首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular neuritic plaques composed of amyloid‑β (Aβ) protein and intracellular neurofibrillary tangles containing phosphorylated tau protein are the two hallmark proteins of Alzheimer''s disease (AD), and the separate neurotoxicity of these proteins in AD has been extensively studied. However, interventions that target Aβ or tau individually have not yielded substantial breakthroughs. The interest in the interactions between Aβ and tau in AD is increasing, but related drug investigations are in their infancy. This review discusses how Aβ accelerates tau phosphorylation and the possible mechanisms and pathways by which tau mediates Aβ toxicity. This review also describes the possible synergistic effects between Aβ and tau on microglial cells and astrocytes. Studies suggest that the coexistence of Aβ plaques and phosphorylated tau is related to the mechanism by which Aβ facilitates the propagation of tau aggregation in neuritic plaques. The interactions between Aβ and tau mediate cognitive dysfunction in patients with AD. In summary, this review summarizes recent data on the interplay between Aβ and tau to promote a better understanding of the roles of these proteins in the pathological process of AD and provide new insights into interventions against AD.  相似文献   

2.
The deposition of amyloid β (Aβ) in blood vessels of the brain, known as cerebral amyloid angiopathy (CAA), is observed in most patients with Alzheimer’s disease (AD). Compared with the pathology of CAA in humans, the pathology in most mouse models of AD is not as evident, making it difficult to examine the contribution of CAA to the pathogenesis of AD. On the basis of biochemical analyses that showed blood levels of soluble amyloid precursor protein (APP) in rats and mice were markedly lower than those measured in human samples, we hypothesized that endothelial APP expression would be markedly lower in rodents and subsequently generated mice that specifically express human WT APP (APP770) in endothelial cells (ECs). The resulting EC-APP770+ mice exhibited increased levels of serum Aβ and soluble APP, indicating that endothelial APP makes a critical contribution to blood Aβ levels. Even though aged EC-APP770+ mice did not exhibit Aβ deposition in the cortical blood vessels, crossing these animals with APP knock-in mice (AppNL-F/NL-F) led to an expanded CAA pathology, as evidenced by increased amounts of amyloid accumulated in the cortical blood vessels. These results highlight an overlooked interplay between neuronal and endothelial APP in brain vascular Aβ deposition. We propose that these EC-APP770+:AppNL-F/NL-F mice may be useful to study the basic molecular mechanisms behind the possible breakdown of the blood–brain barrier upon administration of anti-Aβ antibodies.  相似文献   

3.
BackgroundA previous study demonstrated that nearly 40%–60% of brain Aβ flows out into the peripheral system for clearance. However, where and how circulating Aβ is cleared in the periphery remains unclear. The spleen acts as a blood filter and an immune organ. The aim of the present study was to investigate the role of the spleen in the clearance of Aβ in the periphery.MethodsWe investigated the physiological clearance of Aβ by the spleen and established a mouse model of AD and spleen excision by removing the spleens of APP/PS1 mice to investigate the effect of splenectomy on AD mice.ResultsWe found that Aβ levels in the splenic artery were higher than those in the splenic vein, suggesting that circulating Aβ is cleared when blood flows through the spleen. Next, we found that splenic monocytes/macrophages could take up Aβ directly in vivo and in vitro. Splenectomy aggravated behaviour deficits, brain Aβ burden and AD‐related pathologies in AD mice.ConclusionOur study reveals for the first time that the spleen exerts a physiological function of clearing circulating Aβ in the periphery. Our study also suggests that splenectomy, which is a routine treatment for splenic rupture and hypersplenism, might accelerate the development of AD.  相似文献   

4.
Soluble amyloid-β oligomers (AβOs) are proposed to instigate and mediate the pathology of Alzheimer’s disease, but the mechanisms involved are not clear. In this study, we reported that AβOs can undergo liquid–liquid phase separation (LLPS) to form liquid-like droplets in vitro. We determined that AβOs exhibited an α-helix conformation in a membrane-mimicking environment of SDS. Importantly, SDS is capable of reconfiguring the assembly of different AβOs to induce their LLPS. Moreover, we found that the droplet formation of AβOs was promoted by strong hydrated anions and weak hydrated cations, suggesting that hydrophobic interactions play a key role in mediating phase separation of AβOs. Finally, we observed that LLPS of AβOs can further promote Aβ to form amyloid fibrils, which can be modulated by (−)-epigallocatechin gallate. Our study highlights amyloid oligomers as an important entity involved in protein liquid-to-solid phase transition and reveals the regulatory role of LLPS underlying amyloid protein aggregation, which may be relevant to the pathological process of Alzheimer’s disease.  相似文献   

5.
Alzheimer''s disease (AD) is characterized by neuronal loss and accumulation of β-amyloid-protein (Aβ) in the brain parenchyma. Sleep impairment is associated with AD and affects about 25–40% of patients in the mild-to-moderate stages of the disease. Sleep deprivation leads to increased Aβ production; however, its mechanism remains largely unknown. We hypothesized that the increase in core body temperature induced by sleep deprivation may promote Aβ production. Here, we report temperature-dependent regulation of Aβ production. We found that an increase in temperature, from 37 °C to 39 °C, significantly increased Aβ production in amyloid precursor protein-overexpressing cells. We also found that high temperature (39 °C) significantly increased the expression levels of heat shock protein 90 (Hsp90) and the C-terminal fragment of presenilin 1 (PS1-CTF) and promoted γ-secretase complex formation. Interestingly, Hsp90 was associated with the components of the premature γ-secretase complex, anterior pharynx-defective-1 (APH-1), and nicastrin (NCT) but was not associated with PS1-CTF or presenilin enhancer-2. Hsp90 knockdown abolished the increased level of Aβ production and the increased formation of the γ-secretase complex at high temperature in culture. Furthermore, with in vivo experiments, we observed increases in the levels of Hsp90, PS1-CTF, NCT, and the γ-secretase complex in the cortex of mice housed at higher room temperature (30 °C) compared with those housed at standard room temperature (23 °C). Our results suggest that high temperature regulates Aβ production by modulating γ-secretase complex formation through the binding of Hsp90 to NCT/APH-1.  相似文献   

6.
Inflammation plays an important role in the pathogenesis of Alzheimer''s disease (AD). Some evidence suggests that misfolded protein aggregates found in AD brains may have originated from the gut, but the mechanism underlying this phenomenon is not fully understood. C/EBPβ/δ‐secretase signaling in the colon was investigated in a 3xTg AD mouse model in an age‐dependent manner. We applied chronic administration of 1% dextran sodium sulfate (DSS) to trigger gut leakage or colonic injection of Aβ or Tau fibrils or AD patient brain lysates in 3xTg mice and combined it with excision/cutting of the gut–brain connecting vagus nerve (vagotomy), in order to explore the role of the gut–brain axis in the development of AD‐like pathologies and to monitor C/EBPβ/δ‐secretase signaling under those conditions. We found that C/EBPβ/δ‐secretase signaling is temporally activated in the gut of AD patients and 3xTg mice, initiating formation of Aβ and Tau fibrils that spread to the brain. DSS treatment promotes gut leakage and facilitates AD‐like pathologies in both the gut and the brain of 3xTg mice in a C/EBPβ/δ‐secretase‐dependent manner. Vagotomy selectively blunts this signaling, attenuates Aβ and Tau pathologies, and restores learning and memory. Aβ or Tau fibrils or AD patient brain lysates injected into the colon propagate from the gut into the brain via the vagus nerve, triggering AD pathology and cognitive dysfunction. The results indicate that inflammation activates C/EBPβ/δ‐secretase and initiates AD‐associated pathologies in the gut, which are subsequently transmitted to the brain via the vagus nerve.  相似文献   

7.
Inducing gamma oscillations with non‐invasive light flicker has been reported to impact Alzheimer''s disease‐related pathology. However, it is unclear which signaling pathways are involved in reducing amyloid load. Here, we found that gamma frequency light flicker increased anchoring of amyloid precursor protein (APP) to the plasma membrane for non‐amyloidogenic processing, and then physically interacted with KCC2, a neuron‐specific K+‐Cl cotransporter, suggesting that it is essential to maintain surface GABAA receptor α1 levels and reduce β‐amyloid (Aβ) production. Stimulation with such light flicker limited KCC2 internalization and subsequent degradation via both tyrosine phosphorylation and ubiquitination, leading to an increase in surface‐KCC2 levels. Specifically, PKC‐dependent phosphorylation of APP on a serine residue was induced by gamma frequency light flicker, which was responsible for maintaining plasma membrane levels of full‐length APP, leading to its reduced trafficking to endosomes and inhibiting the β‐secretase cleavage pathway. The activated PKC from the gamma frequency light flicker subsequently phosphorylated serine of KCC2 and stabilized it onto the cell surface, which contributed to the upregulation of surface GABAA receptor α1 levels. Together, these data indicate that enhancement of APP trafficking to the plasma membrane via light flicker plays a critical modulatory role in reduction of Aβ load in Alzheimer''s disease.  相似文献   

8.
The aggregation of β‐amyloid (Aβ) has the neurotoxicity, which is thought to play critical role in the pathogenesis of Alzheimer''s disease (AD). Inhibiting Aβ deposition and neurotoxicity has been considered as an important strategy for AD treatment. 3,6''‐Disinapoyl sucrose (DISS), one of the oligosaccharide esters derived from traditional Chinese medicine Polygalae Radix, possesses antioxidative activity, neuroprotective effect and anti‐depressive activity. This study was to explore whether DISS could attenuate the pathological changes of Aβ1‐42 transgenic Caenorhabditis elegans (C. elegans). The results showed that DISS (5 and 50 μM) treatment significantly prolonged the life span, increased the number of egg‐laying, reduced paralysis rate, decreased the levels of lipofuscin and ROS and attenuated Aβ deposition in Aβ1‐42 transgenic Celegans. Gene analysis showed that DISS could up‐regulate the mRNA expression of sod3, gst4, daf16, bec1 and lgg1, while down‐regulate the mRNA expression of daf2 and daf15 in Aβ1‐42 transgenic Celegans. These results suggested that DISS has the protective effect against Aβ1‐42‐induced pathological damages and prolongs the life span of Celegans, which may be related to the reduction of Aβ deposition and neurotoxicity by regulating expression of genes related to antioxidation and autophagy.  相似文献   

9.
10.
The abnormal deposition of amyloid‐β (Aβ) peptides in the brain is the main neuropathological hallmark of Alzheimer's disease (AD). Amyloid deposits are formed by a heterogeneous mixture of Aβ peptides, among which the most studied are Aβ40 and Aβ42. Aβ40 is abundantly produced in the human brain, but the level of Aβ42 is remarkably increased in the brain of AD patients. Aside from Aβ40 and Aβ42, recent data have raised the possibility that Aβ43 peptides may be instrumental in AD pathogenesis. Besides its length, whether the Aβ aggregated form accounts for the neurotoxicity is also particularly controversial. Aβ fibrils are generally considered as key pathogenic substances in AD pathogenesis. Nevertheless, recent data implicated soluble Aβ oligomers as the main cause of synaptic dysfunction and memory loss in AD. To further address this uncertainty, we analyzed the neurotoxicity of different Aβ species and Aβ forms at the cellular level. The results showed that Aβ42 could form oligomers significantly faster than Aβ40 and Aβ43 and Aβ42 oligomers showed the greatest level of neurotoxicity. Regardless of the length of Aβ peptides, Aβ oligomers induced significantly higher cytotoxicity compared with the other two Aβ forms. Surprisingly, the neurotoxicity of fibrils in PC12 cells was only marginally but not significantly stronger than monomers, contrary to previous reports. Altogether, our findings demonstrate the high pathogenicity of Aβ42 among the three Aβ species and support the idea that Aβ42 oligomers contribute to the pathological events leading to neurodegeneration in AD. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
12.
Genetic studies have identified BIN1 as the second most important risk locus associated with late-onset Alzheimer''s disease (LOAD). However, it is unclear how mutation of this locus mechanistically promotes Alzheimer’s disease (AD) pathology. Here we show the consequences of two coding variants in BIN1 (rs754834233 and rs138047593), both in terms of intracellular beta-amyloid (iAbeta) accumulation and early endosome enlargement, two interrelated early cytopathological AD phenotypes, supporting their association with LOAD risk. We previously found that Bin1 deficiency potentiates iAbeta production by enabling BACE1 cleavage of the amyloid precursor protein in enlarged early endosomes due to decreased BACE1 recycling. Here, we discovered that the expression of the two LOAD mutant forms of Bin1 does not rescue the iAbeta accumulation and early endosome enlargement induced by Bin1 knockdown and recovered by wild-type Bin1. Moreover, the overexpression of Bin1 mutants, but not wild-type Bin1, increased the iAbeta42 fragment by reducing the recycling of BACE1, which accumulated in early endosomes, recapitulating the phenotype of Bin1 knockdown. We showed that the mutations in Bin1 reduced its interaction with BACE1. The endocytic recycling of transferrin was similarly affected, indicating that Bin1 is a general regulator of endocytic recycling. These data demonstrate that the LOAD-coding variants in Bin1 lead to a loss of function in endocytic recycling, which may be an early causal mechanism of LOAD.  相似文献   

13.
Amyloid‐β (Aβ) deposits, pathologic tau, and neurodegeneration are major pathological hallmarks of Alzheimer''s disease (AD). The relationship between neuronal loss and Aβ deposits is one of the fundamental questions in the pathogenesis of AD. However, this relationship is controversial. One main reason for the conflicting results may be the confounding effects of pathologic tau, which often coexists with Aβ deposits in the brains of AD patients. To clarify the relationship between neuronal loss and Aβ deposits, mouse models of AD, which develop abundant Aβ deposits in the aged brain without pathologic tau, were used to examine the co‐localization of NeuN‐positive neurons, NF‐H‐positive axons, MBP‐positive myelin sheaths, and Aβ deposits. Neuronal loss, as measured by decreased staining of the neuronal cell body, axon, and myelin sheath, as well as the IBA‐1‐positive microglia, was significantly increased in the core area of cerebral Aβ deposits, but not in adjacent areas. Furthermore, neuronal loss in the core area of cerebral Aβ deposits was correlated with Aβ deposit size. These results clearly indicate that neuronal loss is restricted to the core of Aβ deposits, and this restricted loss probably occurs because the Aβ deposit attracts microglia, which cluster in the core area where Aβ toxicity and neuroinflammation toxicity are restrained. These findings may contribute to our understanding of the relationship between neuronal loss and Aβ deposits in the absence of pathologic tau.  相似文献   

14.
Human amyloid deposits always contain the normal plasma protein serum amyloid P component (SAP), owing to its avid but reversible binding to all amyloid fibrils, including the amyloid β (Aβ) fibrils in the cerebral parenchyma plaques and cerebrovascular amyloid deposits of Alzheimer''s disease (AD) and cerebral amyloid angiopathy (CAA). SAP promotes amyloid fibril formation in vitro, contributes to persistence of amyloid in vivo and is also itself directly toxic to cerebral neurons. We therefore developed (R)-1-[6-[(R)-2-carboxy-pyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC), a drug that removes SAP from the blood, and thereby also from the cerebrospinal fluid (CSF), in patients with AD. Here we report that, after introduction of transgenic human SAP expression in the TASTPM double transgenic mouse model of AD, all the amyloid deposits contained human SAP. Depletion of circulating human SAP by CPHPC administration in these mice removed all detectable human SAP from both the intracerebral and cerebrovascular amyloid. The demonstration that removal of SAP from the blood and CSF also removes it from these amyloid deposits crucially validates the strategy of the forthcoming ‘Depletion of serum amyloid P component in Alzheimer''s disease (DESPIAD)’ clinical trial of CPHPC. The results also strongly support clinical testing of CPHPC in patients with CAA.  相似文献   

15.
Synapse degeneration correlates strongly with cognitive impairments in Alzheimer''s disease (AD) patients. Soluble Amyloid‐beta (Aβ) oligomers are thought as the major trigger of synaptic malfunctions. Our earlier studies have demonstrated that Aβ oligomers interfere with synaptic function through N‐methyl‐D‐aspartate receptors (NMDARs). Our recent in vitro study found the neuroprotective role of astrocytic GluN2A in the promotion of synapse survival and identified nerve growth factor (NGF) derived from astrocytes, as a likely mediator of astrocytic GluN2A buffering against Aβ synaptotoxicity. Our present in vivo study focused on exploring the precise mechanism of astrocytic GluN2A influencing Aβ synaptotoxicity through regulating NGF. We generated an adeno‐associated virus (AAV) expressing an astrocytic promoter (GfaABC1D) shRNA targeted to Grin2a (the gene encoding GluN2A) to perform astrocyte‐specific Grin2a knockdown in the hippocampal dentate gyrus, after 3 weeks of virus vector expression, Aβ were bilaterally injected into the intracerebral ventricle. Our results showed that astrocyte‐specific knockdown of Grin2a and Aβ application both significantly impaired spatial memory and cognition, which associated with the reduced synaptic proteins PSD95, synaptophysin and compensatory increased NGF. The reduced astrocytic GluN2A can counteract Aβ‐induced compensatory protective increase of NGF through regulating pNF‐κB, Furin and VAMP3, which modulating the synthesis, mature and secretion of NGF respectively. Our present data reveal, for the first time, a novel mechanism of astrocytic GluN2A in exerting protective effects on synapses at the early stage of Aβ exposure, which may contribute to establish new targets for AD prevention and early therapy.  相似文献   

16.
Washingtonia filifera seeds have revealed to possess antioxidant properties, butyrylcholinesterase and xanthine oxidase inhibition activities. The literature has indicated a relationship between Alzheimer’s disease (AD) and type-2 diabetes (T2D). Keeping this in mind, we have now evaluated the inhibitory properties of W. filifera seed extracts on α-amylase, α-glucosidase enzyme activity and the Islet Amyloid Polypeptide (IAPP) fibrils formation.Three extracts from seeds of W. filifera were evaluated for their enzyme inhibitory effect and IC50 values were calculated for all the extracts. The inhibition mode was investigated by Lineweaver-Burk plot analysis and the inhibition of IAPP aggregate formation was monitored.W. filifera methanol seed extract appears as the most potent inhibitor of α-amylase, α-glucosidase, and for the IAPP fibril formation.Current findings indicate new potential of this extract that could be used for the identification or development of novel potential agents for T2D and AD.  相似文献   

17.
Haass C 《The EMBO journal》2004,23(3):483-488
In 1959, Dave Brubeck and Paul Desmond revolutionized modern jazz music by composing their unforgettable Take Five in 5/4, one of the most defiant time signatures in all music. Of similar revolutionary importance for biomedical and basic biochemical research is the identification of the minimal set of genes required to obtain a deadly time bomb ticking in all of us: Alzheimer's disease. It now appears that one needs to Take Five genes to produce a deadly peptide by a proteolytic mechanism, which paradoxically is otherwise of pivotal importance for development and cell fate decisions.  相似文献   

18.
Amyloid fibrils of patients treated with regular hemodialysis essentially consists of beta2-microglobulin (beta2-m) and its truncated species DeltaN6beta2-m lacking six residues at the amino terminus. The truncated fragment has a more flexible three-dimensional structure and constitutes an excellent candidate for the analysis of a protein in the amyloidogenic conformation. The surface topology of synthetic fibrils obtained from intact beta2-m and truncated DeltaN6beta2-m was investigated by the limited proteolysis/mass spectrometry approach that appeared particularly suited to gain insights into the structure of beta2-m within the fibrillar polymer. The distribution of prefential proteolytic sites observed in both fibrils revealed that the central region of the protein, which had been easily cleaved in the full-length globular beta2-m, was fully protected in the fibrillar form. In addition, the amino- and carboxy-terminal regions of beta2-m became exposed to the solvent in the fibrils, whereas they were masked completely in the native protein. These data indicate that beta2-m molecules in the fibrils consist of an unaccessible core comprising residues 20-87 with the strands I and VIII being not constrained in the fibrillar polymer and exposed to the proteases. Moreover, proteolytic cleavages observed in vitro at Lys 6 and Lys 19 reproduce specific cleavages that have to occur in vivo to generate the truncated forms of beta2-m occurring in natural fibrils. On the basis of these data, a possible mechanism for fibril formation from native beta2-m is discussed and an explanation for the occurrence of truncated protein species in natural fibrils is given.  相似文献   

19.
Amyloid fibrils, crystal-like fibrillar aggregates of proteins associated with various amyloidoses, have the potential to propagate via a prion-like mechanism. Among known methodologies to dissolve preformed amyloid fibrils, acid treatment has been used with the expectation that the acids will degrade amyloid fibrils similar to acid inactivation of protein functions. Contrary to our expectation, treatment with strong acids, such as HCl or H2SO4, of β2-microglobulin (β2m) or insulin actually promoted amyloid fibril formation, proportionally to the concentration of acid used. A similar promotion was observed at pH 2.0 upon the addition of salts, such as NaCl or Na2SO4. Although trichloroacetic acid, another strong acid, promoted amyloid fibril formation of β2m, formic acid, a weak acid, did not, suggesting the dominant role of anions in promoting fibril formation of this protein. Comparison of the effects of acids and salts confirmed the critical role of anions, indicating that strong acids likely induce amyloid fibril formation via an anion-binding mechanism. The results suggest that although the addition of strong acids decreases pH, it is not useful for degrading amyloid fibrils, but rather induces or stabilizes amyloid fibrils via an anion-binding mechanism.  相似文献   

20.
Although soluble oligomeric and protofibrillar assemblies of Abeta-amyloid peptide cause synaptotoxicity and potentially contribute to Alzheimer's disease (AD), the role of mature Abeta-fibrils in the amyloid plaques remains controversial. A widely held view in the field suggests that the fibrillization reaction proceeds 'forward' in a near-irreversible manner from the monomeric Abeta peptide through toxic protofibrillar intermediates, which subsequently mature into biologically inert amyloid fibrils that are found in plaques. Here, we show that natural lipids destabilize and rapidly resolubilize mature Abeta amyloid fibers. Interestingly, the equilibrium is not reversed toward monomeric Abeta but rather toward soluble amyloid protofibrils. We characterized these 'backward' Abeta protofibrils generated from mature Abeta fibers and compared them with previously identified 'forward' Abeta protofibrils obtained from the aggregation of fresh Abeta monomers. We find that backward protofibrils are biochemically and biophysically very similar to forward protofibrils: they consist of a wide range of molecular masses, are toxic to primary neurons and cause memory impairment and tau phosphorylation in mouse. In addition, they diffuse rapidly through the brain into areas relevant to AD. Our findings imply that amyloid plaques are potentially major sources of soluble toxic Abeta-aggregates that could readily be activated by exposure to biological lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号