首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objective of this study was to test the hypothesis that the chronic administration of choline supplements a bound pool of choline from which free choline can be mobilized and used to support acetylcholine synthesis when the demand for precursor is increased. For these experiments, brain slices from rats fed diets containing different amounts of choline were incubated in a choline-free buffer and acetylcholine synthesis was measured under resting conditions and in the presence of K+-induced increases in acetylcholine synthesis and release. Rats fed the choline-supplemented diet had circulating choline levels that were 52% greater than the controls, and striatal and cerebral cortical slices from this group produced significantly more free choline during the incubation than slices from the controls. However, the synthesis and release of acetylcholine by these tissues did not differ from those by controls, during either resting or K+-evoked conditions. In contrast, acetylcholine synthesis and release by striatal and hippocampal slices from choline-deficient rats, animals that had circulating choline levels that were 80% of control values, decreased significantly; the production of free choline by these tissues was also depressed. Results indicate that, despite an increased production of free choline by brain slices from choline-supplemented rats, the synthesis of acetylcholine was unaltered, even in the presence of an increased neuronal demand. In contrast, the choline-deficient diet led to a decreased release of free choline from bound stores and an impaired ability of brain to synthesize acetylcholine.  相似文献   

2.
The effects of choline administration on acetylcholine metabolism in the central nervous system are controversial. Although choline supplementation may elevate acetylcholine (ACh) content in brain, turnover studies with labelled choline precursors suggest that systemic choline administration either has no effect or actually diminishes brain ACh synthesis. Since choline supplementation elevates brain choline levels, the apparent decreases in previous turnover studies may reflect dilution of the labelled choline precursor pool rather than altered ACh formation. Therefore, brain ACh formation from [U-14C]glucose was determined after choline supplementation. A two to three fold elevation of brain choline did not alter ACh levels or [U-14C]glucose incorporation into ACh in the cortex, hippocampus or striatum. Although atropine stimulated ACh formation from [U-14C]glucose in hippocampus, two to three fold increases in brain choline did not augment ACh synthesis or content in atropine pretreated animals. Atropine depressed brain regional glucose utilization and this effect was not reversed by choline treatment. These results suggest that shorttern elevation of brain choline does not enhance ACh formation from [U-14C]glucose, and argue against enhanced presynaptic cholinergic function after acute, systemic choline administration.Special issue dedicated to Dr. Louis Sokoloff.  相似文献   

3.
The ginsenoside Rb1 has previously been reported to improve memory deficits induced by anticholinergic drug treatment, and to facilitate acetylcholine (Ach) release from rat brain hippocampal slices. The increase in ACh release was not associated with an increase in calcium uptake into nerve terminals, but was associated with an increase in uptake of the precursor choline. In the present studies, analysis of choline uptake kinetics indicated that Rb1 increased the maximum velocity of choline uptake, while the affinity of the choline uptake carrier for choline (Km) was not significantly altered. Acute treatment with Rb1 did not alter the number of [3H]hemicholinium-3 (HC-3) binding sites in any of three cholinergic brain regions examined, suggesting that the increase in the maximum velocity of choline uptake was not associated with an increase in the number of choline carriers. However, chronic (3 day) administration of Rb1 did increase the number of choline uptake sites in the hippocampus, and to a lesser extent in the cortex.  相似文献   

4.
The possible transport role of phospholipid-protein complexes, present in the cell supernatant of rat brain was investigated using labelled choline as precursor of phosphatidyl choline. Results obtained after the intracranial injection of choline gave no indication of a sequence of events compatible with a transport of phospholipid molecules from the possible site of synthesis (microsomes) to the supernatant and subsequently to myelin. Chase experiments using rat brain slices incubated in vitro with radioactive choline agreed well with the above mentioned results. Contrariwise, when Na352SO4 was used as precursor, the results clearly indicated that synthesis of sulphatides takes place in microsomes, followed by transfer of the radioactive lipid to sulphatide-containing lipoproteins in the supernatant and finally to myelin. Results presented in this paper seem to give further support to the idea that other subcellular fractions, besides microsomes, can autonomously synthesize part of their own provision of phospholipids. Possible reasons which might explain the marked differences between the mechanisms of addition of phospholipids and sulphatides to myelin are discussed in relation to results obtained by other investigators.  相似文献   

5.
1. Adult squirrel monkeys were injected intravenously with doubly labelled lysophosphatidylcholine (a mixture of 1-[1-(14)C]palmitoyl-sn-glycero-3-phosphorylcholine and 1-acyl-sn-glycero-3-phosphoryl[Me-(3)H]choline; (3)H:(14)Cratio 3.75) complexed to albumin, and the incorporation into the brain was studied at times up to 3h. 2. After 20min, 1% of the radioactivity injected as lysophosphatidylcholine had been taken up by the brain. 3. Approx. 70% of the doubly labelled lysophosphatidylcholine taken up by both grey and white matter was converted into phosphatidylcholine, whereas about 30% was hydrolysed. 4. The absence of significant radioactivity in the phosphatidylcholine, free fatty acid and water-soluble fractions of plasma up to 30min after injection of doubly labelled lysophosphatidylcholine rules out the possibility that the rapid labelling of these compounds in brain could be due to uptake from or exchange with their counterparts in plasma. 5. The similarity between the (3)H:(14)C ratios of brain phosphatidylcholine and injected lysophosphatidylcholine demonstrates that formation of the former occurred predominantly via direct acylation. 6. Analysis of the water-soluble products from lysophosphatidylcholine catabolism revealed that appreciable glycerophosphoryl-[Me-(3)H]choline did not accumulate in the brain and that radioactivity was incorporated into choline, acetylcholine, phosphorylcholine and betaine. 7. The role of plasma lysophosphatidylcholine as both a precursor of brain phosphatidylcholine and a source of free choline for the brain is discussed.  相似文献   

6.
Administration of choline chloride i.p. to rats causes a dose-dependent increase in the brain concentration of the neurotransmitter, acetylcholine (ACh). This increase is maximal (22% after a 60-mg/kg dose) 40 minutes after injection. These observations suggest that precursor availability may influence brain ACh synthesis, just as brain tryptophan and tyrosine levels have previously been shown to control the synthesis of brain serotonin and catecholamines.  相似文献   

7.
The turnover of acetylcholine in whole mouse brain in vivo has been determined using [U-14C]glucose as a precursor of the acetyl moiety. The standard requirements for the measurement of turnover were met: the injection did not change the concentrations of precursor or product, the amount of radioactivity in the brain was proportional to the amount injected, and the relationship between the specific activity of glucose and that of acetylcholine was typical of a precursor and a product. The value for acetylcholine turnover was 64 pmol/min per mg protein, approx 6.4 nmol/min per g brain. Treatment with amobarbital (0.16 mmol/kg) decreased the incorporation of glucose into acetylcholine by 73 × 7%, and treatment with atropine increased it by 18 × 6%. These values agree with those using choline as a precursor, supporting the validity of the values for turnover obtained with either labelled precursor. The specific activity of acetylcholine was higher than that of pyruvate at all times in mouse brain in vivo and in rat brain slices in vitro. These observations demonstrate compartmentation of glucose metabolism with respect to acetylcholine synthesis in the brain. They agree with observations by others of compartmentation of acetyl metabolism. They provide an explanation for the close linkage which has been observed between carbohydrate catabolism and acetylcholine synthesis in the CNS.  相似文献   

8.
In order to elucidate the regulation of the levels of free choline in the brain, we investigated the influence of chronic and acute choline administration on choline levels in blood, CSF, and brain of the rat and on net movements of choline into and out of the brain as calculated from the arteriovenous differences of choline across the brain. Dietary choline supplementation led to an increase in plasma choline levels of 50% and to an increase in the net release of choline from the brain as compared to a matched group of animals which were kept on a standard diet and exhibited identical arterial plasma levels. Moreover, the choline concentration in the CSF and brain tissue was doubled. In the same rats, the injection of 60 mg/kg choline chloride did not lead to an additional increase of the brain choline levels, whereas in control animals choline injection caused a significant increase; however, this increase in no case surpassed the levels caused by chronic choline supplementation. The net uptake of choline after acute choline administration was strongly reduced in the high-choline group (from 418 to 158 nmol/g). Both diet groups metabolized the bulk (greater than 96%) of newly taken up choline rapidly. The results indicate that choline supplementation markedly attenuates the rise of free choline in the brain that is observed after acute choline administration. The rapid metabolic choline clearance was not reduced by dietary choline load. We conclude that the brain is protected from excess choline by rapid metabolism, as well as by adaptive, diet-induced changes of the net uptake and release of choline.  相似文献   

9.
Currently, there are no effective therapies to ameliorate the pathological progression of Alzheimer's disease (AD). Evidence suggests that environmental factors may contribute to AD. Notably, dietary nutrients are suggested to play a key role in mediating mechanisms associated with brain function. Choline is a B‐like vitamin nutrient found in common foods that is important in various cell functions. It serves as a methyl donor and as a precursor for production of cell membranes. Choline is also the precursor for acetylcholine, a neurotransmitter which activates the alpha7 nicotinic acetylcholine receptor (α7nAchR), and also acts as an agonist for the Sigma‐1 R (σ1R). These receptors regulate CNS immune response, and their dysregulation contributes to AD pathogenesis. Here, we tested whether dietary choline supplementation throughout life reduces AD‐like pathology and rescues memory deficits in the APP/PS1 mouse model of AD. We exposed female APP/PS1 and NonTg mice to either a control choline (1.1 g/kg choline chloride) or a choline‐supplemented diet (5.0 g/kg choline chloride) from 2.5 to 10 months of age. Mice were tested in the Morris water maze to assess spatial memory followed by neuropathological evaluation. Lifelong choline supplementation significantly reduced amyloid‐β plaque load and improved spatial memory in APP/PS1 mice. Mechanistically, these changes were linked to a decrease of the amyloidogenic processing of APP, reductions in disease‐associated microglial activation, and a downregulation of the α7nAch and σ1 receptors. Our results demonstrate that lifelong choline supplementation produces profound benefits and suggest that simply modifying diet throughout life may reduce AD pathology.  相似文献   

10.
Zeisel SH 《IUBMB life》2007,59(6):380-387
Recent progress in the understanding of the human dietary requirement for choline highlights the importance of genetic variation and epigenetics in human nutrient requirements. Choline is a major dietary source of methyl-groups (one of choline's metabolites, betaine, participates in the methylation of homocysteine to form methionine); also choline is needed for the biosynthesis of cell membranes, bioactive phospholipids and the neurotransmitter acetylcholine. A recommended dietary intake for choline in humans was set in 1998, and a portion of the choline requirement can be met via endogenous de novo synthesis of phosphatidylcholine catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT) in the liver. Though many foods contain choline, many humans do not get enough in their diets. When deprived of dietary choline, most adult men and postmenopausal women developed signs of organ dysfunction (fatty liver, liver or muscle cell damage, and reduces the capacity to handle a methionine load, resulting in elevated homocysteine). However, only a portion of premenopausal women developed such problems. The difference in requirement occurs because estrogen induces expression of the PEMT gene and allows premenopausal women to make more of their needed choline endogenously. In addition, there is significant variation in the dietary requirement for choline that can be explained by common polymorphisms in genes of choline and folate metabolism. Choline is critical during fetal development, when it alters DNA methylation and thereby influences neural precursor cell proliferation and apoptosis. This results in long term alterations in brain structure and function, specifically memory function.  相似文献   

11.
Choline enters brain by saturable transport at the blood-brain barrier (BBB). In separate studies, both sodium-dependent and passive choline transport systems of differing affinity have been reported at brain capillary endothelial cells. In the present study, we re-examined brain choline uptake using the in situ rat brain perfusion technique. Saturable brain choline uptake from perfusion fluid was best described by a model with a single transporter (V:(max) = 2.4-3.1 nmol/min/g; K(m) = 39-42 microM) with an apparent affinity (1/Km)) for choline five to ten-fold greater than previously reported in vivo, but less than neuronal 'high-affinity' brain choline transport (K(m) = 1-5 microM). BBB choline uptake from a sodium-free perfusion fluid using sucrose for osmotic balance was 50% greater than in the presence of sodium suggesting that sodium is not required for transport. Hemicholinium-3 inhibited brain choline uptake with a K(i) (57 +/- 11 microM) greater than that at the neuronal choline system. In summary, BBB choline transport occurs with greater affinity than previously reported, but does not match the properties of the neuronal choline transporter. The V:(max) of this system is appreciable and may provide a mechanism for delivering cationic drugs to brain.  相似文献   

12.
A rapid and sensitive enzymatic assay for measuring picomole quantities of acetyl-CoA, acetylcholine (ACh), and choline from the same tissue extract has been developed. After ACh and choline were extracted into 15% 1 N formic acid/85% acetone, the pellet was further extracted with 5% trichloroacetic acid (TCA) to remove the remaining acetyl-CoA. The two extraction solvents were pooled and lipids, organic solvents, and TCA were removed first by a heptane-chloroform wash followed by an ether extraction. In the acetyl-CoA assay, endogenous ACh and choline were removed by extractions with sodium tetraphenylboron in butenenitrile prior to the enzymatic reactions. The acetyl-CoA remaining in the aqueous phase was then converted enzymatically to labelled ACh in the presence of [Me-14C]choline using choline acetyltransferase. The unreacted labelled precursor was converted to choline phosphate by the enzyme choline kinase. The [14C]ACh formed from acetyl-CoA was extracted into sodium tetraphenylboron in butenenitrile and a portion of the organic phase containing the [14C]ACh was counted in a scintillation counter. Acetylcholine and choline were assayed from the same tissue extracts by a modification of the procedure by SHEA & APRISON (1973). Acetyl-CoA levels in rat whole brain when killed by the near-freezing procedure were found to be 5.50 ± 0.2 nmol/g. The content of acetyl-CoA was the same whether the rats were killed by the near-freezing method or by total freezing in liquid nitrogen. The levels of acetyl-CoA did not change with time after death when the tissue was maintained at a temperature of ?10°C. In the same tissue extracts from rat whole brain killed by the near-freezing method, the content of ACh was 20.6 ± 0.7 nmol/g and choline 58.2 ± 1.2 nmol/g. Although reproducible, the level reported for choline is high when assayed under this condition. The content of choline however after total freezing was found to be 25.2 ± 2.0 nmol/g. The sensitivity (d. p. m. of sample twice blank) is 10 pmol for the acetyl-CoA assay and 25 pmol for the ACh and choline assays. The regional distribution of these three compounds in the brain of rats as well as the content of acetyl-CoA in heart, liver and kidney are presented.  相似文献   

13.
—A method to achieve labelling of the acetylcholine stores of the brain under ideal physiological conditions is described. To this end, mice fed on a choline free diet were supplied with deuterium labelled choline in the drinking water. Labelled and unlabelled choline in plasma and in the brain as well as labelled and unlabelled acetyicholine in the brain were measured by a gas chromatographic-mass spectrometric method. It was found that after 1–25 days on the deuterium choline diet, substantial amounts of the plasma choline and brain acetylcholine were displaced by deuterium choline and deuterium acetylcholine, respectively. Already on the first day, the mole ratio of deuterium choline/total choline in plasma was 0·22, and it approached a maximum of 0·57 on the 14th day. The mole ratios of deuterium acetylcholine/total acetylcholine in the brain were slightly but significantly lower than those of deuterium choline/total choline in plasma 1–14 days, but asymptotically approached the mole ratios of deuterium Ch/total Ch in plasma by 25 days. Intact brains submitted to incubation at room temperature for 10 min increased their total choline content by about 500 per cent. Concurrently, in brains from animals kept on a deuterium choline diet for 1–2 days, the level of deuterium choline rose only by 50 per cent after incubation. Deuterium choline levels increased, however, by 200–300 per cent in the brains from animals kept on the deuterium diet for longer time periods. On the basis of these data it is suggested that: (a) choline in plasma is partly supplied from the food and partly from endogenous sources; (b) plasma choline rapidly equilibrates (less than one day) with a pool of Ch in the brain which is responsible for biosynthesis of acetylcholine; (c) the size of this choline pool is in the order of 34–40 nmol/g.  相似文献   

14.
The main objective of these studies was to determine whether the acute administration of choline to rats provides supplemental precursor that can be used to support acetylcholine synthesis when the demand for choline is increased by increasing neurotransmitter release. For these experiments, hippocampal and striatal slices were prepared form rats that had received saline or an acute injection of choline. Slices were incubated in a choline-free buffer containing 4.74-35 mM KCl, and acetylcholine synthesis and release and choline production were measured. The initial tissue contents of acetylcholine and choline did not differ between experimental groups for either brain region. When hippocampal slices from the controls were incubated for 10 min with depolarizing concentrations of KCl, acetylcholine release increased and the tissue content decreased in a concentration-dependent fashion; no net synthesis of acetylcholine occurred. In contrast, hippocampal slices from the choline-injected animals maintained their tissue content in the presence of high concentrations of KCl, despite an increase in acetylcholine release that was similar in magnitude to that of the controls; positive net synthesis of acetylcholine resulted. Although the molar concentration of choline achieved in the incubation media at the end of the 10-min period did not differ between groups, the mobilization of free choline from bound stores was significantly greater in hippocampal slices from the choline-injected group than the controls. In addition, the synthesis of acetylcholine by hippocampal slices from the choline-injected group was prevented by the presence of hemicholinium-3 (1 microM) in the media.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
More is known about the synthesis and metabolism of acetylcholine (ACh) than other choline (Ch) containing compounds in the brain in spite of the fact that ACh represents only a small fraction of the total Ch esters. This review will attempt to summarize the evidence for the source of Ch in the brain and its relation to the turnover of ACh. Ch is a precursor not only for ACh but also for phosphoryl Ch and phospholipids. It appears that in the rat a bound form of Ch in the brain can produce free Ch which can leave the brain, be converted to ACh or be reutilized for phospholipid synthesis. There is evidence that one of the sources of free Ch that is utilized for ACh synthesis is outside the cholinergic nerve terminal.  相似文献   

16.
The present study is concerned with the uptake and metabolism of choline by the rat brain. Intraperitoneal administration of choline chloride (4-60 mg/kg) caused a dose-dependent elevation of the plasma choline concentration from 11.8 to up to 165.2 microM within 10 min and the reversal of the negative arteriovenous difference (AVD) of choline across the brain to positive values at plasma choline levels of greater than 23 microM. Net choline release and uptake were linearly dependent on the plasma choline level in the physiological range of 10-50 microM, whereas the CSF choline level was significantly increased only at plasma choline levels of greater than 50 microM. The bolus injection of 60 mg/kg of [3H]choline chloride caused the net uptake of greater than 500 nmol/g of choline by the brain as calculated from the AVD, which was reflected in a minor increase of free choline level and a long-lasting increase of brain phosphorylcholine content, which paralleled the uptake curve. Loss of label from phosphorylcholine 30 min to 24 h after choline administration was accompanied by an increase of label in phosphatidylcholine, an indication of a delayed transfer of newly taken-up choline into membrane choline pools. In conclusion, homeostasis of brain choline is maintained by a complex system that interrelates choline net movements into and out of the brain and choline incorporation into and release from phospholipids.  相似文献   

17.
Choline Administration Elevates Brain Phosphorylcholine Concentrations   总被引:8,自引:6,他引:2  
Abstract: The phosphorylcholine concentration of rat brain rises and falls in response to parallel changes in the concentration of circulating choline. A single oral dose of choline chloride (20 mmol/kg) elevated whole-brain concentrations of both choline and phosphorylcholine 5 h after administration; a greater proportion of exogenously administered choline was retained by the brain in its phosphorylated form than as the free arnine. Striatal phosphorylcholine concentrations were elevated within 2 h of choline administration and continued to be significantly greater than control values for up to 34 h after treatment. The response of striatal choline levels to exogenous choline was of shorter duration than that of phosphorylcholine and was correlated with a significant increase in striatal acetylcholine concentrations. The consumption of a choline-free diet for 7 days lowered both serum choline and striatal phosphorylcholine concentrations, but had no effect on striatal choline or acetylcholine. These results suggest that choline kinase is unsaturated by its substrate in vivo and may thus serve to modulate the response of brain choline concentrations to alterations in the supply of circulating choline.  相似文献   

18.
Formation of unesterified choline by rat brain   总被引:8,自引:0,他引:8  
Two preparations of rat brain (ischemic intact brain and homogenized whole brain) formed large amounts of unesterified (free) choline when incubated at 37 degrees C. The accumulation of choline was inhibited by microwave irradiation of brain, or by heating of brain to 50 degrees C, and was maximal at 37 degrees C at pH 7.4-8.5. Choline formation was only observed in subcellular fractions of brain that contained membranes. In homogenates of brain, choline accumulated at a rate exceeding 10 nmol/mg protein per h. There was a significant decrease in brain phosphatidylcholine concentration (of 50 nmol/mg protein) during incubation for 1 h at 37 degrees C. Concentrations of phosphocholine rose (by 2.3 nmol/mg protein), and concentrations of glycerophosphocholine and sphingomyelin did not change during this period. We used radiolabeled phospholipids to trace the fate of phosphatidylcholine and sphingomyelin during incubations of homogenates of brain. Phosphatidylcholine was degraded to form phosphocholine, glycerophosphocholine and free choline. No lysophosphatidylcholine accumulated. Sphingomyelin was degraded to form phosphocholine and a small amount of free choline. Magnesium ions stimulated choline production, while zinc ions were a potent inhibitor. Other divalent cations (calcium, manganese) had little effect on choline accumulation. ATP concentrations in brain homogenates were less than 5 nmol/mg protein (rapidly microwaved brain contained 27 nmol/mg protein). Addition of ATP or ADP to brain homogenates increased ATP concentrations and significantly inhibited choline accumulation. ATP diminished the formation of choline from added phosphatidylcholine, lysophosphatidylcholine, phosphocholine and glycerophosphocholine. The effects of ATP, zinc ion, or magnesium ion upon choline accumulation were not mediated by changes in the rates of utilization of choline for formation of phosphocholine or phosphatidylcholine. In summary, we showed that there was enhanced formation of choline when ATP concentrations within brain were low. This choline was derived, in part, from the degradation of phosphatidylcholine, and we suggest that phospholipase A activity was the primary initiator of choline release from this phospholipid.  相似文献   

19.
20.
β-NEUROTOXIN REDUCES NEUROTRANSMITTER STORAGE IN BRAIN SYNAPSES   总被引:8,自引:5,他引:3  
β-neurotoxin, a component of Bungarus multicinctus venom, is known to cause neuromuscular blockade by first increasing the rate of spontaneous ACh release and then inhibiting the nerve impulse-induced release of ACh. We report that the toxin also affects the storage of several neurotransmitters in rat brain and it is active on synaptosomes and brain minces. Synaptosomes prepared from brain tissue that had been treated with β-toxin have a reduced ability to accumulate radioactive NE, GABA, serotonin and the ACh precursor, choline. The toxin also causes a release of previously accumulated NE and GABA from synaptosomes, suggesting that the storage process rather than the uptake transport process is affected. The toxin does not contain phospholipase A, phospholipase C, protease or hyaluronidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号