首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The availability of tissue culture systems that allow the growth of nerve cells, Schwann cells, and fibroblasts separately or in various combinations now makes possible investigation of the role of cell interactions in the development of the peripheral nervous system. Using these systems it was earlier found that basal lamina is formed on the Schwann cell surface in cultures of sensory ganglion cells and Schwann cells without fibroblasts. It is here reported that the presence of nerve cells is required for the generation of basal lamina on the Schwann cell plasmalemma. Utilizing nerve cell-Schwann cell preparations devoid of fibroblasts, this was found in the following ways. (1) When nerve cells are removed from 3- to 5-week-old cultures, the basal lamina disappears from Schwann cells. (2) If nerve cells are added back to such Schwann cell populations, Schwann cell basal lamina reappears. (3) Removal of nerve cells from older (3–4 months) cultures does not lead to basal lamina loss; areas presumed not to have been coated with lamina before neurite degeneration remain so, suggesting that the lamina persists but is not reformed. (4) If basal lamina is removed with trypsin, it is reformed in neuron plus Schwann cell cultures but not in Schwann cell populations alone. Thus, the formation but not the persistence of Schwann cell basal lamina requires the presence of nerve cells.  相似文献   

2.
Schwann cells are critically important in recovery from injuries to the peripheral nervous system, and their absence from the central nervous system (CNS) may be a critical limiting factor in the CNS regeneration capacity. Various types of stem cells have been investigated for their potential to be induced to develop a Schwann cell phenotype, with mesenchymal stem cells (MSCs) being the most promising among them. The methods for inducing MSCs differentiation into Schwann cell-like cells are presented in detail in this review. The evidence related to successful differentiation of MSCs to Schwann cell-like cells is particularly discussed herein, which includes the changes in morphology, phenotype, function, and proteome. The possible explanations for the differentiation of MSCs to Schwann cell-like cells are also presented. Finally, we suggest future research aims which will need to be fulfilled to elucidate the biology of Schwann cell differentiation and MSC transdifferentiation, to enable clinical application of therapeutic differentiated MSC transplantation into nerve injury sites.  相似文献   

3.
During development of the peripheral nervous system (PNS), Schwann cells migrate along neuronal axons before initiating myelination of the axons. While intercellular signals controlling migration, between Schwann cells and peripheral neurons, are established, how their intracellular transduction of the signals into Schwann cells still remains to be clarified. Here, we show that cytohesin-1, a guanine-nucleotide exchange factor (GEF), and the effector Arf6 are required for migration of primary Schwann cells. Knockdown of cytohesin-1 or Arf6 in Schwann cells, as well as treatment with the chemical cytohesin inhibitor SecinH3 or knockout of cytohesin-1, inhibits peripheral neuronal conditioned medium-mediated migration. Similar effects are also observed following stimulation with each of growth factors contained in a conditioned medium, suggesting that cytohesin-1 plays a role in transducing soluble ligand signals from neurons. Reintroduction of small interfering (si)RNA-resistant cytohesin-1 into Schwann cells reverses blunted migration in the siRNA-transfected Schwann cells, illustrating the importance of cytohesin-1 in migration. On the other hand, introduction of cytohesin-1 that harbors the Tyr-382 mutation, which is an amino acid that is important for its activation, failed to reverse the reduction in primary Schwann cell migration. These results suggest that signaling through cytohesin-1 is required for Schwann cell migration, revealing a novel mechanism for Schwann cell migration.  相似文献   

4.
The first successful dye-fills of Schwann cells around the split giant axon of Loligo show them to be spindle-shaped cells ca. 600 microns long and 20 microns wide lying parallel to the axonal axis. There are some 50,000 Schwann cells per cm2 of axonal membrane. Only a small part (ca. 6% of each Schwann cell membrane) is in contact with the periaxonal space, the remainder is overlain by adjacent Schwann cells, or applied to the basal lamina. The mean membrane potential of the Schwann cells in artificial seawater (ASW) varies from around -40 mV in fresh split-axon preparations to around -60 to -70 mV after 1-2 h; this hyperpolarization is not seen in preparations dissected and maintained in Ca2(+)-free ASW. Electrical- and dye-coupling (abolished by prior octanol treatment) is present between Schwann cells, but is weaker in cells with lower (less negative) membrane potentials. The implications for potassium homeostasis around the axon are briefly discussed.  相似文献   

5.
《The Journal of cell biology》1990,111(6):2663-2671
In healthy adult peripheral nerve, Schwann cells are believed to be generally quiescent. Similarly, cultures of isolated rat sciatic nerve Schwann cells hardly proliferate in serum-supplemented medium. The possibility that Schwann cells negatively regulate their own proliferation was supported by the demonstration that conditioned media from Schwann cell cultures inhibited the proliferation of mitogen- stimulated test cultures. The inhibition could be complete, was dose dependent, and was exhibited when the test Schwann cells were under the influence of different types of mitogens such as cholera toxin, laminin, and living neurons. The inhibition of proliferation was completely reversible and a rapid doubling of cell number resulted when treatment with conditioned medium was withdrawn from mitogen-stimulated Schwann cells. Conditioned medium from cholera toxin-stimulated and immortalized Schwann cell cultures contained less antiproliferative activity than that found in medium from quiescent Schwann cell cultures. However, media conditioned by two actively proliferating rat Schwannoma cell lines were rich sources of antiproliferative activity for Schwann cells. Unlike the mitogen-stimulated Schwann cells, whose proliferation could be inhibited completely, the immortalized and transformed Schwann cell types were nearly unresponsive to the antiproliferative activity. The antiproliferative activity in Schwann and Schwannoma cell conditioned media was submitted to gel filtration and SDS-PAGE. The activity exists in at least two distinct forms: (a) a high molecular weight complex with an apparent molecular mass greater than 1,000 kD, and (b) a lower molecular weight form having a molecular mass of 55 kD. The active 55-kD form could be derived from the high molecular weight form by gel filtration performed under dissociating conditions. The 55-kD form was further purified to electrophoretic homogeneity. These results suggest that Schwann cells produce an autocrine factor, which we designate as a "neural antiproliferative protein," which completely inhibits the in vitro proliferation of Schwann cells but not that of immortalized Schwann cells or Schwannoma lines.  相似文献   

6.
Fibronectin promotes rat Schwann cell growth and motility   总被引:12,自引:6,他引:6       下载免费PDF全文
Techniques are now available for culturing well characterized and purified Schwann cells. Therefore, we investigated the role of fibronectin in the adhesion, growth, and migration of cultured rat Schwann cells. Double-immunolabeling shows that, in primary cultures of rat sciatic nerve, Schwann cells (90%) rarely express fibronectin, whereas fibroblasts (10%) exhibit a granular cytoplasmic and fibrillar surface-associated fibronectin. Secondary cultures of purified Schwann cells do not express fibronectin. Exogenous fibronectin has a small effect on promoting the adhesion of Schwann cells to the substrate and does not significantly affect cell morphology, but it produced a surface fibrillar network on fibronectin on the secondary Schwann cells. Tritiated thymidine autoradiography revealed that addition of fibronectin to the medium, even at low concentrations, markedly stimulates Schwann cell proliferation, in both primary and secondary cultures. In addition, when cell migration was measured in a Boyden chamber assay, fibronectin was found to moderately, but clearly, stimulate directed migration or chemotaxis.  相似文献   

7.
K(+) (K) channels play a role in the proliferation of many cell types in normal cells and certain disease states. Several laboratories have studied K currents in cultured Schwann cells from models of the human diseases, neurofibromatosis type 1 (NF1) and neurofibromatosis type 2 (NF2). These diseases are characterized by the growth of Schwann cell tumors. In all cell culture NF models the K current properties differ in tumor-derived and normal Schwann cells. Depending on the model however, the type of K channel abnormality differs. K channels appear to play a role in the proliferation of Schwann cell cultures of these disease models, because a link has been established between K current blockade and the inhibition of Schwann cell proliferation in NF1 and NF2. Differences in the proliferation response of normal Schwann cells to K channel blockers suggest that in vitro regulation of proliferation in neoplastic and normal Schwann cells is complex.  相似文献   

8.
Neurofibromatosis Type 1 tumors are highly vascularized and contain Schwann cells with hyperactivated Ras. In vitro , the NF1-derived neurofibromin deficient Schwann cells have an angiogenic profile, which favors angiogenesis and sustains the growth of the NF1-derived tumors. This study examined the relationship of the activation state of Ras as it related to the expression of angiogenic and antiangiogenic factors in both cultured NF1-derived Schwann cells and normal human Schwann cells. Western blot analysis of normal human Schwann cells revealed low expression of angiogenic vascular endothelial growth factor (VEGF) as well as low expression of the antiangiogenic pigment epithelium derived factor (PEDF). Relative to normal human Schwann cells, NF1-derived Schwann cells have increased RAS activity and a three-fold increase in VEGF expression. Surprisingly, PEDF was also expressed in the NF1-derived Schwann cells at approximately the same level as VEGF expression. Using a retroviral construct, we introduced the GAP-related domain of neurofibromin into the NF1-derived Schwann cells to reduce the level of activated Ras. Relative to the untreated NF1-derived Schwann cells the Schwann cells expressing the GAP-related domain expressed about one-half the VEGF but twice the PEDF. We conclude that decreasing the Ras activity in NF1-drived Schwann cells will not only decrease proliferation, but also slow tumor angiogenesis due to the decreased expression of angiogenic and increased expression of antiangiogenic factors.  相似文献   

9.
Angiogenic and invasive properties of neurofibroma Schwann cells   总被引:10,自引:0,他引:10       下载免费PDF全文
Neurofibromas are benign tumors from patients with von Recklinghausen Neurofibromatosis (NF1) that are comprised primarily of Schwann cells. These Schwann cells are found both in association with axons and in the extracellular matrix that is prevalent in neurofibromas, and in which fibroblasts are also abundant. An unresolved question has been whether cells in neurofibromas are normal cells or are intrinsically abnormal. We have tested the hypothesis that cells in neurofibromas are abnormal and have shown that neurofibroma Schwann cells, unlike normal Schwann cells, promote angiogenesis in the chick chorioallantoic membrane model system, and invade basement membranes in this system. In contrast, neurofibroma fibroblasts neither promote angiogenic reactions nor invade basement membranes. When injected into nude mice, neurofibroma Schwann cells do not form progressive tumors. These results suggest that NF1 Schwann cells differ from normal Schwann cells, that they are preneoplastic, and that genetic and/or epigenetic changes in Schwann cells may be required for development of peripheral nerve tumors in NF1.  相似文献   

10.
Schwann cells as regulators of nerve development.   总被引:15,自引:0,他引:15  
Myelinating and non-myelinating Schwann cells of peripheral nerves are derived from the neural crest via an intermediate cell type, the Schwann cell precursor [K.R. Jessen, A. Brennan, L. Morgan, R. Mirsky, A. Kent, Y. Hashimoto, J. Gavrilovic. The Schwann cell precursor and its fate: a study of cell death and differentiation during gliogenesis in rat embryonic nerves, Neuron 12 (1994) 509-527]. The survival and maturation of Schwann cell precursors is controlled by a neuronally derived signal, beta neuregulin. Other factors, in particular endothelins, regulate the timing of precursor maturation and Schwann cell generation. In turn, signals derived from Schwann cell precursors or Schwann cells regulate neuronal numbers during development, and axonal calibre, distribution of ion channels and neurofilament phosphorylation in myelinated axons. Unlike Schwann cell precursors, Schwann cells in older nerves survive in the absence of axons, indicating that a significant change in survival regulation occurs. This is due primarily to the presence of autocrine growth factor loops in Schwann cells, present from embryo day 18 onwards, that are not functional in Schwann cell precursors. The most important components of the autocrine loop are insulin-like growth factors, platelet derived growth factor-BB and neurotrophin 3, which together with laminin support long-term Schwann cell survival. The paracrine dependence of precursors on axons for survival provides a mechanism for matching precursor cell number to axons in embryonic nerves, while the ability of Schwann cells to survive in the absence of axons is an absolute prerequisite for nerve repair following injury. In addition to providing survival factors to neurones and themselves, and signals that determine axonal architecture, Schwann cells also control the formation of peripheral nerve sheaths. This involves Schwann cell-derived Desert Hedgehog, which directs the transition of mesenchymal cells to form the epithelium-like structure of the perineurium. Schwann cells thus signal not only to themselves but also to the other cellular components within the nerve to act as major regulators of nerve development.  相似文献   

11.
This protocol describes methods of isolating skin-derived precursors (SKPs) from rodent and human skin, and for generating and enriching Schwann cells from rodent SKPs. SKPs are isolated as a population of non-adherent cells from the dermis that proliferate and self-renew as floating spheres in response to fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF). Their differentiation into Schwann cells and subsequent enrichment of these differentiated progeny involves culturing SKPs as adherent cells in the absence of FGF2 and EGF, but in the presence of neuregulins, and then mechanically isolating the Schwann cell colonies using cloning cylinders. Methods for expanding and characterizing these Schwann cells are provided. Generation of primary SKPs takes approximately 2 weeks, while differentiation of Schwann cells requires an additional 4-6 weeks.  相似文献   

12.
Proliferation of Schwann cells is one of the first events that occurs after contact with a growing axon. To further define the distribution and properties of this axonal mitogen, we have (a) cocultured cerebellar granule cells, which lack glial ensheathment in vivo with Schwann cells; and (b) exposed Schwann cell cultures to isolated granule cell membranes. Schwann cells cocultured with granule cells had a 30-fold increase in the labeling index over Schwann cells cultured alone, suggesting that the mitogen is located on the granule cell surface. Inhibition of granule cell proteoglycan synthesis caused a decrease in the granule cells' ability to stimulate Schwann cell proliferation. Membranes isolated from cerebellar granule cells when added to Schwann cell cultures caused a 45-fold stimulation in [3H]thymidine incorporation. The granule cell mitogenic signal was heat and trypsin sensitive and did not require lysosomal processing by Schwann cells to elicit its proliferative effect. The ability of granule cells and their isolated membranes to stimulate Schwann cell proliferation suggests that the mitogenic signal for Schwann cells is a ubiquitous factor present on all axons regardless of their ultimate state of glial ensheathment.  相似文献   

13.
14.
Neurofibromatosis Type 1 tumors are highly vascularized and contain Schwann cells with hyperactivated Ras. In vitro, the NF1‐derived neurofibromin deficient Schwann cells have an angiogenic profile, which favors angiogenesis and sustains the growth of the NF1‐derived tumors. This study examined the relationship of the activation state of Ras as it related to the expression of angiogenic and antiangiogenic factors in both cultured NF1‐derived Schwann cells and normal human Schwann cells. Western blot analysis of normal human Schwann cells revealed low expression of angiogenic vascular endothelial growth factor (VEGF) as well as low expression of the antiangiogenic pigment epithelium derived factor (PEDF). Relative to normal human Schwann cells, NF1‐derived Schwann cells have increased RAS activity and a three‐fold increase in VEGF expression. Surprisingly, PEDF was also expressed in the NF1‐derived Schwann cells at approximately the same level as VEGF expression. Using a retroviral construct, we introduced the GAP‐related domain of neurofibromin into the NF1‐derived Schwann cells to reduce the level of activated Ras. Relative to the untreated NF1‐derived Schwann cells the Schwann cells expressing the GAP‐related domain expressed about one‐half the VEGF but twice the PEDF. We conclude that decreasing the Ras activity in NF1‐drived Schwann cells will not only decrease proliferation, but also slow tumor angiogenesis due to the decreased expression of angiogenic and increased expression of antiangiogenic factors.  相似文献   

15.
The major complication of reversal (or type 1) reactions in leprosy is peripheral nerve damage. The pathogenesis of nerve damage remains largely unresolved. In situ analyses suggest an important role for type 1 T cells. Mycobacterium leprae is known to have a remarkable tropism for Schwann cells that surround peripheral axons. Reversal reactions in leprosy are often accompanied by severe and irreversible nerve destruction and are associated with increased cellular immune reactivity against M. leprae. Thus, a likely immunopathogenic mechanism of Schwann cell and nerve damage in leprosy is that infected Schwann cells process and present antigens of M. Leprae to antigen-specific, inflammatory type 1 T cells and that these T cells subsequently damage and lyse infected Schwann cells. Previous studies using rodent CD8+ T cells and Schwann cells have revealed evidence for the existence of such a mechanism. Recently, a similar role has been suggested for human CD4+ T cells. These cells may be more important in causing leprosy nerve damage in vivo, given the predilection of M. leprae for Schwann cells and the dominant role of CD4+ serine esterase+ Th1 cells in leprosy lesions. Antagonism of molecular interactions between M. leprae, Schwann cells and inflammatory T cells may therefore provide a rational strategy to prevent Schwann cell and nerve damage in leprosy.  相似文献   

16.
Peripheral nerve damage is a major complication of reversal (or type-1) reactions in leprosy. The pathogenesis of nerve damage remains largely unresolved, but detailed in situ analyses suggest that type-1 T cells play an important role. Mycobacterium leprae is known to have a remarkable tropism for Schwann cells of the peripheral nerve. Reversal reactions in leprosy are often accompanied by severe and irreversible nerve destruction and are associated with increased cellular immune reactivity against M. leprae. Thus, a likely immunopathogenic mechanism of Schwann cell and nerve damage in leprosy is that infected Schwann cells process and present Ags of M. leprae to Ag-specific, inflammatory type-1 T cells and that these T cells subsequently damage and lyse infected Schwann cells. Thus far it has been difficult to study this directly because of the inability to grow large numbers of human Schwann cells. We now have established long-term human Schwann cell cultures from sural nerves and show that human Schwann cells express MHC class I and II, ICAM-1, and CD80 surface molecules involved in Ag presentation. Human Schwann cells process and present M. leprae, as well as recombinant proteins and peptides to MHC class II-restricted CD4(+) T cells, and are efficiently killed by these activated T cells. These findings elucidate a novel mechanism that is likely involved in the immunopathogenesis of nerve damage in leprosy.  相似文献   

17.
The NMJ (neuromuscular junction) serves as the ultimate output of the motor neurons. The NMJ is composed of a presynaptic nerve terminal, a postsynaptic muscle and perisynaptic glial cells. Emerging evidence has also demonstrated an existence of perisynaptic fibroblast-like cells at the NMJ. In this review, we discuss the importance of Schwann cells, the glial component of the NMJ, in the formation and function of the NMJ. During development, Schwann cells are closely associated with presynaptic nerve terminals and are required for the maintenance of the developing NMJ. After the establishment of the NMJ, Schwann cells actively modulate synaptic activity. Schwann cells also play critical roles in regeneration of the NMJ after nerve injury. Thus, Schwann cells are indispensable for formation and function of the NMJ. Further examination of the interplay among Schwann cells, the nerve and the muscle will provide insights into a better understanding of mechanisms underlying neuromuscular synapse formation and function.  相似文献   

18.
We have used PC12 cells to examine the effects of factors secreted by Schwann cells that promote cell survival and neurite outgrowth, and hence are likely candidates for promoting neuronal regeneration. RT-PCR showed that primary Schwann cells produced a range of neurotrophins, excluding NT3, but this profile was different from either of two cell lines SCTM41 or PVGSCSV40T, or forskolin-expanded Schwann cells. The effects of Schwann cell conditioned media on neurite outgrowth was tested against a range of factors, and showed clear neuritogenic effects. Of the factors tested, only NGF had a significant response on neuritogenesis. Western blotting for neurofilaments showed that primary Schwann cells induced a strong response close to that of NGF. The Trk tyrosine kinase inhibitor K252a did not block the neuritogenic effects of primary Schwann cells. In contrast, K252a blocked both NGF and the SCTM41 cell effects. Schwann cell conditioned media also enhanced PC12 cell survival. Again, in contrast with NGF or SCTM41 cells, the primary Schwann cell effect was Trk tyrosine kinase independent. The Schwann cell conditioned medium contains a protein factor (greater than 12 kDa and broken down by trypsin treatment) with remarkable thermal stability (unaffected at 95 degrees C for 15 min) and the ability to bind heparin. Our results provide clear evidence that Schwann cells produce factors other than those already known to stimulate a neural phenotype in PC12 cells, and which thus have potential regeneration enhancing effects.  相似文献   

19.
Kang  Hyuno  Tian  Le  Thompson  Wesley 《Brain Cell Biology》2003,32(5-8):975-985
Schwann cells and axons labeled by transgene-encoded, fluorescent proteins can be repeatedly imaged in living mice to observe the reinnervation of neuromuscular junctions. Axons typically return to denervated junctions by growing along Schwann cells contained in the old nerve sheaths or “Schwann cell tubes”. These axons then commonly “escape” the synaptic sites by growing along the Schwann cell processes extended during the period of denervation. These “escaped fibers” grow to innervate adjacent synaptic sites along Schwann cells bridging these sites. Within the synaptic site, Schwann cells, originally positioned above the synaptic site continue to cover the acetylcholine receptors (AChRs) immediately following denervation, but gradually vacate portions of this site. When regenerating axons return, they first deploy along the Schwann cells and ignore sites of AChRs vacated by Schwann cells. In many cases these vacated sites are never reinnervated and are ultimately lost. Following partial denervation, Schwann cells grow in an apparently tropic fashion from denervated to nearby innervated synaptic sites and serve as the substrates for nerve sprouting. These experiments show that Schwann cells provide pathways that stimulate axon growth and insure the rapid reinnervation of denervated or partially denervated muscles.  相似文献   

20.
Neurofibromatosis type 1 (NF1) is a common genetic disorder characterized by multiple neurofibromas, peripheral nerve tumors containing mainly Schwann cells and fibroblasts. The NF1 gene encodes neurofibromin, a tumor suppressor postulated to function in part as a Ras GTPase-activating protein. The roles of different cell types and of elevated Ras-GTP in neurofibroma formation are unclear. To determine which neurofibroma cell type has altered Ras-GTP regulation, we developed an immunocytochemical assay for active, GTP-bound Ras. In NIH 3T3 cells, the assay detected overexpressed, constitutively activated K-, N-, and Ha-Ras and insulin-induced endogenous Ras-GTP. In dissociated neurofibroma cells from NF1 patients, Ras-GTP was elevated in Schwann cells but not fibroblasts. Twelve to 62% of tumor Schwann cells showed elevated Ras-GTP, unexpectedly revealing neurofibroma Schwann cell heterogeneity. Increased basal Ras-GTP did not correlate with increased cell proliferation. Normal human Schwann cells, however, did not demonstrate elevated basal Ras activity. Furthermore, compared with cells from wild type littermates, Ras-GTP was elevated in all mouse Nf1(-/-) Schwann cells but never in Nf1(-/-) mouse fibroblasts. Our results indicate that Ras activity is detectably increased in only some neurofibroma Schwann cells and suggest that neurofibromin is not an essential regulator of Ras activity in fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号