首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sphingopyxis sp. 113P3 gene oph, encoding oxidized polyvinyl alcohol hydrolase (OPH), was optimized with the preferred codons of Pichia pastoris and ligated into the pPIC9K vector behind the α-factor signal sequence. The vector was then transfected into P. pastoris GS115 and genomic integration was confirmed. Large-scale production of recombinant protein was performed by induction with 14.4 g/L methanol at 22 °C in a 3-L bioreactor. The maximal OPH activity obtained was 68.4 U/mL, which is the highest activity reported. The optimal pH and temperature of recombinant OPH were 8.0 and 45 °C, respectively. OPH activity was stable over a pH range of 5.0–8.5, and at a maximal temperature of 45 °C. The K cat /K m of recombinant OPH was 598 mM?1 s?1, which was 4.27-fold higher than that of recombinant OPH derived from Escherichia coli. The improved catalytic efficiency of OPH expressed in recombinant P. pastoris makes it favorable for industrial applications.  相似文献   

2.
Specific whole cell activity strongly affects sensitivity and detection limit of whole cell-based biosensors. Previously, we developed recombinant Escherichia coli coexpressing periplasmic organophosphorus hydrolase (OPH) and cytosolic chaperone GroEL-GroES (GroEL/ES). In present work, we investigated the effect of culture conditions on whole cell OPH activity. Especially, the whole cell OPH activity was significantly affected by the concentration of tetracycline that is an inducer for chaperone GroEL/ES. When cultured at 20°C for 31 h in M9 medium containing 1 mM IPTG, 50 ng/mL tetracycline, and 500 µM CoCl2, the recombinant E. coli exhibited a specific whole cell OPH activity (U/OD600) of ~0.55, which is 2.6-fold higher than that of recombinant E. coli cultured as previously described conditions. In addition, recombinant cells showed adequate storage stability for 1 week with 100% of original response. Finally, the improved activity and adequate stability in the whole cell biocatalyst will contribute to sensitivity, detection time, and stability of a whole cell-based biosensor for the detection of toxic organophosphates.  相似文献   

3.
Aims: The bacterial organophosphorus hydrolase (OPH) enzyme hydrolyses and detoxifies a broad range of toxic organophosphate pesticides and warfare nerve agents by cleaving the various phosphorus‐ester bonds (P–O, P–F, P–CN, P–S); however, OPH hydrolyses these bonds with varying efficiencies. The aim of this study was to generate a variant OPH enzyme with improved hydrolytic efficiency against the poorly hydrolysed P–S class of organophosphates. Methods and Results: The gene encoding OPH was sequentially mutated at specific codons by saturation mutagenesis and screened for improved activity against the P–S substrates demeton‐S methyl and malathion. Escherichia coli lysates harbouring the variants displayed up to 177‐ and 1800‐fold improvement in specific activity against demeton‐S methyl and malathion, respectively, compared to the wild‐type lysates. The specificity constants of the purified variant proteins were improved up to 25‐fold for demeton‐S methyl and malathion compared to the wild‐type. Activity was associated with organophosphate detoxification as the hydrolysed substrate lost the ability to inhibit acetylcholinesterase. The improved hydrolytic efficiency against demeton‐S translated to the improved ability to hydrolyse the warfare agent VX. Conclusions: OPH variant enzymes were generated that displayed significantly improved ability to hydrolyse and detoxify organophosphates harbouring the P–S bond. Significance and Impact of the Study: The long‐term goal is to generate an environmentally‐friendly enzyme‐mediated bioremediation approach for the removal of toxic organophosphate compounds in the environment.  相似文献   

4.
5.
Organophosphorus hydrolase (OPH) from Flavobacterium species is a membrane‐associated homodimeric metalloenzyme and has its own signal peptide in its N‐terminus. We found that OPH was translocated into the periplasmic space when the original signal peptide‐containing OPH was expressed in recombinant Escherichia coli even though its translocation efficiency was relatively low. To investigate the usability of this OPH signal peptide for periplasmic expression of heterologous proteins in an E. coli system, we employed green fluorescent protein (GFP) as a cytoplasmic folding reporter and alkaline phosphatase (ALP) as a periplasmic folding reporter. We found that the OPH signal peptide was able to use both twin‐arginine translocation (Tat) and general secretory (Sec) machineries by switching translocation pathways according to the nature of target proteins in E. coli. These results might be due to the lack of Sec‐avoidance sequence in the c‐region and a moderate hydrophobicity of the OPH signal peptide. Interestingly, the OPH signal peptide considerably enhanced the translocation efficiencies for both GFP and ALP compared with commonly used TorA and PelB signal peptides that have Tat and Sec pathway dependences, respectively. Therefore, this OPH signal peptide could be successfully used in recombinant E. coli system for efficient periplasmic production of target protein regardless of the subcellular localization where functional folding of the protein occurs. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:848–854, 2016  相似文献   

6.
The gene for organophosphorous hydrolase (OPH) (GenBank accession no. M20392) was chemically synthesised with a codon bias toward E. coli, followed by its cloning and heterologous over-expression in E. coli under induction with 0.1 M isopropyl-d-thiogalactopyranoside (IPTG). The protein was localised in the membrane fraction and no amount of the expressed protein was soluble, thus hindering its purification and further downstream utility. The expressed enzyme was solubilised by mild treatment with ionic detergent [sodium dodecyl sulphate (SDS 1.0% (w/v))]. An innovative step of incubation at 4 °C was used to precipitate SDS, resulting in catalytically active OPH in the supernatant and detergent at the bottom. This solubilised, SDS-free, recombinant OPH was able to detoxify parathion and methylparathion ranging between 10-80% and 3.6-45% in enzyme reaction cycles after immobilization on Ca-alginate and agar-agar, respectively.  相似文献   

7.
Homocysteinylation of lysine residues by homocysteine thiolactone (HCTL), a reactive homocysteine metabolite, results in protein aggregation and malfunction, and is a well-known risk factor for cardiovascular, autoimmune and neurological diseases. Human plasma paraoxonase-1 (PON1) and bleomycin hydrolase (Blmh) have been reported as the physiological HCTL detoxifying enzymes. However, the catalytic efficiency of HCTL hydrolysis by Blmh is low and not saturated at 20 mM HCTL. The catalytic efficiency of PON1 for HCTL hydrolysis is 100-fold lower than that of Blmh. A homocysteine thiolactonase (HCTLase) was purified from human liver and identified by mass spectrometry (MS) as the previously described human biphenyl hydrolase-like protein (BPHL). To further characterize this newly described HCTLase activity, BPHL was expressed in Escherichia coli and purified. The sequence of the recombinant BPHL (rBPHL) and hydrolytic products of the substrates HCTL and valacyclovir were verified by MS. We found that the catalytic efficiency (kcat/Km) of rBPHL for HCTL hydrolysis was 7.7 × 104 M−1s−1, orders of magnitude higher than that of PON1 or Blmh, indicating a more significant physiological role for BPHL in detoxifying HCTL.  相似文献   

8.
Biosensor system for continuous monitoring of organophosphate aerosols   总被引:1,自引:0,他引:1  
An enzyme-based monitoring system provides the basis for continuous sampling of organophosphate contamination in air. The enzymes butyrylcholinesterase (BuChE) and organophosphate hydrolase (OPH) are stabilized by encapsulation in biomimetic silica nanoparticles, entrained within a packed bed column. The resulting immobilized enzyme reactors (IMERs) were integrated with an impinger-based aerosol sampling system for collection of chemical contaminants in air. The sampling system was operated continuously and organophosphate detection was performed in real-time by single wavelength analysis of enzyme hydrolysis products. The resulting sensor system detects organophosphates based on either enzyme inhibition (of BuChE) or substrate hydrolysis (by OPH). The detection limits of the IMERs for specific organophosphates are presented and discussed. The system proved suitable for detection of a range of organophosphates including paraoxon, demeton-S and malathion.  相似文献   

9.
Human serum paraoxonase (HuPON1) is a calcium-dependent enzyme that hydrolyzes esters, including organophosphates and lactones, and exhibits anti-atherogenic properties. A few amino acids have been shown to be essential for the enzyme's arylesterase and organophosphatase activities. Until very recently, a three-dimensional model was not available for HuPON1, so functional roles have not been assigned to those residues. Based on sequence-structure alignment studies, we have folded the amino acid sequence of HuPON1 onto the sixfold beta-propeller structure of squid diisopropylfluorophosphatase (DFPase). We tested the validity of this homology model by circular dichroism (CD) spectroscopy and site-directed mutagenesis. Consistent with predictions from the homology model, CD data indicated that the structural composition of purified HuPON1 consists mainly of beta-sheets. Mutants of HuPON1 were assayed for enzymatic activity against phenyl acetate and paraoxon. Substitution of residues predicted to be important for substrate binding (L69, H134, F222, and C284), calcium ion coordination (D54, N168, N224, and D269), and catalytic mechanism of HuPON1 (H285) led to enzyme inactivation. Mutants F222Y and H115W exhibited substrate-binding selectivity towards phenyl acetate and paraoxon, respectively. The homology model presented here is very similar to the recently obtained PON1 crystal structure, and has allowed identification of several residues within the enzyme active site.  相似文献   

10.
Hu X  Jiang X  Lenz DE  Cerasoli DM  Wallqvist A 《Proteins》2009,75(2):486-498
Human paraoxonase (HuPON1) is a serum enzyme that exhibits a broad spectrum of hydrolytic activities, including the hydrolysis of various organophosphates, esters, and recently identified lactone substrates. Despite intensive site-directed mutagenesis and other biological studies, the structural basis for the specificity of substrate interactions of HuPON1 remains elusive. In this study, we apply homology modeling, docking, and molecular dynamic (MD) simulations to probe the binding interactions of HuPON1 with representative substrates. The results suggest that the active site of HuPON1 is characterized by two distinct binding regions: the hydrophobic binding site for arylesters/lactones, and the paraoxon binding site for phosphotriesters. The unique binding modes proposed for each type of substrate reveal a number of key residues governing substrate specificity. The polymorphic residue R/Q192 interacts with the leaving group of paraoxon, suggesting it plays an important role in the proper positioning of this substrate in the active site. MD simulations of the optimal binding complexes show that residue Y71 undergoes an "open-closed" conformational change upon ligand binding, and forms strong interactions with substrates. Further binding free energy calculations and residual decomposition give a more refined molecular view of the energetics and origin of HuPON1/substrate interactions. These studies provide a theoretical model of substrate binding and specificity associated with wild type and mutant forms of HuPON1, which can be applied in the rational design of HuPON1 variants as bioscavengers with enhanced catalytic activity.  相似文献   

11.
V-type nerve agents, known as VX, are organophosphate (OP) compounds, and show extremely toxic effects on human and animals by causing cholinergic overstimulation of synapses. The bacterial organophosphorus hydrolase (OPH) has attracted much attention for detoxifying V-type agents through hydrolysis of the P–S bond. However, low catalytic efficiency of OPH has limited the practical use of the enzyme. Here we present rational design of OPH with high catalytic efficiency for a V-type nerve agent. Based on the model structure of the enzyme and substrate docking simulation, we predicted the key residues that appear to enhance the access of the substrate to the active site of the enzyme, and constructed numerous OPH mutants. Of them, double mutant, L271/Y309A, was shown to exhibit a 150-fold higher catalytic efficiency for VX than the wild-type.  相似文献   

12.
Human serum paraoxonase 1 (HuPON1; EC 3.1.8.1) is a calcium-dependent six-fold beta-propeller enzyme that has been shown to hydrolyze an array of substrates, including organophosphorus (OP) chemical warfare nerve agents. Although recent efforts utilizing site-directed mutagenesis have demonstrated specific residues (such as Phe222 and His115) to be important in determining the specificity of OP substrate binding and hydrolysis, little effort has focused on the substrate stereospecificity of the enzyme; different stereoisomers of OPs can differ in their toxicity by several orders of magnitude. For example, the C+/-P- isomers of the chemical warfare agent soman (GD) are known to be more toxic by three orders of magnitude. In this study, the catalytic activity of HuPON1 towards each of the four chiral isomers of GD was measured simultaneously via chiral GC/MS. The catalytic efficiency (k(cat)/K(m)) of the wild-type enzyme for the various stereoisomers was determined by a simultaneous solution of hydrolysis kinetics for each isomer. Derived k(cat)/K(m) values ranged from 625 to 4130 mm(-1).min(-1), with isomers being hydrolyzed in the order of preference C+P+ > C-P+ > C+P- > C-P-. The results indicate that HuPON1 hydrolysis of GD is stereoselective; substrate stereospecificity should be considered in future efforts to enhance the OPase activity of this and other candidate bioscavenger enzymes.  相似文献   

13.
Oxidized polyvinyl alcohol (PVA) hydrolase (OPH) is a key enzyme in the degradation of PVA, suggesting that OPH has a great potential for application in textile desizing processes. In this study, the OPH gene from Sphingopyxis sp. 113P3 was modified, by artificial synthesis, for overexpression in Escherichia coli. The OPH gene, lacking the sequence encoding the original signal peptide, was inserted into pET-20b (+) expression vector, which was then used to transform E. coli BL21 (DE3). OPH expression was detected in culture medium in which the transformed E. coli BL21 (DE3) was grown. Nutritional and environmental conditions were investigated for improved production of OPH protein by the recombinant strain. The highest OPH activity measured was 47.54 U/mL and was reached after 84 h under optimal fermentation conditions; this level is 2.64-fold higher that obtained under sub-optimal conditions. The productivity of recombinant OPH reached 565.95 U/L/h. The effect of glycine on the secretion of recombinant OPH was examined by adding glycine to the culture medium to a final concentration of 200 mM. This concentration of glycine reduced the fermentation time by 24 h and increased the productivity of recombinant OPH to 733.17 U/L/h. Our results suggest that the recombinant strain reported here has great potential for use in industrial applications.  相似文献   

14.
Toluene o-xylene monooxygenase (ToMO) and phenol hydroxylase (PH) of Pseudomonas stutzeri OX1 act sequentially in a recombinant upper pathway for the degradation of aromatic hydrocarbons. The catalytic efficiency and regioselectivity of these enzymes optimize the degradation of growth substrates like toluene and o-xylene. For example, the sequential monooxygenation of o-xylene by ToMO and PH leads to almost exclusive production of 3,4-dimethylcatechol (3,4-DMC), the only isomer that can be further metabolized by the P. stutzeri meta pathway. We investigated the possibility of producing ToMO mutants with modified regioselectivity compared with the regioselectivity of the wild-type protein in order to alter the ability of the recombinant upper pathway to produce methylcatechol isomers from toluene and to produce 3,4-DMC from o-xylene. The combination of mutant (E103G)-ToMO and PH increased the production of 4-methylcatechol from toluene and increased the formation of 3,4-DMC from o-xylene. These data strongly support the idea that the products and efficiency of the metabolic pathway can be controlled not only through mutations that increase the catalytic efficiency of the enzymes involved but also through tuning the substrate specificity and regioselectivity of the enzymes. These findings are crucial for the development of future metabolic engineering strategies.  相似文献   

15.
Enzyme spectrophotometric assays based on acetylcholinesterase (AChE) inhibition were used in combination with Artificial Neural Network (ANN) chemometric analysis for the resolution of pesticides mixtures of chlorpyriphos, dichlorvos and carbofuran. Electric eel (EE) AChE and the recombinant B394-AChE from Drosophila melanogaster were selected due to their different sensitivities to insecticides. These enzymes were used in association with phosphotriesterase (PTE), an enzyme allowing to discriminate between organophosphate and carbamate insecticides. The combined response of three enzymes systems composed of EE-AChE, EE-AChE + PTE, and B394-AChE + PTE was modelled by means of ANN. Specifically, an ANN was constructed where the structure providing the best modelling was a single hidden layer containing four neurons. To prove the concept, a study to resolve pesticide mixtures was done with spectrophotometric measurements. Finally the developed system was successfully applied to the determination of carbofuran, CPO and dichlorvos pesticides in real water samples.  相似文献   

16.
The catalytic and physical–chemical properties of organophosphorus hydrolase (OPH) modified by the addition of an N-terminal dodecahistidine tag (His12-OPH) have been investigated. Introduction of the His12-tag caused a 30- and 74-fold increase in catalytic efficiency of the enzyme with parathion and methyl parathion, respectively, compared to OPH. Concurrently, the His12-OPH had a more alkaline pH-optimum and extended temperature range than OPH and OPH modified with a hexahistidine tag. A study of His12-OPH thermostability showed that the enzyme had a tendency to oligomerise. This resulted in a decrease in the enzymatic activity of His12-OPH at temperatures <50°C, but provided the enzyme with much higher thermostability at temperatures >50°C, compared to OPH.  相似文献   

17.
A twin arginine translocation (Tat) motif, involved in transport of folded proteins across the inner membrane, was identified in the signal peptide of the membrane-associated organophosphate hydrolase (OPH) of Brevundimonas diminuta. Expression of the precursor form of OPH carrying a C-terminal His tag in an opd-negative background and subsequent immunoblotting with anti-His antibodies showed that only the mature form of OPH associated with the membrane and that the precursor form of OPH was entirely found in the cytoplasm. When OPH was expressed without the signal peptide, most of it remained in the cytoplasm, where it was apparently correctly folded and showed activity comparable to that of the membrane-associated OPH encoded by the wild-type opd gene. Amino acid substitutions in the invariant arginine residues of the Tat signal peptide affected both the processing and localization of OPH, confirming a critical role for the Tat system in membrane targeting of OPH in B. diminuta. The localization of OPH to the periplasmic face of the inner membrane in B. diminuta was demonstrated by proteinase K treatment of spheroplasts and also by fluorescence-activated cell sorting analysis of cells expressing OPH-green fluorescent protein fusions with and without an SsrA tag that targets cytoplasmic proteins to the ClpXP protease.Bacterial organophosphate hydrolases (OPH), also known as phosphotriesterases, have been shown to hydrolyze a structurally diverse group of phosphotriesters used as insecticides and chemical warfare agents (26, 37). The genetic information required to encode these dimeric metalloenzymes is highly conserved and often located on plasmids known as organophosphate-degrading (opd) plasmids (27). Among the opd plasmids, pPDL2 (40 kb), isolated from Flavobacterium sp. strain ATCC27551, and pCMS1 (66 kb), isolated from Brevundimonas diminuta (formerly Pseudomonas diminuta), are well characterized (27). In these two indigenous plasmids, a 7-kb region that includes the 1.5-kb organophosphate-degrading (opd) gene is highly conserved and has the features of a complex transposon (38).OPH has been crystallized from a number of sources and has been shown to be a dimeric metalloenzyme with zinc at its catalytic center (1, 2, 28). In Flavobacterium and B. diminuta, the protein has been shown to be membrane associated, and a 29-amino-acid-long signal peptide found in its precursor form has been deduced to be responsible for membrane targeting (24, 25, 36). A similar signal sequence is also encoded in opd genes identified in Agrobacterium radiobacter (15) and Sphingomonas sp. strain JK1 (GenBank accession no. ACD85809). While the conservation of a signal peptide in this group of organophosphate hydrolases has been recognized for some time, its biological role and its precise involvement in the membrane localization of OPH have not been investigated. In this study, we expressed OPH with a C-terminal His tag in opd-negative mutants of B. diminuta and established a system to differentiate and localize precursor and mature forms of OPH. We have used this system, together with mutagenesis of the signal peptide-encoding region of the opd gene, to demonstrate that membrane targeting of OPH is dependent on the twin arginine translocation (Tat) protein secretion pathway, which facilitates localization of OPH to the periplasmic face of the inner membrane.  相似文献   

18.
Surface display of the active proteins on living cells has enormous potential in the degradation of numerous toxic compounds. Here, we report the codisplay of organophosphorus hydrolase (OPH) and enhanced green fluorescent protein (GFP) on the cell surface of Escherichia coli by use of the truncated ice nucleation protein (INPNC) and Lpp-OmpA fusion systems. The surface localization of both INPNC-OPH and Lpp-OmpA-GFP was demonstrated by Western blot analysis, immunofluorescence microscopy, and a protease accessibility experiment. Anchorage of GFP and OPH on the outer membrane neither inhibits cell growth nor affects cell viability, as shown by growth kinetics of cells and stability of resting cultures. The engineered E. coli can be applied in the form of a whole-cell biocatalyst and can be tracked by fluorescence during bioremediation. This strategy of codisplay should open a new dimension for the display of multiple functional moieties on the surface of a bacterial cell. Furthermore, a coculture comprised of the engineered E. coli and a natural p-nitrophenol (PNP) degrader, Ochrobactrum sp. strain LL-1, was assembled for complete mineralization of organophosphates (OPs) with a PNP substitution. The coculture degraded OPs as well as PNP rapidly. Therefore, the coculture with autofluorescent and mineralizing activities can potentially be applied for bioremediation of OP-contaminated sites.  相似文献   

19.
The catalytic properties of organophosphate hydrolase (OPH) containing a hexahistidine tag His6 (His6-OPH) and purified to 98% homogeneity were investigated. The pH optimum of enzymatic activity and isoelectric point of His6-OPH, which were shown to be 10.5 and 8.5, respectively, are shifted to the alkaline range as compared to the same parameters of the native OPH. The recombinant enzyme possessed improved catalytic activity towards S-containing substrates: the catalytic efficiency of methylparathion hydrolysis by His6-OPH is 4.2 x 10(6) M(-1) x sec(-1), whereas by native OPH it is 3.5 x 10(5) M(-1) x sec(-1).  相似文献   

20.

Neurotoxic organophosphates (OPs) are widely used as pesticides and for public health purposes, as well as being nerve gases. As a result of the widespread use of these compounds for agriculture, large volumes of wastewater are generated. Additionally, there are large stockpiles of the nerve gases soman, sarin and VX in the United States and elsewhere around the world. Organophosphorus hydrolase (OPH) is an enzyme that catalyzes the hydrolysis of OP nerve agents. To date, however, the use of this enzyme in detoxification processes has been rather limited due to the high cost of its purification and short catalytic half-life. This paper reports the development of a cost-effective method for the production and immobilization of OPH in a pilot application in an enzyme bioreactor column for detoxification of paraoxon and coumaphos in contaminated wastewaters. A fusion between OPH and a cellulose binding domain that binds selectively to cellulose was generated to allow one-step purification and immobilization of OPH on cheap and abundantly available cellulose immobilization matrices. When packed in a column bioreactor, the immobilized fusion enzyme was able to completely degrade coumaphos up to a concentration of 0.2 mM. However, stirring of OPH immobilized on cellulose materials resulted in complete OP degradation of 1.5 mM coumaphos. The bioreactor column degraded the compounds tested at high concentration, rapidly, and without loss of process productivity for about 2 months.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号