purpose, a plant growth model was developed for rice (Oryza sativa) grown under highly P-deficient conditions. Model simulations showed that small changes in root growth-related parameters had big effects on P uptake. Increasing root fineness or the internal efficiency for root dry matter production (dry matter accumulated per unit P distributed to roots) by 22% was sufficient to increase P uptake by a factor of three. That same effect could be achieved by a 33% increase in external root efficiency. However, the direct effect of increasing external root efficiency accounted for little over 10% of the 3-fold increase in P uptake. The remaining 90% was due to enhanced root growth as a result of higher P uptake per unit root size. These results demonstrate that large genotypic differences in P uptake from a P-deficient soil can be caused by rather small changes in tolerance mechanisms. Such changes will be particularly difficult to detect for external efficiency because they are likely overshadowed by secondary root growth effects.  相似文献   

17.
18.
This article emphasizes the importance of getting students to understand the ways in which polypeptides fold to form protein molecules with complex higher-ordered structures. Modern views on how this folding occurs in vitro and in the cell are summarized and set within an appropriate biological context.  相似文献   

19.
How do spores germinate?   总被引:3,自引:0,他引:3  
Spore germination, as defined as those events that result in the loss of the spore-specific properties, is an essentially biophysical process. It occurs without any need for new macromolecular synthesis, so the apparatus required is already present in the mature dormant spore. Germination in response to specific chemical nutrients requires specific receptor proteins, located at the inner membrane of the spore. After penetrating the outer layers of spore coat and cortex, germinant interacts with its receptor: one early consequence of this binding is the movement of monovalent cations from the spore core, followed by Ca2(+) and dipicolinic acid (DPA). In some species, an ion transport protein is also required for these early stages. Early events - including loss of heat resistance, ion movements and partial rehydration of the spore core - can occur without cortex hydrolysis, although the latter is required for complete core rehydration and colony formation from a spore. In Bacillus subtilis two crucial cortex lytic enzymes have been identified: one is CwlJ, which is DPA-responsive and is located at the cortex-coat junction. The second, SleB, is present both in outer layers and at the inner spore membrane, and is more resistant to wet heat than is CwlJ. Cortex hydrolysis leads to the complete rehydration of the spore core, and then enzyme activity within the spore protoplast resumes. We do not yet know what activates SleB activity in the spore, and neither do we have any information at all on how the spore coat is degraded.  相似文献   

20.
Why do big plants make big seeds?   总被引:3,自引:2,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号