首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Although petroleum hydrocarbons discharged from the Deepwater Horizon (DWH) blowout were shown to have a pronounced impact on indigenous microbial communities in the Gulf of Mexico, effects on nearshore or coastal ecosystems remain understudied. This study investigated the successional patterns of functional and taxonomic diversity for over 1 year after the DWH oil was deposited on Pensacola Beach sands (FL, USA), using metagenomic and 16S rRNA gene amplicon techniques. Gamma- and Alphaproteobacteria were enriched in oiled sediments, in corroboration of previous studies. In contrast to previous studies, we observed an increase in the functional diversity of the community in response to oil contamination and a functional transition from generalist populations within 4 months after oil came ashore to specialists a year later, when oil was undetectable. At the latter time point, a typical beach community had reestablished that showed little to no evidence of oil hydrocarbon degradation potential, was enriched in archaeal taxa known to be sensitive to xenobiotics, but differed significantly from the community before the oil spill. Further, a clear succession pattern was observed, where early responders to oil contamination, likely degrading aliphatic hydrocarbons, were replaced after 3 months by populations capable of aromatic hydrocarbon decomposition. Collectively, our results advance the understanding of how natural benthic microbial communities respond to crude oil perturbation, supporting the specialization-disturbance hypothesis; that is, the expectation that disturbance favors generalists, while providing (microbial) indicator species and genes for the chemical evolution of oil hydrocarbons during degradation and weathering.  相似文献   

2.
Managing oil spill residues washing onto sandy beaches is a common worldwide environmental problem. In this study, we have analyzed the first-arrival oil spill residues collected from two Gulf of Mexico (GOM) beach systems following two recent oil spills: the 2014 Galveston Bay (GB) oil spill, and the 2010 Deepwater Horizon (DWH) oil spill. This is the first study to provide field observations and chemical characterization data for the 2014 GB oil spill. Here we compare the physical and chemical characteristics of GB oil spill samples with DWH oil spill samples and present their similarities and differences. Our field observations indicate that both oil spills had similar shoreline deposition patterns; however, their physical and chemical characteristics differed considerably. We highlight these differences, discuss their implications, and interpret GB data in light of lessons learned from previously published DWH oil spill studies. These analyses are further used to assess the long-term fate of GB oil spill residues and their potential environmental impacts.  相似文献   

3.
合理管理多年生人工建植草地有助于中国青藏高原三江源土壤微生物群落的正向演替 摘要:草地重建是缓解青藏高原三江源“黑土滩”的一种主要方法,同时了解如何管理建植草地也至关重要。而哪种人工管理模式更能有效地恢复“黑土滩”退化草地?为恢复“黑土滩”提供科学依据,我们研究了不同管理模式下人工草地植被特性、土壤理化性质和土壤微生物群落结构的变化,并探讨了不同管理模式对人工草地群落的影响。在本研究中,植被特性和土壤理化性质分别通过实地调查和实验室分析等方法得出,并且运用高通量测序技术测定了土壤微生物群落组成。研究结果表明,在不同管理模式下的人工建植草地植被特性、土壤理化性质和土壤微生物群落结构存在明显差异,而且植被植物多样性、地上生物量、土壤有机碳显著控制着放线菌门和担子菌门。当建植一次时Shannon-Wiener指数、地上生物量和土壤有机碳达到峰值,此时放线菌门和担子菌门所被注释的ASVs的相对丰度显著富集。此外,该管理模式下土壤的细菌多样性最高,真菌多样性最低,土壤逐渐成为“细菌型”土壤。由此得出,建植一次的人工草地植被特性和土壤环境更有利于整体群落的正向演替,是恢复“黑土滩”最合理的管理模式。  相似文献   

4.
Forced by tides and waves, large volumes of seawater are flushed through the beach daily. Organic material and nutrients in seawater are remineralized and cycled as they pass through the beach. Microorganisms are responsible for most of the biogeochemical cycling in the beach; however, few studies have characterized their diversity in intertidal sands, and little work has characterized the extent to which microbes are transported between different compartments of the beach. The present study uses next-generation massively parallel sequencing to characterize the microbial community present at 49 beaches along the coast of California. In addition, we characterize the transport of microorganisms within intertidal sands using laboratory column experiments. We identified extensive diversity in the beach sands. Nearly 1,000 unique taxa were identified in sands from 10 or more unique beaches, suggesting the existence of a group of “cosmopolitan” sand microorganisms. A biogeographical analysis identified a taxon-distance relationship among the beaches. In addition, sands with similar grain size, organic carbon content, exposed to a similar wave climate, and having the same degree of anthropogenic influence tended to have similar microbial communities. Column experiments identified microbes readily mobilized by seawater infiltrating through unsaturated intertidal sands. The ease with which microbes were mobilized suggests that intertidal sands may represent a reservoir of bacteria that seed the beach aquifer where they may partake in biogeochemical cycling.  相似文献   

5.
Symbiotic associations can be disrupted by disturbance or by changing environmental conditions. Endophytes are fungal and bacterial symbionts of plants that can affect performance. As in more widely known symbioses, acute or chronic stressor exposure might trigger disassociation of endophytes from host plants. We tested this hypothesis by examining the effects of oil exposure following the Deepwater Horizon (DWH) oil spill on endophyte diversity and abundance in Spartina alterniflora – the foundational plant in northern Gulf coast salt marshes affected by the spill. We compared bacterial and fungal endophytes isolated from plants in reference areas to isolates from plants collected in areas with residual oil that has persisted for more than three years after the DWH spill. DNA sequence-based estimates showed that oil exposure shifted endophyte diversity and community structure. Plants from oiled areas exhibited near total loss of leaf fungal endophytes. Root fungal endophytes exhibited a more modest decline and little change was observed in endophytic bacterial diversity or abundance, though a shift towards hydrocarbon metabolizers was found in plants from oiled sites. These results show that plant-endophyte symbioses can be disrupted by stressor exposure, and indicate that symbiont community disassembly in marsh plants is an enduring outcome of the DWH spill.  相似文献   

6.
The microbial ecology of oligotrophic deep ocean sediments is understudied relative to their shallow counterparts, and this lack of understanding hampers our ability to predict responses to current and future perturbations. The Gulf of Mexico has experienced two of the largest accidental marine oil spills, the 1979 Ixtoc-1 blowout and the 2010 Deepwater Horizon (DWH) discharge. Here, microbial communities were characterized for 29 sites across multiple years in > 700 samples. The composition of the seafloor microbiome was broadly consistent across the region and was well approximated by the overlying water depth and depth within the sediment column, while geographic distance played a limited role. Biogeographical distributions were employed to generate predictive models for over 4000 OTU that leverage easy-to-obtain geospatial variables which are linked to measured sedimentary oxygen profiles. Depth stratification and putative niche diversification are evidenced by the distribution of taxa that mediate the microbial nitrogen cycle. Furthermore, these results demonstrate that sediments impacted by the DWH spill had returned to near baseline conditions after 2 years. The distributions of benthic microorganisms in the Gulf can be constrained, and moreover, deviations from these predictions may pinpoint impacted sites and aid in future response efforts or long-term stability studies.  相似文献   

7.

Background and aims

Quantitative relationships between soil N availability indices and tree growth are lacking in the oil sands region of Alberta and this can hinder the development of guidelines for the reclamation of the disturbed landscape after oil sands extraction. The aim of this paper was to establish quantitative relationships between soil N availability indices and tree growth in the oil sands region of Alberta.

Methods

In situ N mineralization rates, in situ N availability measured in the field using Plant Root Simulators (PRS? probes), laboratory aerobic and anaerobic soil N mineralization rates, and soil C/N and N content were determined for both the forest floor and the 0–20?cm mineral soil in eight jack pine (Pinus banksiana Lamb.) stands in the oil sands region in northern Alberta. Tree growth rates were determined based on changes in tree ring width in the last 6?years and as mean annual aboveground biomass increment.

Results

Soil N availability indices across those forest stands varied and for each stand it was several times higher in the forest floor than in the mineral soil. The in situ and laboratory aerobic and anaerobic soil N mineralization rates, soil mineralized N, in situ N availability measured using PRS probes, soil C/N ratio and N content in both the forest floor and mineral soil, as well as stand age were linearly correlated with tree ring width of jack pine trees across the selected forest stands, consistent with patterns seen in other published studies and suggesting that N availability could be a limiting factor in the range of jack pine stands studied.

Conclusions

In situ and laboratory aerobic and anaerobic N mineralization rates and soil C/N ratio and N content can be used for predicting tree growth in jack pine forests in the oil sand region. Laboratory based measurements such as aerobic and anaerobic N mineralization rates and soil C/N ratio and N content would be preferable as they are more cost effective and equally effective for predicting jack pine growth.  相似文献   

8.
The civilizations in the Mediterranean Sea have deeply changed the local environment, especially with the extraction of subsurface oil and gas, their refinery and transportation. Major environmental impacts are affecting all the sides of the basin with actual and potential natural and socio-economic problems. Events like the recent BP??s oil disaster in the Gulf of Mexico would have a tremendous impact on a close basin like the Mediterranean Sea. The recently EU-funded project ULIXES (http://www.ulixes.unimi.it/) aims to unravel, categorize, catalogue, exploit and manage the microbial diversity available in the Mediterranean Sea for addressing bioremediation of polluted marine sites. The rationale of the project is based on the multiple diverse environmental niches of the Mediterranean Sea and the huge range of microorganisms inhabiting therein. Microbial consortia and their ecology, their components or products are used for designing novel pollutant- and site-tailored bioremediation approaches. ULIXES exploits microbial resource mining by the isolation of novel microorganisms as well as by novel advanced ??meta-omics?? technologies for solving pollution of three major high priority pollutant classes, petroleum hydrocarbons, chlorinated compounds and heavy metals. A network of twelve European and Southern Mediterranean partners is exploring the microbial diversity and ecology associated to a large set of polluted environmental matrices including seashore sands, lagoons, harbors and deep-sea sediments, oil tanker shipwreck sites, as well as coastal and deep sea natural sites where hydrocarbon seepages occur. The mined collections are exploited for developing novel bioremediation processes to be tested in ex situ and in situ field bioremediation trials.  相似文献   

9.
Microorganisms in oil sands fluid fine tailings (FFT) are critical to biogeochemical elemental cycling as well as to the degradation of residual hydrocarbon constituents and subsequent methane and CO2 production. Microbial activity enhances particulate matter sedimentation rates and the dewatering of FFT materials, allowing water to be recycled back into bitumen extraction. A bulk of this evidence comes from bioreactor studies and has implications for engineering and environmental management of the FFT ponds. Yet, it is largely uncertain whether such laboratory populations are representative of whole field scale microbial communities. By using population ecology tools, we compared whole microbial communities present in FFT bioreactors to reference populations existing in Syncrude's West In Pit (WIP) tailings pond. Bacteria were found to be persistent in a sulfidic zone in both the oxic and anoxic bioreactors at all occasions tested. In contrast to the WIP, archaea only became predominant in bioreactors after 300 days, at which point analysis of similarity (global R statistic p?<?0.5) revealed no significant dissimilarities between the populations present in either system. A whole community succession pattern from bacterial dominated prevalence to a new assemblage predominated by archaea was suggested. These results have implications for the stepwise development of microbial model systems for predictive management of field scale FFT basins.  相似文献   

10.
The growing field of community and ecosystem genetics indicates that plant genotype and genotypic variation are important for structuring communities and ecosystem processes. Little is known, however, regarding the effects of stand gene diversity on soil communities and processes under field conditions. Utilizing natural genetic variation occurring in Populus spp. hybrid zones, we tested the hypothesis that stand gene diversity structures soil microbial communities and influences soil nutrient pools. We found significant unimodal patterns relating gene diversity to soil microbial community composition, microbial exoenzyme activity of a carbon-acquiring enzyme, and availability of soil nitrogen. Multivariate analyses indicate that this pattern is due to the correlation between gene diversity, plant secondary chemistry, and the composition of the microbial community that impacts the availability of soil nitrogen. Together, these data from a natural system indicate that stand gene diversity may affect soil microbial communities and soil processes in ways similar to species diversity (i.e., unimodal patterns). Our results further demonstrate that the effects of plant genetic diversity on other organisms may be mediated by plant functional trait variation.  相似文献   

11.
Abstract Hydrocarbons increase abundance of hydrocarbon-degrading microorganisms, but also decrease microbial diversity. This could disrupt ecosystem dynamics by altering soil organic matter mineralization and resultant nutrient remineralization rates. Crude oil, which is known to contain toxins and reduce microbial diversity, was hypothesized to reduce gross metabolic activity of mixed microbial populations in wetland soils. Soil respiration and Eh were compared, for 6 months, among microcosms containing marsh soils that differed in soil organic matter (Panicum hemitomon Shult. or Sagittaria lancifolia L. dominated marshes), crude oil (Arabian crude, Louisiana crude, or no oil), and additives (a cleaner, a dispersant, fertilizer, or no additive). No treatment slowed activity; instead, Louisiana plus fertilizer and all Arabian treatments temporarily accelerated activity. Additional C respired from oiled microcosms exceeded C added as crude oil by 1.4 to 3.5 times. Thus, much additional C originated from soil organic matter rather than crude oil. Crude oils temporarily lowered soil Eh, which is consistent with accelerated metabolism and demand for electron acceptors. The lack of inhibition observed at the community level does not necessarily indicate an absence of toxicity. Instead, tolerant species with metabolic versatility probably maintained activity. Stimulation probably resulted from removal of micronutrient limitation, rather than removal of grazing pressure or macronutrient limitation. Regardless, accelerated soil organic matter mineralization surely accelerated nutrient remineralization. This might explain some reports of crude oil stimulating plant growth. These results are not inconsistent with theoretical and experimental conclusions regarding effects of biodiversity on ecosystem stability and productivity, nor are they inconsistent with conclusions that crude oils contain components that are toxic to microbes, vegetation, and fauna. However, these data do indicate that crude oils also contain components that temporarily stimulate metabolic activity of surviving microbes. Received: 27 April 1998; Accepted: 15 July 1998  相似文献   

12.
Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 μmol CH4 g−1 oil d−1, orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC–MS and FTICR–MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.  相似文献   

13.
The Athabasca oil sands deposit is the largest reservoir of crude bitumen in the world. Recently, the soaring demand for oil and the availability of modern bitumen extraction technology have heightened exploitation of this reservoir and the potential unintended consequences of pollution in the Athabasca River. The main objective of the present study was to evaluate the potential impacts of oil sands mining on neighboring aquatic microbial community structure. Microbial communities were sampled from sediments in the Athabasca River and its tributaries as well as in oil sands tailings ponds. Bacterial and archaeal 16S rRNA genes were amplified and sequenced using next-generation sequencing technology (454 and Ion Torrent). Sediments were also analyzed for a variety of chemical and physical characteristics. Microbial communities in the fine tailings of the tailings ponds were strikingly distinct from those in the Athabasca River and tributary sediments. Microbial communities in sediments taken close to tailings ponds were more similar to those in the fine tailings of the tailings ponds than to the ones from sediments further away. Additionally, bacterial diversity was significantly lower in tailings pond sediments. Several taxonomic groups of Bacteria and Archaea showed significant correlations with the concentrations of different contaminants, highlighting their potential as bioindicators. We also extensively validated Ion Torrent sequencing in the context of environmental studies by comparing Ion Torrent and 454 data sets and by analyzing control samples.  相似文献   

14.
The massive influx of crude oil into the Gulf of Mexico during the Deepwater Horizon (DWH) disaster triggered dramatic microbial community shifts in surface oil slick and deep plume waters. Previous work had shown several taxa, notably DWH Oceanospirillales, Cycloclasticus and Colwellia, were found to be enriched in these waters based on their dominance in conventional clone and pyrosequencing libraries and were thought to have had a significant role in the degradation of the oil. However, this type of community analysis data failed to provide direct evidence on the functional properties, such as hydrocarbon degradation of organisms. Using DNA-based stable-isotope probing with uniformly 13C-labelled hydrocarbons, we identified several aliphatic (Alcanivorax, Marinobacter)- and polycyclic aromatic hydrocarbon (Alteromonas, Cycloclasticus, Colwellia)-degrading bacteria. We also isolated several strains (Alcanivorax, Alteromonas, Cycloclasticus, Halomonas, Marinobacter and Pseudoalteromonas) with demonstrable hydrocarbon-degrading qualities from surface slick and plume water samples collected during the active phase of the spill. Some of these organisms accounted for the majority of sequence reads representing their respective taxa in a pyrosequencing data set constructed from the same and additional water column samples. Hitherto, Alcanivorax was not identified in any of the previous water column studies analysing the microbial response to the spill and we discuss its failure to respond to the oil. Collectively, our data provide unequivocal evidence on the hydrocarbon-degrading qualities for some of the dominant taxa enriched in surface and plume waters during the DWH oil spill, and a more complete understanding of their role in the fate of the oil.  相似文献   

15.
Peatlands in northern Alberta, Canada, are being rapidly impacted by oil sands activities, with potentially long‐term consequences for their recovery. In situ oil sands extraction requires exploration of oil resources on a dense network of drilling pads across the landscape. This study examined the recovery of wooded moderate‐rich (WMR) fens 10 years after abandonment of these sites with minimal restorative measures. Bryophyte and vascular plant diversity, site microtopography, and water chemistry were assessed on drilling pads and in adjacent areas of undisturbed reference habitat. WMR fens affected by drilling activities were divided a priori into two groups based on strongly divergent trends in their successional development. One group represented the majority of WMR fens observed on the land base; at these sites hummock‐forming mosses including minerotrophic Sphagnum species were infrequent and tree recruitment was almost absent. The other group was dominated by Sphagnum species, had Picea mariana and Larix laricina recruitment, and appeared to recover more quickly. Both groups had high abundance of wetland sedges, notably Carex aquatilis. Further, drilling pads belonging to the first group had a high water table, limited elevated microsites, and had surface flooding over a portion of the growing season, in contrast to Sphagnum‐dominated sites. Development of the aquatic, bryophyte‐poor wetland type is comparable to early stages of wetland succession and these systems will recover relatively slowly, likely from decades to more than a century. Restoring part of the vertical distribution of microhabitats before abandonment of these pads could stimulate the successional recovery of vegetation.  相似文献   

16.
The extensive wing pattern diversity observed among sympatric unpalatable mimetic butterflies is difficult to explain. Diversity is a paradox because selection by predators is expected to drive local species to use the same aposematic patterns. Habitat segregation among mimicry complexes has been suggested as a hypothesis to explain how diversity could be maintained. However, very few studies have tested this hypothesis. To test whether mimicry complexes are associated with particular habitats, I sampled a diverse assemblage of ithomiine butterflies from eastern Ecuador comprising nine discrete mimicry complexes. Butterflies were sampled in four habitats varying along a gradient of succession. A total of 43 species and 902 individuals were sampled. Ithomiine species richness and abundance were lowest in open habitats, and habitat preferences were documented for many species. Mimicry complexes exhibited significant habitat differences supporting the role of habitat segregation in maintaining mimetic diversity. However, there was obvious overlap among mimicry complexes, particularly involving the two numerically dominant patterns at the site. The pattern of segregation appears to be driven by common species, with relatively little evidence that the distribution of rarer species matches that of the more abundant species. Thus, habitat segregation is likely to play a role in the evolution of mimetic diversity as a result of segregated abundant model species, but the effect is probably weak and other factors are also important.  相似文献   

17.
The Deepwater Horizon (DWH) oil well blowout generated an enormous plume of dispersed hydrocarbons that substantially altered the Gulf of Mexico''s deep-sea microbial community. A significant enrichment of distinct microbial populations was observed, yet, little is known about the abundance and richness of specific microbial ecotypes involved in gas, oil and dispersant biodegradation in the wake of oil spills. Here, we document a previously unrecognized diversity of closely related taxa affiliating with Cycloclasticus, Colwellia and Oceanospirillaceae and describe their spatio-temporal distribution in the Gulf''s deepwater, in close proximity to the discharge site and at increasing distance from it, before, during and after the discharge. A highly sensitive, computational method (oligotyping) applied to a data set generated from 454-tag pyrosequencing of bacterial 16S ribosomal RNA gene V4–V6 regions, enabled the detection of population dynamics at the sub-operational taxonomic unit level (0.2% sequence similarity). The biogeochemical signature of the deep-sea samples was assessed via total cell counts, concentrations of short-chain alkanes (C1–C5), nutrients, (colored) dissolved organic and inorganic carbon, as well as methane oxidation rates. Statistical analysis elucidated environmental factors that shaped ecologically relevant dynamics of oligotypes, which likely represent distinct ecotypes. Major hydrocarbon degraders, adapted to the slow-diffusive natural hydrocarbon seepage in the Gulf of Mexico, appeared unable to cope with the conditions encountered during the DWH spill or were outcompeted. In contrast, diverse, rare taxa increased rapidly in abundance, underscoring the importance of specialized sub-populations and potential ecotypes during massive deep-sea oil discharges and perhaps other large-scale perturbations.  相似文献   

18.
A significant portion of oil from the recent Deepwater Horizon (DH) oil spill in the Gulf of Mexico was transported to the shoreline, where it may have severe ecological and economic consequences. The objectives of this study were (i) to identify and characterize predominant oil-degrading taxa that may be used as model hydrocarbon degraders or as microbial indicators of contamination and (ii) to characterize the in situ response of indigenous bacterial communities to oil contamination in beach ecosystems. This study was conducted at municipal Pensacola Beach, FL, where chemical analysis revealed weathered oil petroleum hydrocarbon (C8 to C40) concentrations ranging from 3.1 to 4,500 mg kg−1 in beach sands. A total of 24 bacterial strains from 14 genera were isolated from oiled beach sands and confirmed as oil-degrading microorganisms. Isolated bacterial strains were primarily Gammaproteobacteria, including representatives of genera with known oil degraders (Alcanivorax, Marinobacter, Pseudomonas, and Acinetobacter). Sequence libraries generated from oiled sands revealed phylotypes that showed high sequence identity (up to 99%) to rRNA gene sequences from the oil-degrading bacterial isolates. The abundance of bacterial SSU rRNA gene sequences was ∼10-fold higher in oiled (0.44 × 107 to 10.2 × 107 copies g−1) versus clean (0.024 × 107 to 1.4 × 107 copies g−1) sand. Community analysis revealed a distinct response to oil contamination, and SSU rRNA gene abundance derived from the genus Alcanivorax showed the largest increase in relative abundance in contaminated samples. We conclude that oil contamination from the DH spill had a profound impact on the abundance and community composition of indigenous bacteria in Gulf beach sands, and our evidence points to members of the Gammaproteobacteria (Alcanivorax, Marinobacter) and Alphaproteobacteria (Rhodobacteraceae) as key players in oil degradation there.  相似文献   

19.
黄土高原石油污染土壤微生物群落结构及其代谢特征   总被引:2,自引:0,他引:2  
甄丽莎  谷洁  胡婷  吕睿  贾凤安  刘晨  李燕 《生态学报》2015,35(17):5703-5710
针对污染胁迫下土壤微生物群落变化和代谢变异等问题,基于平板稀释法和Biolog微平板分析方法,研究了陕北黄土高原石油污染土壤微生物群落结构、代谢特征及其功能多样性。结果表明,不同类群的土壤微生物对石油污染胁迫的响应不同,污染土壤细菌和真菌数量高出清洁土壤1个数量级,而污染土壤的放线菌数量极显著减少(P0.01);污染土壤和清洁土壤微生物对糖类和多聚物类碳源较易利用,污染土壤微生物总体上代谢碳源的种类和活性均低于清洁土壤。微生物群落主成分分析(PCA)表明,石油污染土壤和清洁土壤的微生物群落存在显著差异(P0.01),起分异作用的碳源主要为糖类,其次是羧酸类和氨基酸类;随着土壤石油含量增加,典型变量值变异(离散)增大,土壤微生物群落结构稳定性降低。微生物群落多样性分析表明,Shannon丰富度指数(H)、McIntosh均一度指数(U)和Simpson优势度指数(1/D)均达到极显著差异(P0.01),污染土壤微生物群落H和U低于清洁土壤,但是一定浓度的石油污染可以刺激土壤微生物群落中优势种群的生长,1/D增高。研究结果为陕北黄土高原石油污染区土壤微生物修复提供理论基础。  相似文献   

20.
Summary A laboratory screening protocol was designed and conducted to test the efficacy of eight commercial bacterial cultures and two non-bacterial products in enhancing the biodegradation of weathered Alaska North Slope crude oil in closed flasks. Three lines of evidence were used to support the decision to progress to field testing in Prince William Sound: rapid onset and high rate of oxygen uptake, substantial growth of oil degraders, and significant degradation of the aliphatic and aromatic hydrocarbon fractions of the weathered Alaska North Slope crude oil. A product had to enhance biodegradation greater than that achieved with excess mineral nutrients. Experiments were conducted in closed respirometer flasks and shake flasks, using seawater from Prince William Sound and weathered crude oil from a contaminated beach. Analysis of the data resulted in selection of two of the ten products for field testing. Both were bacterial products. Findings suggested that the indigenous Alaskan microorganisms were primarily responsible for the biodegradation in the closed flasks and respirometer vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号