首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The terminal enzyme of heme biosynthesis, ferrochelatase (EC 4.99.1.1), catalyzes the insertion of ferrous iron into protoporphyrin IX to form protoheme. Prior to the present work, [2Fe-2S] clusters have been identified and characterized in animal ferrochelatases but not in plant or prokaryotic ferrochelatases. Herein we present evidence that ferrochelatases from the bacteria Caulobacter crescentus and Mycobacterium tuberculosis possess [2Fe-2S] clusters. The enzyme from C. crescentus is a homodimeric, membrane-associated protein while the enzyme from M. tuberculosis is monomeric and soluble. The clusters of the C. crescentus and M. tuberculosis ferrochelatases are ligated by four cysteines but possess ligand spacings that are unlike those of any previously characterized [2Fe-2S] cluster-containing protein, including the ferrochelatase of the yeast Schizosaccharomyces pombe. Thus, the microbial ferrochelatases represent a new group of [2Fe-2S] cluster-containing proteins.  相似文献   

2.
Protoporphyrin (IX) ferrochelatase catalyses the insertion of ferrous iron into protoporphyrin IX to form haem. These ferrochelatases exist as monomers and dimers, both with and without [2Fe-2S] clusters. The motifs for [2Fe-2S] cluster co-ordination are varied, but in all cases previously reported, three of the four cysteine ligands are present in the 30 C-terminal residues and the fourth ligand is internal. In the present study, we demonstrate that a group of micro-organisms exist which possess protoporphyrin (IX) ferrochelatases containing [2Fe-2S] clusters that are co-ordinated by a group of four cysteine residues contained in an internal amino acid segment of approx. 20 residues in length. This suggests that these ferrochelatases have evolved along a different lineage than other bacterial protoporphyrin (IX) ferrochelatases. For example, Myxococcus xanthus protoporphyrin (IX) ferrochelatase ligates a [2Fe-2S] cluster via cysteine residues present in an internal segment. Site-directed mutagenesis of this ferrochelatase demonstrates that changing one cysteine ligand into serine results in loss of the cluster, but unlike eukaryotic protoporphyrin (IX) ferrochelatases, this enzyme retains its activity. These data support a role for the [2Fe-2S] cluster in iron affinity, and strongly suggest convergent evolution of this feature in prokaryotes.  相似文献   

3.
Medlock AE  Dailey HA 《Biochemistry》2000,39(25):7461-7467
Insertion of ferrous iron into protoporphyrin IX is catalyzed by ferrochelatase (EC 4.99.1.1). Human and Schizosaccharomyces pombe forms of ferrochelatase contain a [2Fe-2S] cluster with three of the four coordinating cysteine ligands located within the 30 carboxyl-terminal residues. Saccharomyces cerevisiae ferrochelatase contains no cluster, but has comparable activity. Truncation mutants of S. cerevisiae lacking either the last 37 or 16 amino acids have no enzyme activity. Chimeric mutants of human, S. cerevisiae, and Sc. pombe ferrochelatase have been created by switching the terminal 10% of the carboxy end of the enzyme. Site-directed mutagenesis has been used to introduce the fourth cysteinyl ligand into chimeric mutants that are 90% S. cerevisiae. Activity was assessed by rescue of Deltahem H, a ferrochelatase deficient strain of Escherichia coli, and by enzyme assays. UV-visible and EPR spectroscopy were used to investigate the presence or absence of the [2Fe-2S] cluster. Only 2 of the 13 chimeric mutants that were constructed produced active enzymes. HYB, which is predominately human with the last 40 amino acids being that of S. cerevisiae, is an active protein which does not contain a [2Fe-2S] cluster. The other active chimeric mutant, HSp, is predominately human ferrochelatase with the last 38 amino acids being that of Sc. pombe ferrochelatase. This active mutant contains a [2Fe-2S] cluster, as verified by UV-visible and EPR spectroscopic techniques. No other chimeric proteins had detectable enzyme activity or a [2Fe-2S] cluster. The data are discussed in terms of structural requirements for cluster stability and the role that the cluster plays for ferrochelatase.  相似文献   

4.
MitoNEET (mNT) is the founding member of the recently discovered CDGSH family of [2Fe-2S] proteins capable of [2Fe-2S] cluster transfer to apo-acceptor proteins. It is a target of the thiazolidinedione (TZD) class of anti-diabetes drugs whose binding modulate both electron transfer and cluster transfer properties. The [2Fe-2S] cluster in mNT is destabilized upon binding of NADPH, which leads to loss of the [2Fe-2S] cluster to the solution environment. Because mNT is capable of transferring [2Fe-2S] clusters to apo-acceptor proteins, we sought to determine whether NADPH binding also affects cluster transfer. We show that NADPH inhibits transfer of the [2Fe-2S] cluster to an apo-acceptor protein with an inhibition constant (K(i)) of 200 μm, which reflects that of NADPH concentrations expected under physiological conditions. In addition, we determined that the strictly conserved cluster interacting residue Asp-84 in the CDGSH domain is necessary for the NADPH-dependent inhibition of [2Fe-2S] cluster transfer. The most critical cellular function of NADPH is in the maintenance of a pool of reducing equivalents, which is essential to counteract oxidative damage. Taken together, our findings suggest that NADPH can regulate both mNT [2Fe-2S] cluster levels in the cell as well as the ability of the protein to transfer [2Fe-2S] clusters to cytosolic or mitochondrial acceptors.  相似文献   

5.
Ugulava NB  Gibney BR  Jarrett JT 《Biochemistry》2000,39(17):5206-5214
Biotin synthase catalyzes the insertion of a sulfur atom into the saturated C6 and C9 carbons of dethiobiotin. This reaction has long been presumed to occur through radical chemistry, and recent experimental results suggest that biotin synthase belongs to a family of enzymes that contain an iron-sulfur cluster and reductively cleave S-adenosylmethionine, forming an enzyme or substrate radical, 5'-deoxyadenosine, and methionine. Biotin synthase (BioB) is aerobically purified as a dimer of 38 kDa monomers that contains two [2Fe-2S](2+) clusters per dimer. Maximal in vitro biotin synthesis requires incubation of BioB with dethiobiotin, AdoMet, reductants, exogenous iron, and crude bacterial protein extracts. It has previously been shown that reduction of BioB with dithionite in 60% ethylene glycol produces one [4Fe-4S](2+/1+) cluster per dimer. In the present work, we use UV/visible and electron paramagnetic resonance spectroscopy to show that [2Fe-2S] to [4Fe-4S] cluster conversion occurs through rapid dissociation of iron from the protein followed by rate-limiting reassociation. While in 60% ethylene glycol the product of dithionite reduction is one [4Fe-4S](2+) cluster per dimer, the product in water is one [4Fe-4S](1+) cluster per dimer. Further, incubation with excess iron, sulfide, and dithiothreitol produces protein that contains two [4Fe-4S](2+) clusters per dimer; subsequent reduction with dithionite produces two [4Fe-4S](1+) clusters per BioB dimer. BioB that contains two [4Fe-4S](2+/1+) clusters per dimer is rapidly and reversibly reduced and oxidized, suggesting that this is the redox-active form of the iron-sulfur cluster in the anaerobic enzyme.  相似文献   

6.
Ferrochelatase (protoheme ferrolyase, EC 4.99.1.1) catalyzes the terminal step in the heme biosynthetic pathway, the insertion of ferrous iron into protoporphyrin IX to form protoheme IX. Previously we have demonstrated that the mammalian enzyme is associated with the inner surface of the inner mitochondrial membrane and contains a nitric oxide sensitive [2Fe-2S] cluster that is coordinated by four Cys residues whose spacing in the primary sequence is unique to animal ferrochelatase. We report here the characterization and crystallization of recombinant human ferrochelatase with an intact [2Fe-2S] cluster. Gel filtration chromatography and dynamic light scattering measurements revealed that the purified recombinant human ferrochelatase in detergent solution is a homodimer. EPR redox titrations of the enzyme yield a midpoint potential of -453+/-10 mV for the [2Fe-2S] cluster. The form of the protein that was crystallized has a single Arg to Leu substitution. This mutation has no detectable effect on enzyme activity but is critical for crystallization. The crystals belong to the space group P2(1)2(1)2(1) and have unit cell constants of a=93.5 A, b=87.7 A, and c=110.2 A. There are two molecules in the asymmetric unit and the crystals diffract to better than 2.0 A resolution. The Fe to Fe distance of the [2Fe-2S] cluster is calculated to be 2.7 A based upon the Bijvoet difference Patterson map.  相似文献   

7.
Glutaredoxins (Grxs) are small oxidoreductases that reduce disulphide bonds or protein-glutathione mixed disulphides. More than 30 distinct grx genes are expressed in higher plants, but little is currently known concerning their functional diversity. This study presents biochemical and spectroscopic evidence for incorporation of a [2Fe-2S] cluster in two heterologously expressed chloroplastic Grxs, GrxS14 and GrxS16, and in vitro cysteine desulphurase-mediated assembly of an identical [2Fe-2S] cluster in apo-GrxS14. These Grxs possess the same monothiol CGFS active site as yeast Grx5 and both were able to complement a yeast grx5 mutant defective in Fe-S cluster assembly. In vitro kinetic studies monitored by CD spectroscopy indicate that [2Fe-2S] clusters on GrxS14 are rapidly and quantitatively transferred to apo chloroplast ferredoxin. These data demonstrate that chloroplast CGFS Grxs have the potential to function as scaffold proteins for the assembly of [2Fe-2S] clusters that can be transferred intact to physiologically relevant acceptor proteins. Alternatively, they may function in the storage and/or delivery of preformed Fe-S clusters or in the regulation of the chloroplastic Fe-S cluster assembly machinery.  相似文献   

8.
Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state paramagnetism and a novel type of hybrid [4Fe-2S-2O] cluster, which can attain four redox states. Genomic sequencing reveals that genes encoding putative hybrid-cluster proteins are present in a range of bacterial and archaeal species. In this paper we describe the isolation and spectroscopic characterization of the hybrid-cluster protein from Escherichia coli. EPR spectroscopy shows the presence of a hybrid cluster in the E. coli protein with characteristics similar to those in the proteins of anaerobic sulfate reducers. EPR spectra of the reduced E. coli hybrid-cluster protein, however, give evidence for the presence of a [2Fe-2S] cluster instead of a [4Fe-4S] cluster. The hcp gene encoding the hybrid-cluster protein in E. coli and other facultative anaerobes occurs, in contrast with hcp genes in obligate anaerobic bacteria and archaea, in a small operon with a gene encoding a putative NADH oxidoreductase. This NADH oxidoreductase was also isolated and shown to contain FAD and a [2Fe-2S] cluster as cofactors. It catalysed the reduction of the hybrid-cluster protein with NADH as an electron donor. Midpoint potentials (25 degrees C, pH 7.5) for the Fe/S clusters in both proteins indicate that electrons derived from the oxidation of NADH (Em NADH/NAD+ couple: -320 mV) are transferred along the [2Fe-2S] cluster of the NADH oxidoreductase (Em = -220 mV) and the [2Fe-2S] cluster of the hybrid-cluster protein (Em = -35 mV) to the hybrid cluster (Em = -50, +85 and +365 mV for the three redox transitions). The physiological function of the hybrid-cluster protein has not yet been elucidated. The protein is only detected in the facultative anaerobes E. coli and Morganella morganii after cultivation under anaerobic conditions in the presence of nitrate or nitrite, suggesting a role in nitrate-and/or nitrite respiration.  相似文献   

9.
Biotin synthase (BioB) converts dethiobiotin into biotin by inserting a sulfur atom between C6 and C9 of dethiobiotin in an S-adenosylmethionine (SAM)-dependent reaction. The as-purified recombinant BioB from Escherichia coli is a homodimeric molecule containing one [2Fe-2S](2+) cluster per monomer. It is inactive in vitro without the addition of exogenous Fe. Anaerobic reconstitution of the as-purified [2Fe-2S]-containing BioB with Fe(2+) and S(2)(-) produces a form of BioB that contains approximately one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per monomer ([2Fe-2S]/[4Fe-4S] BioB). In the absence of added Fe, the [2Fe-2S]/[4Fe-4S] BioB is active and can produce up to approximately 0.7 equiv of biotin per monomer. To better define the roles of the Fe-S clusters in the BioB reaction, M?ssbauer and electron paramagnetic resonance (EPR) spectroscopy have been used to monitor the states of the Fe-S clusters during the conversion of dethiobiotin to biotin. The results show that the [4Fe-4S](2+) cluster is stable during the reaction and present in the SAM-bound form, supporting the current consensus that the functional role of the [4Fe-4S] cluster is to bind SAM and facilitate the reductive cleavage of SAM to generate the catalytically essential 5'-deoxyadenosyl radical. The results also demonstrate that approximately (2)/(3) of the [2Fe-2S] clusters are degraded by the end of the turnover experiment (24 h at 25 degrees C). A transient species with spectroscopic properties consistent with a [2Fe-2S](+) cluster is observed during turnover, suggesting that the degradation of the [2Fe-2S](2+) cluster is initiated by reduction of the cluster. This observed degradation of the [2Fe-2S] cluster during biotin formation is consistent with the proposed sacrificial S-donating function of the [2Fe-2S] cluster put forth by Jarrett and co-workers (Ugulava et al. (2001) Biochemistry 40, 8352-8358). Interestingly, degradation of the [2Fe-2S](2+) cluster was found not to parallel biotin formation. The initial decay rate of the [2Fe-2S](2+) cluster is about 1 order of magnitude faster than the initial formation rate of biotin, indicating that if the [2Fe-2S] cluster is the immediate S donor for biotin synthesis, insertion of S into dethiobiotin would not be the rate-limiting step. Alternatively, the [2Fe-2S] cluster may not be the immediate S donor. Instead, degradation of the [2Fe-2S] cluster may generate a protein-bound polysulfide or persulfide that serves as the immediate S donor for biotin production.  相似文献   

10.
Ferrochelatase is the terminal enzyme of the heme biosynthetic pathway in all cells. It catalyzes the insertion of ferrous iron into protoporphyrin IX, yielding heme. In eukaryotic cells, ferrochelatase is a mitochondrial inner membrane-associated protein with the active site facing the matrix. Decreased values of ferrochelatase activity in all tissues are a characteristic of patients with protoporphyria. Point-mutations in the ferrochelatase gene have been recently found to be associated with certain cases of erythropoietic protoporphyria. During the past four years, there have been considerable advances in different aspects related to structure and function of ferrochelatase. Genomic and cDNA clones for bacteria, yeast, barley, mouse, and human ferrochelatase have been isolated and sequenced. Functional expression of yeast ferrochelatase in yeast strains deficient in this enzyme, and expression inEscherichia coli and in baculovirusinfected insect cells of different ferrochelatase cDNAs have been accomplished. A recently identified (2Fe-2S) cluster appears to be a structural feature shared among mammalian ferrochelatases. Finally, functional studies of ferrochelatase site-directed mutants, in which key amino acids were replaced with residues identified in some cases of protoporphyria, will be summarized in the context of protein structure.  相似文献   

11.
12.
4-Hydroxybenzoyl-CoA reductase (4-HBCR) is a key enzyme in the anaerobic metabolism of phenolic compounds. It catalyzes the reductive removal of the hydroxyl group from the aromatic ring yielding benzoyl-CoA and water. The subunit architecture, amino acid sequence, and the cofactor/metal content indicate that it belongs to the xanthine oxidase (XO) family of molybdenum cofactor-containing enzymes. 4-HBCR is an unusual XO family member as it catalyzes the irreversible reduction of a CoA-thioester substrate. A radical mechanism has been proposed for the enzymatic removal of phenolic hydroxyl groups. In this work we studied the spectroscopic and electrochemical properties of 4-HBCR by EPR and M?ssbauer spectroscopy and identified the pterin cofactor as molybdopterin mononucleotide. In addition to two different [2Fe-2S] clusters, one FAD and one molybdenum species per monomer, we also identified a [4Fe-4S] cluster/monomer, which is unique among members of the XO family. The reduced [4Fe-4S] cluster interacted magnetically with the Mo(V) species, suggesting that the centers are in close proximity, (<15 A apart). Additionally, reduction of the [4Fe-4S] cluster resulted in a loss of the EPR signals of the [2Fe-2S] clusters probably because of magnetic interactions between the Fe-S clusters as evidenced in power saturation studies. The Mo(V) EPR signals of 4-HBCR were typical for XO family members. Under steady-state conditions of substrate reduction, in the presence of excess dithionite, the [4Fe-4S] clusters were in the fully oxidized state while the [2Fe-2S] clusters remained reduced. The redox potentials of the redox cofactors were determined to be: [2Fe-2S](+1/+2) I, -205 mV; [2Fe-2S] (+1/+2) II, -255 mV; FAD/FADH( small middle dot)/FADH, -250 mV/-470 mV; [4Fe-4S](+1/+2), -465 mV and Mo(VI)/(V)/(VI), -380 mV/-500 mV. A catalytic cycle is proposed that takes into account the common properties of molybdenum cofactor enzymes and the special one-electron chemistry of dehydroxylation of phenolic compounds.  相似文献   

13.
Genetic experiments have established that IscU is involved in maturation of [Fe-S] proteins that require either [2Fe-2S] or [4Fe-4S] clusters for their biological activities. Biochemical studies have also shown that one [2Fe-2S] cluster can be assembled in vitro within each subunit of the IscU homodimer and that these clusters can be reductively coupled to form a single [4Fe-4S] cluster. In the present work, it is shown that the [4Fe-4S] cluster-loaded form of A. vinelandii IscU, but not the [2Fe-2S] cluster-loaded form, can be used for intact cluster transfer to an apo form of A. vinelandii aconitase A, a member of the monomeric dehydratase family of proteins that requires a [4Fe-4S] cluster for enzymatic activity. The rate of [4Fe-4S] cluster transfer from IscU to apo-aconitase A was not affected by the presence of the HscA/HscB co-chaperone system and MgATP. However, an altered form of a [4Fe-4S] cluster-containing IscU, having the highly conserved aspartate-39 residue substituted with alanine, is an effective inhibitor of wild-type [4Fe-4S] cluster-loaded IscU-directed activation of apo-aconitase A. In contrast, neither the clusterless form of IscU nor the [2Fe-2S] cluster-loaded form of IscU is an effective inhibitor of IscU-directed apo-aconitase A activation. These results are interpreted to indicate that the [2Fe-2S] and [4Fe-4S] cluster-loaded forms of IscU adopt different conformations that provide specificity with respect to the maturation of [2Fe-2S] and [4Fe-4S] centers in proteins.  相似文献   

14.
Rapid and quantitative reductive coupling of two [2Fe-2S]2+ clusters to form a single [4Fe-4S]2+ cluster on the homodimeric IscU Fe-S cluster scaffold protein has been demonstrated by UV-visible absorption, M?ssbauer, and resonance Raman spectroscopies, using dithionite as the electron donor. Partial reductive coupling was also observed using reduced Isc ferredoxin, which raises the possibility that Isc ferredoxin is the physiological reductant. The results suggest that reductive coupling of adjacent [2Fe-2S]2+ clusters assembled on IscU provides a general mechanism for the final step in the biosynthesis of [4Fe-4S]2+ clusters. The [4Fe-4S]2+ center on IscU can be reduced to a S = 1/2[4Fe-4S]+ cluster (g parallel = 2.06 and g perpendicular = 1.92), but the low midpoint potential (< -570 mV) and instability of the reduced cluster argue against any physiological relevance for the reduced cluster. On exposure to O2, the [4Fe-4S]2+ cluster on IscU degrades via a semistable [2Fe-2S]2+ cluster with properties analogous to those of the [2Fe-2S]2+ center in [2Fe-2S]2+ IscU. It is suggested that the ability of IscU to accommodate either [2Fe-2S]2+ or [4Fe-4S]2+ clusters in response to cellular redox status and/or oxygen levels may provide an effective way to populate appropriately cluster-loaded forms of IscU for maturation of different types of [Fe-S] proteins.  相似文献   

15.
Li Z  Shokes JE  Kounosu A  Imai T  Iwasaki T  Scott RA 《Biochemistry》2003,42(50):15003-15008
The biological [2Fe-2S] clusters play important roles in electron transfer and cellular signaling for a variety of organisms from archaea, bacteria to eukarya. The two recombinant hyperthermophilic archaeal [2Fe-2S] cluster-binding proteins, SdhC and the N-terminal domain fragment of SdhB, of Sulfolobus tokodaii respiratory complex II overproduced in Escherichia coli are thermostable as isolated, but moderately sensitive to reduction with excess dithionite. We used iron K-edge X-ray absorption spectroscopy to monitor the structural changes of their Fe sites in the irreversible [2Fe-2S] cluster degradation process. Regardless of the differences in the cluster-ligating cysteine motifs and the XAS-detectable [2Fe-2S](2+) cluster environments, a complete reductive breakdown of the [2Fe-2S] clusters resulted in the appearance of a new Fourier transform (FT) peak at approximately 3.3 A with a concomitant loss of the Fe-Fe interaction at ca. 2.7 A for both proteins. On the basis of the unambiguous assignment of the 3.3 A FT peak, our results suggest that a biological [2Fe-2S] cluster breakdown under reducing conditions generally releases Fe(2+) from the polypeptide chain into the aqueous solution, and the Fe(2+) might then be recruited as a secondary ferrous iron source for de novo biosynthesis and/or regulation of iron-binding enzymes in the cellular system.  相似文献   

16.
The subunit location of the [2Fe-2S], [3Fe-4S], and [4Fe-4S] clusters in Escherichia coli fumarate reductase has been investigated by EPR studies of whole cells or whole cells extracts of a fumarate reductase deletion mutant with plasmid amplified expression of discrete fumarate reductase subunits or groups of subunits. The results indicate that both the [2Fe-2S] and [3Fe-4S] clusters are located entirely in the iron-sulfur protein subunit. Information concerning the specific cysteine residues that ligate these clusters has been obtained by investigating the EPR characteristics of cells of the deletion mutant amplified with a plasmid coding for the flavoprotein subunit and a truncated iron-sulfur protein subunit. While the results are not definitive with respect to the location of the [4Fe-4S] cluster, they are most readily interpreted in terms of this cluster being entirely in the flavoprotein subunit or bridging between the two catalytic domain subunits. These new results are discussed in light of the amino acid sequences of the two subunits and the sequences of structurally well characterized iron-sulfur proteins containing [2Fe-2S], [3Fe-4S], and [4Fe-4S] centers.  相似文献   

17.
Duan X  Yang J  Ren B  Tan G  Ding H 《The Biochemical journal》2009,417(3):783-789
Although the NO (nitric oxide)-mediated modification of iron-sulfur proteins has been well-documented in bacteria and mammalian cells, specific reactivity of NO with iron-sulfur proteins still remains elusive. In the present study, we report the first kinetic characterization of the reaction between NO and iron-sulfur clusters in protein using the Escherichia coli IlvD (dihydroxyacid dehydratase) [4Fe-4S] cluster as an example. Combining a sensitive NO electrode with EPR (electron paramagnetic resonance) spectroscopy and an enzyme activity assay, we demonstrate that NO is rapidly consumed by the IlvD [4Fe-4S] cluster with the concomitant formation of the IlvD-bound DNIC (dinitrosyl-iron complex) and inactivation of the enzyme activity under anaerobic conditions. The rate constant for the initial reaction between NO and the IlvD [4Fe-4S] cluster is estimated to be (7.0+/-2.0)x10(6) M(-2) x s(-1) at 25 degrees C, which is approx. 2-3 times faster than that of the NO autoxidation by O2 in aqueous solution. Addition of GSH failed to prevent the NO-mediated modification of the IlvD [4Fe-4S] cluster regardless of the presence of O2 in the medium, further suggesting that NO is more reactive with the IlvD [4Fe-4S] cluster than with GSH or O2. Purified aconitase B [4Fe-4S] cluster from E. coli has an almost identical NO reactivity as the IlvD [4Fe-4S] cluster. However, the reaction between NO and the endonuclease III [4Fe-4S] cluster is relatively slow, apparently because the [4Fe-4S] cluster in endonuclease III is less accessible to solvent than those in IlvD and aconitase B. When E. coli cells containing recombinant IlvD, aconitase B or endonuclease III are exposed to NO using the Silastic tubing NO delivery system under aerobic and anaerobic conditions, the [4Fe-4S] clusters in IlvD and aconitase B, but not in endonuclease III, are efficiently modified forming the protein-bound DNICs, confirming that NO has a higher reactivity with the [4Fe-4S] clusters in IlvD and aconitase B than with O2 or GSH. The results suggest that the iron-sulfur clusters in proteins such as IlvD and aconitase B may constitute the primary targets of the NO cytotoxicity under both aerobic and anaerobic conditions.  相似文献   

18.
Members of the monothiol glutaredoxin family and members of the BolA-like protein family have recently emerged as specific interacting partners involved in iron-sulfur protein maturation and redox regulation pathways. It is known that human mitochondrial BOLA1 and BOLA3 form [2Fe-2S] cluster-bridged dimeric heterocomplexes with the monothiol glutaredoxin GRX5. The structure and cluster coordination of the two [2Fe-2S] heterocomplexes as well as their molecular function are, however, not defined yet. Experimentally-driven structural models of the two [2Fe-2S] cluster-bridged dimeric heterocomplexes, the relative stability of the two complexes and the redox properties of the [2Fe-2S] cluster bound to these complexes are here presented on the basis of UV/vis, CD, EPR and NMR spectroscopies and computational protein-protein docking. While the BOLA1-GRX5 complex coordinates a reduced, Rieske-type [2Fe-2S]1+ cluster, an oxidized, ferredoxin-like [2Fe-2S]2+ cluster is present in the BOLA3-GRX5 complex. The [2Fe-2S] BOLA1-GRX5 complex is preferentially formed over the [2Fe-2S] BOLA3-GRX5 complex, as a result of a higher cluster binding affinity. All these observed differences provide the first indications discriminating the molecular function of the two [2Fe-2S] heterocomplexes.  相似文献   

19.
《BBA》1987,891(1):94-98
Core extrusion of the bound iron-sulfur centers from spinach Photosystem I showed the presence of [2Fe-2S] clusters as well as [4Fe-4S] clusters among FA, FB and FX. Extrusion of the iron-sulfur ensemble was not quantitative; however, the presence of [2Fe-2S] clusters correlated with higher concentration of unfolding solvent. Since FX is highly resistant to denaturation, and since FA and FB are known to contain [4Fe-4S] clusters, the [2Fe-2S] clusters are assigned to FX. The presence of [2Fe-2S] clusters in Photosystem I has significance in the structure and organization of FX on the reaction center. Since four cysteinyl ligands are assumed to hold an iron-sulfur cluster, a Photosystem I subunit may consist of two approx. 64-kDa proteins bridged by a single [2Fe-2S] cluster. The complete reaction center would consist of two subunits positioned so that two [2Fe-2S] clusters are in magnetic interaction, thereby constituting FX.  相似文献   

20.
All organisms utilize ferrochelatase (EC 4.99.1.1) to catalyze the insertion of ferrous iron into protoposphyrin IX in the terminal step of the heme biosynthetic pathway. Different metal-binding affinity for the enzyme leads to changes in enzyme activity. In this work, we have cloned and over-expressed the enzyme from chironomidae in E. coli. The enzyme was purified and characterized. The recombinant enzyme showed higher enzymatic activity (four-fold increase) in the presence of copper ions and unaffected by calcium ions. Other divalent metal ions including magnesium, manganese, lead, reduced the enzyme activity by >60%. Over 90% of the enzyme activity was inhibited by Zn2+. The sequence alignment of amino acid residues reveals 83% homology with other ferrochelatases. The results of electron proton resonance (EPR) analysis showed that Fe2+ ion was present in the cluster of the recombinant enzyme complex. The recombinant enzyme also contained the [2Fe-2S] center with two-fold higher enzymatic activity than human ferrochelatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号