首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The world continues to face a life-threatening viral pandemic. The virus underlying the Coronavirus Disease 2019 (COVID-19), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has caused over 98 million confirmed cases and 2.2 million deaths since January 2020. Although the most recent respiratory viral pandemic swept the globe only a decade ago, the way science operates and responds to current events has experienced a cultural shift in the interim. The scientific community has responded rapidly to the COVID-19 pandemic, releasing over 125,000 COVID-19–related scientific articles within 10 months of the first confirmed case, of which more than 30,000 were hosted by preprint servers. We focused our analysis on bioRxiv and medRxiv, 2 growing preprint servers for biomedical research, investigating the attributes of COVID-19 preprints, their access and usage rates, as well as characteristics of their propagation on online platforms. Our data provide evidence for increased scientific and public engagement with preprints related to COVID-19 (COVID-19 preprints are accessed more, cited more, and shared more on various online platforms than non-COVID-19 preprints), as well as changes in the use of preprints by journalists and policymakers. We also find evidence for changes in preprinting and publishing behaviour: COVID-19 preprints are shorter and reviewed faster. Our results highlight the unprecedented role of preprints and preprint servers in the dissemination of COVID-19 science and the impact of the pandemic on the scientific communication landscape.

An analysis of bioRxiv and medRxiv during the first 10 months of the COVID-19 pandemic reveals that the pandemic has resulted in a cultural shift in the use of preprints for disseminating pandemic-related science.  相似文献   

2.
Regarding postdocs as disposable labour with limited contracts is damaging for science. Universities need to offer them better career perspectives. Subject Categories: Careers, Science Policy & Publishing

In many academic systems, permanent positions for scientists (“tenure”) are a rare exception. In Germany, 90% of the researchers employed in academia work on temporary contracts, often with less than a year’s duration. Most of the workforce on short‐term contracts are early‐career researchers (ECRs): PhD students, postdocs, or principal investigators aspiring to beome tenured professors. Given the short‐term perspectives and uncertain contract renewals, and because only a small fraction of the ECRs will eventually get a tenured position, planning the future is difficult or even impossible for them. This creates a toxic environment of hypercompetition, perverse incentives, and steep hierarchies underpinning this system, which discourages many highly competent and motivated young scientists who eventually leave in frustration. In the life sciences in particular, decisions about hiring or promotions are often based on indicators such as journal impact factor or the amount of third‐party funding. Such metrics purport to objectively quantify research quality and innovation, but instead, they foster a culture of questionable research practices, selective or non‐reporting, exaggerating the interpretation of results, and an emphasis on quantity over quality. Much has been written about this situation (Alberts et al, 2014), and there is a broad consensus among researchers, research administrators, funders, and learned societies on the need to reform the academic system.
Given the short‐term perspectives and uncertain contract renewals, and because only a small fraction of the ECRs will eventually get a tenured position, planning the future is difficult or even impossible for them.
  相似文献   

3.
As Open Science practices become more commonplace, there is a need for the next generation of scientists to be well versed in these aspects of scientific research. Yet, many training opportunities for early career researchers (ECRs) could better emphasize or integrate Open Science elements. Field courses provide opportunities for ECRs to apply theoretical knowledge, practice new methodological approaches, and gain an appreciation for the challenges of real‐life research, and could provide an excellent platform for integrating training in Open Science practices. Our recent experience, as primarily ECRs engaged in a field course interrupted by COVID‐19, led us to reflect on the potential to enhance learning outcomes in field courses by integrating Open Science practices and online learning components. Specifically, we highlight the opportunity for field courses to align teaching activities with the recent developments and trends in how we conduct research, including training in: publishing registered reports, collecting data using standardized methods, adopting high‐quality data documentation, managing data through reproducible workflows, and sharing and publishing data through appropriate channels. We also discuss how field courses can use online tools to optimize time in the field, develop open access resources, and cultivate collaborations. By integrating these elements, we suggest that the next generation of field courses will offer excellent arenas for participants to adopt Open Science practices.  相似文献   

4.
Information exchange in biology has already been enriched by online-only journals, databases, blogs and conference webcasting, but now Nature Precedings, an open access document sharing tool, aims to bring the community in line with the physical sciences, which have long used preprint servers.  相似文献   

5.
Novel predator–prey interactions can contribute to the invasion success of non‐native predators. For example, native prey can fail to recognize and avoid non‐native predators due to a lack of co‐evolutionary history and cue dissimilarity with native predators. This might result in a competitive advantage for non‐native predators. Numerous lady beetle species were globally redistributed as biological control agents against aphids, resulting in novel predator–prey interactions. Here, we investigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon pisum) toward chemical cues of native lady beetles and non‐native Asian Harmonia axyridis and European Coccinella septempunctata and Hippodamia variegata in North America, hypothesizing that cues of non‐native lady beetles induce weaker avoidance behavior than cues of co‐evolved native lady beetles. Additionally, we compared aphid consumption of lady beetles, examining potential predation advantages of non‐native lady beetles. Finally, we compared cue avoidance behavior between North American and European pea aphid populations and aphid consumption of native and non‐native lady beetles in North America and Europe. In North America, pea aphids avoided chemical cues of all ladybeetle species tested, regardless of their origin. In contrast to pea aphids in North America, European pea aphids did not avoid cues of the non‐native H. axyridis. The non‐native H. axyridis and C. septempunctata were among the largest and most voracious lady beetle species tested, on both continents. Consequently, in North America non‐native lady beetle species might have a competitive advantage on shared food resources due to their relatively large body size, compared to several native American lady beetle species. In Europe, however, non‐native H. axyridis might benefit from missing aphid cue avoidance as well as a large body size. The co‐evolutionary time gap between the European and North American invasion of H. axyridis likely explains the intercontinental differences in cue avoidance behavior and might indicate evolution in aphids toward non‐native predators.  相似文献   

6.
Author‐level metrics are a widely used measure of scientific success. The h‐index and its variants measure publication output (number of publications) and research impact (number of citations). They are often used to influence decisions, such as allocating funding or jobs. Here, we argue that the emphasis on publication output and impact hinders scientific progress in the fields of ecology and evolution because it disincentivizes two fundamental practices: generating impactful (and therefore often long‐term) datasets and sharing data. We describe a new author‐level metric, the data‐index, which values both dataset output (number of datasets) and impact (number of data‐index citations), so promotes generating and sharing data as a result. We discuss how it could be implemented and provide user guidelines. The data‐index is designed to complement other metrics of scientific success, as scientific contributions are diverse and our value system should reflect that both for the benefit of scientific progress and to create a value system that is more equitable, diverse, and inclusive. Future work should focus on promoting other scientific contributions, such as communicating science, informing policy, mentoring other scientists, and providing open‐access code and tools.  相似文献   

7.
Predators are a particularly critical component of habitat quality, as they affect survival, morphology, behavior, population size, and community structure through both consumptive and non‐consumptive effects. Non‐consumptive effects can often exceed consumptive effects, but their relative importance is undetermined in many systems. Our objective was to determine the consumptive and non‐consumptive effects of a predaceous aquatic insect, Notonecta irrorata, on colonizing aquatic beetles. We tested how N. irrorata affected survival and habitat selection of colonizing aquatic beetles, how beetle traits contributed to their vulnerability to predation by N. irrorata, and how combined consumptive and non‐consumptive effects affected populations and community structure. Predation vulnerabilities ranged from 0% to 95% mortality, with size, swimming, and exoskeleton traits generating species‐specific vulnerabilities. Habitat selection ranged from predator avoidance to preferentially colonizing predator patches. Attraction of Dytiscidae to N. irrorata may be a natural ecological trap given similar cues produced by these taxa. Hence, species‐specific habitat selection by prey can be either predator‐avoidance responses that reduce consumptive effects, or responses that magnify predator effects. Notonecta irrorata had both strong consumptive and non‐consumptive effects on populations and communities, while combined effects predicted even more distinct communities and populations across patches with or without predators. Our results illustrate that an aquatic invertebrate predator can have functionally unique consumptive effects on prey, attracting and repelling prey, while prey have functionally unique responses to predators. Determining species‐specific consumptive and non‐consumptive effects is important to understand patterns of species diversity across landscapes.  相似文献   

8.
Vector‐borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit‐colonizing yeast in a tripartite symbiosis—the so‐called “killer yeast” system. “Killer yeast” consists of Saccharomyces cerevisiae yeast hosting two double‐stranded RNA viruses (M satellite dsRNAs, L‐A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing “killer yeast” phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non‐killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.  相似文献   

9.
Fracture non‐union represents a common complication, seen in 5%–10% of all acute fractures. Despite the enhancement in scientific understanding and treatment methods, rates of fracture non‐union remain largely unchanged over the years. This systematic review investigates the biological, molecular and genetic profiles of both (i) non‐union tissue and (ii) non–union‐related tissues, and the genetic predisposition to fracture non‐union. This is crucially important as it could facilitate earlier identification and targeted treatment of high‐risk patients, along with improving our understanding on pathophysiology of fracture non‐union. Since this is an update on our previous systematic review, we searched the literature indexed in PubMed Medline; Ovid Medline; Embase; Scopus; Google Scholar; and the Cochrane Library using Medical Subject Heading (MeSH) or Title/Abstract words (non‐union(s), non‐union(s), human, tissue, bone morphogenic protein(s) (BMPs) and MSCs) from August 2014 (date of our previous publication) to 2 October 2021 for non‐union tissue studies, whereas no date restrictions imposed on non–union‐related tissue studies. Inclusion criteria of this systematic review are human studies investigating the characteristics and properties of non‐union tissue and non–union‐related tissues, available in full‐text English language. Limitations of this systematic review are exclusion of animal studies, the heterogeneity in the definition of non‐union and timing of tissue harvest seen in the included studies, and the search term MSC which may result in the exclusion of studies using historical terms such as ‘osteoprogenitors’ and ‘skeletal stem cells’. A total of 24 studies (non‐union tissue: n = 10; non–union‐related tissues: n = 14) met the inclusion criteria. Soft tissue interposition, bony sclerosis of fracture ends and complete obliteration of medullary canal are commonest macroscopic appearances of non‐unions. Non‐union tissue colour and surrounding fluid are two important characteristics that could be used clinically to distinguish between septic and aseptic non‐unions. Atrophic non‐unions had a predominance of endochondral bone formation and lower cellular density, when compared against hypertrophic non‐unions. Vascular tissues were present in both atrophic and hypertrophic non‐unions, with no difference in vessel density between the two. Studies have found non‐union tissue to contain biologically active MSCs with potential for osteoblastic, chondrogenic and adipogenic differentiation. Proliferative capacity of non‐union tissue MSCs was comparable to that of bone marrow MSCs. Rates of cell senescence of non‐union tissue remain inconclusive and require further investigation. There was a lower BMP expression in non‐union site and absent in the extracellular matrix, with no difference observed between atrophic and hypertrophic non‐unions. The reduced BMP‐7 gene expression and elevated levels of its inhibitors (Chordin, Noggin and Gremlin) could potentially explain impaired bone healing observed in non‐union MSCs. Expression of Dkk‐1 in osteogenic medium was higher in non‐union MSCs. Numerous genetic polymorphisms associated with fracture non‐union have been identified, with some involving the BMP and MMP pathways. Further research is required on determining the sensitivity and specificity of molecular and genetic profiling of relevant tissues as a potential screening biomarker for fracture non‐unions.  相似文献   

10.
The academic disciplines of Science, Technology, Engineering and Mathematics (STEM) have long suffered from a lack of diversity. While in recent years there has been some progress in addressing the underrepresentation of women in STEM subjects, other characteristics that have the potential to impact on equality of opportunity have received less attention. In this study, we surveyed 188 early career scientists (ECRs), defined as within 10 years of completing their PhD, in the fields of ecology, evolutionary biology, behaviour, and related disciplines. We examined associations between ethnicity, age, sexual orientation, sex, socioeconomic background, and disability, with measures of career progression, namely publication record, number of applications made before obtaining a postdoc, type of contract, and number of grant applications made. We also queried respondents on perceived barriers to progression and potential ways of overcoming them. Our key finding was that socioeconomic background and ethnicity were associated with measures of career progression. While there was no difference in the number of reported first‐authored papers on PhD completion, ethnic minority respondents reported fewer other‐authored papers. In addition, ECRs from a lower socioeconomic background were more likely to report being in teaching and research positions, rather than research‐only positions, the latter being perceived as more prestigious by some institutions. We discuss our findings in the context of possible inequality of opportunity. We hope that this study will stimulate wider discussion and help to inform strategies to address the underrepresentation of minority groups in the fields of ecology and evolution, and STEM subjects more widely.  相似文献   

11.
Sexually selected traits may also be subject to non‐sexual selection. If optimal trait values depend on environmental conditions, then “narrow sense” (i.e., non‐sexual) natural selection can lead to local adaptation, with fitness in a certain environment being highest among individuals selected under that environment. Such adaptation can, in turn, drive ecological speciation via sexual selection. To date, most research on the effect of narrow‐sense natural selection on sexually selected traits has focused on precopulatory measures like mating success. However, postcopulatory traits, such as sperm function, can also be under non‐sexual selection, and have the potential to contribute to population divergence between different environments. Here, we investigate the effects of narrow‐sense natural selection on male postcopulatory success in Drosophila melanogaster. We chose two extreme environments, low oxygen (10%, hypoxic) or high CO2 (5%, hypercapnic) to detect small effects. We measured the sperm defensive (P1) and offensive (P2) capabilities of selected and control males in the corresponding selection environment and under control conditions. Overall, selection under hypoxia decreased both P1 and P2, while selection under hypercapnia had no effect. Surprisingly, P1 for both selected and control males was higher under both ambient hypoxia and ambient hypercapnia, compared to control conditions, while P2 was lower under hypoxia. We found limited evidence for local adaptation: the positive environmental effect of hypoxia on P1 was greater in hypoxia‐selected males than in controls. We discuss the implications of our findings for the evolution of postcopulatory traits in response to non‐sexual and sexual selection.  相似文献   

12.
Global climate change is causing increased climate extremes threatening biodiversity and altering ecosystems. Climate is comprised of many variables including air temperature, barometric pressure, solar radiation, wind, relative humidity, and precipitation that interact with each other. As movement connects various aspects of an animal''s life, understanding how climate influences movement at a fine‐temporal scale will be critical to the long‐term conservation of species impacted by climate change. The sedentary nature of non‐migratory species could increase some species risk of extirpation caused by climate change. We used Northern Bobwhite (Colinus virginianus; hereafter bobwhite) as a model to better understand the relationship between climate and the movement ecology of a non‐migratory species at a fine‐temporal scale. We collected movement data on bobwhite from across western Oklahoma during 2019–2020 and paired these data with meteorological data. We analyzed movement in three different ways (probability of movement, hourly distance moved, and sinuosity) using two calculated movement metrics: hourly movement (displacement between two consecutive fixes an hour apart) and sinuosity (a form of tortuosity that determines the amount of curvature of a random search path). We used generalized linear‐mixed models to analyze probability of movement and hourly distance moved, and used linear‐mixed models to analyze sinuosity. The interaction between air temperature and solar radiation affected probability of movement and hourly distance moved. Bobwhite movement increased as air temperature increased beyond 10°C during low solar radiation. During medium and high solar radiation, bobwhite moved farther as air temperature increased until 25–30°C when hourly distance moved plateaued. Bobwhite sinuosity increased as solar radiation increased. Our results show that specific climate variables alter the fine‐scale movement of a non‐migratory species. Understanding the link between climate and movement is important to determining how climate change may impact a species’ space use and fitness now and in the future.  相似文献   

13.
Plastid genomes (plastomes) have a quadripartite structure, but some species have drastically reduced or lost inverted repeat (IR) regions. IR regions are important for genome stability and the evolution rate. In the evolutionary process of gymnosperms, the typical IRs of conifers were lost, possibly affecting the evolutionary rate and selection pressure of genomic protein‐coding genes. In this study, we selected 78 gymnosperm species (51 genera, 13 families) for evolutionary analysis. The selection pressure analysis results showed that negative selection effects were detected in all 50 common genes. Among them, six genes in conifers had higher ω values than non‐conifers, and 12 genes had lower ω values. The evolutionary rate analysis results showed that 9 of 50 common genes differed between conifers and non‐conifers. It is more obvious that in non‐conifers, the rates of psbA (trst, trsv, ratio, dN, dS, and ω) were 2.6‐ to 3.1‐fold of conifers. In conifers, trsv, ratio, dN, dS, and ω of ycf2 were 1.2‐ to 3.6‐fold of non‐conifers. In addition, the evolution rate of ycf2 in the IR was significantly reduced. psbA is undergoing dynamic change, with an abnormally high evolution rate as a small portion of it enters the IR region. Although conifers have lost the typical IR regions, we detected no change in the substitution rate or selection pressure of most protein‐coding genes due to gene function, plant habitat, or newly acquired IRs.  相似文献   

14.
Turtles have been prominent subjects of sexual size dimorphism (SSD) analyses due to their compact taxonomy, mating systems, and habitat diversity. In prior studies, marine turtles were grouped with fully aquatic non‐marine turtles (NMATs). This is interesting because it is well‐established that the marine environment imposes a distinct selective milieu on body form of vagile vertebrates, driven by convergent adaptations for energy‐efficient propulsion and drag reduction. We generated a comprehensive database of adult marine turtle body sizes (38,569 observations across all species), which we then used to evaluate the magnitude of SSD in marine turtles and how it compares to SSD in NMAT. We find that marine turtles are only minimally sexually size dimorphic, whereas NMAT typically exhibit female‐biased SSD. We argue that the reason for this difference is the sustained long‐distance swimming that characterizes marine turtle ecology, which entails significant energetic costs incurred by both sexes. Hence, the ability of either sex to allocate proportionately more to growth than the other is likely constrained, meaning that sexual differences in growth and resultant body size are not possible. Consequently, grouping marine turtles with NMAT dilutes the statistical signature of different kinds of selection on SSD and should be avoided in future studies.  相似文献   

15.
Traditional forms of higher learning include teaching in the classroom on college campuses and in‐person adult‐focused public outreach events for non‐students. Online college degree programs and public outreach platforms have been steadily emerging, and the COVID‐19 pandemic has, at least temporarily, forced all related ecology and evolutionary biology programs to move to online delivery. Podcasting is a form of online mass communication that is rapidly gaining popularity and has the flexibility to be incorporated into the pedagogical toolbox for the online classroom and remote public outreach programming. Podcasting is also becoming more popular in the ecology and evolutionary biology field. Here, we describe the great potential of podcasting to transform the learning experience, present a case study of success from the United States, provide a table of podcast recommended by ecologist responding to a listserv, and provide a road map for adoption and utilization of podcasting for the future.  相似文献   

16.
  1. With an increasing number of scientific articles published each year, there is a need to synthesize and obtain insights across ever‐growing volumes of literature. Here, we present pyResearchInsights, a novel open‐source automated content analysis package that can be used to analyze scientific abstracts within a natural language processing framework.
  2. The package collects abstracts from scientific repositories, identifies topics of research discussed in these abstracts, and presents interactive concept maps to visualize these research topics. To showcase the utilities of this package, we present two examples, specific to the field of ecology and conservation biology.
  3. First, we demonstrate the end‐to‐end functionality of the package by presenting topics of research discussed in 1,131 abstracts pertaining to birds of the Tropical Andes. Our results suggest that a large proportion of avian research in this biodiversity hotspot pertains to species distributions, climate change, and plant ecology.
  4. Second, we retrieved and analyzed 22,561 abstracts across eight journals in the field of conservation biology to identify twelve global topics of conservation research. Our analysis shows that conservation policy and landscape ecology are focal topics of research. We further examined how these conservation‐associated research topics varied across five biodiversity hotspots.
  5. Lastly, we compared the utilities of this package with existing tools that carry out automated content analysis, and we show that our open‐source package has wider functionality and provides end‐to‐end utilities that seldom exist across other tools.
  相似文献   

17.
All organisms have specialized systems to sense their environment. Most bat species use echolocation for navigation and foraging, but which and how ecological factors shaped echolocation call diversity remains unclear for the most diverse clades, including the adaptive radiation of neotropical leaf‐nosed bats (Phyllostomidae). This is because phyllostomids emit low‐intensity echolocation calls and many inhabit dense forests, leading to low representation in acoustic surveys. We present a field‐collected, echolocation call dataset spanning 35 species and all phyllostomid dietary guilds. We analyze these data under a phylogenetic framework to test the hypothesis that echolocation call design and parameters are specialized for the acoustic demands of different diets, and investigate the contributions of phylogeny and body size to echolocation call diversity. We further link call parameters to dietary ecology by contrasting minimum detectable prey size estimates (MDPSE) across species. We find phylogeny and body size explain a substantial proportion of echolocation call parameter diversity, but most species can be correctly assigned to taxonomic (61%) or functional (77%) dietary guilds based on call parameters. This suggests a degree of acoustic ecological specialization, albeit with interspecific similarities in call structure. Theoretical MDPSE are greatest for omnivores and smallest for insectivores. Omnivores significantly differ from other dietary guilds in MDPSE when phylogeny is not considered, but there are no differences among taxonomic dietary guilds within a phylogenetic context. Similarly, predators of non‐mobile/non‐evasive prey and predators of mobile/evasive prey differ in estimated MDPSE when phylogeny is not considered. Phyllostomid echolocation call structure may be primarily specialized for overcoming acoustic challenges of foraging in dense habitats, and then secondarily specialized for the detection of food items according to functional dietary guilds. Our results give insight into the possible ecological mechanisms shaping the diversity of sensory systems, and their reciprocal influence on resource use.  相似文献   

18.
Complexins are synaptic SNARE complex‐binding proteins that cooperate with synaptotagmins in activating Ca2+‐stimulated, synaptotagmin‐dependent synaptic vesicle exocytosis and in clamping spontaneous, synaptotagmin‐independent synaptic vesicle exocytosis. Here, we show that complexin sequences are conserved in some non‐metazoan unicellular organisms and in all metazoans, suggesting that complexins are a universal feature of metazoans that predate metazoan evolution. We show that complexin from Nematostella vectensis, a cnidarian sea anemone far separated from mammals in metazoan evolution, functionally replaces mouse complexins in activating Ca2+‐triggered exocytosis, but is unable to clamp spontaneous exocytosis. Thus, the activating function of complexins is likely conserved throughout metazoan evolution.  相似文献   

19.
Globally, herbicide resistance in weeds poses a threat to food security. Resistance evolves rapidly through the co‐option of a suite of physiological mechanisms that evolved to allow plants to survive environmental stress. Consequently, we hypothesize that stress tolerance and herbicide resistance are functionally linked. We address two questions: (i) does exposure to stress in a parental generation promote the evolution of resistance in the offspring? (ii) Is such evolution mediated through non‐genetic mechanisms? We exposed individuals of a grass weed to drought, and tested whether this resulted in herbicide resistance in the first generation. In terms of both survival and dry mass, we find enhanced resistance to herbicide in the offspring of parents that had been exposed to drought. Our results suggest that exposure of weeds to drought can confer herbicide resistance in subsequent generations, and that the mechanism conferring heritability of herbicide resistance is non‐genetic.  相似文献   

20.
Influenza A virus (IAV) and SARS‐CoV‐2 (COVID‐19) cause pandemic infections where cytokine storm syndrome and lung inflammation lead to high mortality. Given the high social and economic cost of respiratory viruses, there is an urgent need to understand how the airways defend against virus infection. Here we use mice lacking the WD and linker domains of ATG16L1 to demonstrate that ATG16L1‐dependent targeting of LC3 to single‐membrane, non‐autophagosome compartments – referred to as non‐canonical autophagy – protects mice from lethal IAV infection. Mice with systemic loss of non‐canonical autophagy are exquisitely sensitive to low‐pathogenicity IAV where extensive viral replication throughout the lungs, coupled with cytokine amplification mediated by plasmacytoid dendritic cells, leads to fulminant pneumonia, lung inflammation and high mortality. IAV was controlled within epithelial barriers where non‐canonical autophagy reduced IAV fusion with endosomes and activation of interferon signalling. Conditional mouse models and ex vivo analysis showed that protection against IAV infection of lung was independent of phagocytes and other leucocytes. This establishes non‐canonical autophagy in airway epithelial cells as a novel innate defence that restricts IAV infection and lethal inflammation at respiratory surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号