首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In the characean algaNitella, depolymerization of microtubules potentiates the inhibitory effects of cytochalasins on cytoplasmic streaming. Microtubule depolymerization lowers the cytochalasin B and D concentrations required to inhibit streaming, accelerates inhibition and delays streaming recovery. Because microtubule depolymerization does not significantly alter3H-cytochalasin B uptake and release, elevated intracellular cytochalasin concentrations are not the basis for potentiation. Instead, microtubule depolymerization causes actin to become more sensitive to cytochalasin. This increased sensitivity of actin is unlikely to be due to direct stabilization of actin by microtubules, however, because very few microtubules colocalize with the subcortical actin bundles that generate streaming. Furthermore, microtubule reassembly, but not recovery of former transverse alignment, is sufficient for restoring the normal cellular responses to cytochalasin D. We hypothesize that either tubulin or microtubule-associated proteins, released when microtubules depolymerize, interact with the actin cytoskeleton and sensitize it to cytochalasin.Abbreviations APW artificial pond water - Cac cytoplasraic free calcium concentration - DMSO dimethyl sulfoxide - MT microtubule-minus - MT+ microtubule-plus.  相似文献   

2.
E Nishida  E Muneyuki  S Maekawa  Y Ohta  H Sakai 《Biochemistry》1985,24(23):6624-6630
An Mr 19 000 protein (destrin) that has the ability to rapidly depolymerize F-actin in a stoichiometric manner was purified from porcine kidney by sequential chromatography on DNase I-agarose, hydroxyapatite, and Sephadex G-75. Its actin-depolymerizing activity is reversibly controlled by changes in KCl concentration but is insensitive to Ca2+ concentration. The rate of depolymerization of F-actin by destrin is much faster than that of spontaneous depolymerization induced by dilution and is not markedly decreased by the addition of end-blocking reagents such as cytochalasin B. These results suggest that destrin depolymerizes F-actin by interacting directly with F-actin protomers. Binding of muscle tropomyosin to F-actin slows down the rate of destrin-induced depolymerization of F-actin by about 30-fold. The data suggest that the destrin-induced depolymerization occurs from the ends of F-actin when F-actin is complexed with tropomyosin, but it takes place from the entire length of F-actin in the absence of tropomyosin.  相似文献   

3.
Chemoattractants stimulate actin polymerization in lamellipodia of polymorphonuclear leukocytes. We find that removal of chemoattractant results in rapid (within 10 s at 37 degrees C) and selective depolymerization of the F-actin located in lamellipodia. Addition of 10 microM cytochalasin B, in the presence of chemoattractant, also resulted in rapid and selective depolymerization of lamellar F-actin. The elevated F-actin level induced by chemoattractant rapidly returns to the level present in unstimulated cells after (a) a 10-fold decrease in chemoattractant concentration; (b) the addition of 10 microM cytochalasin B; or (c) cooling to 4 degrees C. The F-actin levels of unstimulated cells are only slightly affected by these treatments. Based on the similar effects of cytochalasin addition and chemoattractant dilution, it is likely that both treatments result in actin depolymerization from the pointed ends of filaments. Based on our results we propose that chemoattractant-stimulated polymorphonuclear leukocytes contain two distinct populations of actin filaments. The actin filaments within the lamellipodia are highly labile and in the continued presence of chemoattractant these filaments are rapidly turning over, continually polymerizing at their plus (barbed) ends, and depolymerizing at their minus ends. In contrast, the cortical F-actin filaments of both stimulated and unstimulated cells are differentially stable.  相似文献   

4.
Cytochalasin B (17-3 microM) virtually abolished 3-O-methyl-D-[U-14C]glucose uptake and D-[5-3H]glucose utilization in tumoral insulin-producing cells of the RINm5F line. This coincided with a marked decrease in D-[U-14C]glucose oxidation and suppression of the stimulant action of D-glucose upon insulin release. Cytochalasin B, however, augmented basal insulin release by the tumoral cells. The RINm5F cells appeared much more sensitive than normal islet cells to cytochalasin B, as judged by the relative magnitude of inhibition in either hexose uptake or utilization. In both cell types, the inhibitory action of cytochalasin B upon glucose metabolism seemed to be competitive, being more marked at low than high glucose concentration. These results are interpreted in support of the view that a decreased efficiency of hexose transport across the plasma membrane represents an essential deficiency of the RINm5F cells.  相似文献   

5.
Cytochalasin B stimulated polymerization and decreased the concentration of G-actin remaining in equilibrium with F-actin filaments. Polymerization in the presence of cytochalasin B gave rise to a smaller increase of viscosity but to the same increase in light scattering, compared to polymerization in the absence of cytochalasin B. Cytochalasin B reduced the viscosity of F-actin and caused the appearance of ATP hydrolysis by F-actin. The cytochalasin B-induced ATPase activity was inhibited by concentrations of KCl higher than 50 mM. The cytochalasin B-induced ATPase activity was enhanced by ethyleneglycol bis(alpha-aminoethyl ether)-N,N'-tetraacetic acid and reduced by MgCl2 at concentrations higher than 0.75 mM. The findings suggest that the stability of actin filaments is reduced by cytochalasin B.  相似文献   

6.
ACTH inhibits DNA synthesis in normal rat and mouse tumor Y-1 adrenocortical cells within the same concentration range that it stimulates steroidogenesis. These processes can be independently regulated as demonstrated by the divergent actions of cytochalasin B on these cells. In the normal cells, cytochalasin B does not increase steroidogenesis in serum-free or serum-containing media, and it decreases the stimulation produced by ACTH. In the absence of serum, the Y-1 cells respond in a similar way. However, in serum-containing media, cytochalasin B increases steroidogenesis in these cells and does not inhibit the response to ACTH. In both cell types, cytochalasin B inhibits [3H]thymidine incorporation into DNA by a mechanism different than that of ACTH. In the Y-1 cells, this inhibition is caused by a decreased uptake of [3H]thymidine into the cell, which probably reflects a decreased transport across the cell membrane. In the normal cells, cytochalasin B, like ACTH, does not affect [3H]thymidine transport, but it decreases DNA synthesis much more rapidly than does ACTH. This inhibition may be the result of the disruption of microfilaments by cytochalasinB, because our evidence indicates that it is not caused by a decrease in glucose uptake by the cells.  相似文献   

7.
The purpose of these studies was to define the properties of the systems that transport hexoses into adipocytes. Glucose appears to enter adipocytes on a single transport system whose maximum velocity is stimulated by insulin and which is competitively inhibited by cytochalasin B, 5-thioglucose, fructose, mannose and 3-O-methylglucose. In contrast, fructose enters adipocytes by at least two separate mechanisms, one an insulin-sensitive transporter (probably the glucose transporter) and the other a mechanism that is insensitive to insulin. The fructose concentration required for half-maximal rates of transport is at least an order of magnitude higher than that for glucose and the maximum velocity of fructose transport is more than double that for glucose.  相似文献   

8.
I. Löw  P. Dancker 《BBA》1976,430(2):366-374
Cytochalasin B stimulated polymerization and decreased the concentration of G-actin remaining in equilibrium with F-actin filaments. Polymerization in the presence of cytochalasin B gave rise to a smaller increase of viscosity but to the same increase in light scattering, compared to polymerization in the absence of cytochalasin B. Cytochalasin B reduced the viscosity of F-actin and caused the appearance of ATP hydrolysis by F-actin. The cytochalasin B-induced ATPase activity was inhibited by concentrations of KCl higher than 50 mM. The cytochalasin B-induced ATPase activity was enhanced by ethyleneglycol bis(α-aminoethyl ether)-N,N′-tetraacetic acid and reduced by MgCl2 at concentrations higher than 0.75 mM. The findings suggest that the stability of actin filaments is reduced by cytochalasin B.  相似文献   

9.
Cytochalasin D strongly inhibits the faster components in the reactions of actin filament depolymerization and elongation in the presence of 10 mM Tris-Cl-, pH 7.8, 0.2 mM dithiothreitol, 1 mM MgCl2, 0.1 mM CaCl2, and 0.2 mM ATP or ADP. Assuming an exclusive and total capping of the barbed end by the drug, the kinetic parameters derived at saturation by cytochalasin D refer to the pointed end and are 10-15-fold lower than at the barbed end. In ATP, the critical concentration increases with cytochalasin D up to 12-fold its value when both ends are free; as a result of the lowering of the free energy of nucleation by cytochalasin D, short oligomers of F-actin exist just above and below the critical concentration. Cytochalasin D interacts strongly with the barbed ends independently of the ADP-G-actin concentration (K = 0.5 nM-1). In contrast, the affinity of cytochalasin D decreases cooperatively with increasing ATP-G-actin concentration. These data are equally well accounted for by two different models: either cytochalasin D binds very poorly to ATP-capped filament ends whose proportion increases with actin concentration, or cytochalasin D binds equally well to ATP-ends and ADP-ends and also binds to actin dimers in ATP but not in ADP. A linear actin concentration dependence of the rate of growth was found at the pointed end, consistent with the virtual absence of an ATP cap at that end.  相似文献   

10.
Because of similarities in the physical and molecular properties of the nucleoside and sugar transporters of human erythrocytes and the photoaffinity labeling of the sugar transporter by 8-azidoadenosine (Jarvis et al. (1986) J. Biol. Chem. 261, 11077-11085), we have directly compared the equilibrium exchange of uridine and 3-O-methylglucose in these cells as measured by rapid kinetic techniques under identical experimental conditions. Both the Michaelis-Menten constant and maximum velocity were about 100-fold higher for 3-O-methylglucose exchange than for uridine exchange so that the first order rate constants for both transporters were about the same. When calculated on the basis of the number of nucleoside and sugar carriers per red cell estimated by equilibrium binding of nitrobenzylthioinosine and cytochalasin B, respectively, the turnover numbers for the sugar and nucleoside carriers with 3-O-methylglucose and uridine, respectively, as substrates were quite similar. Various sugars up to concentrations of 108 mM had no effect on the exchange of 500 microM uridine or adenosine, and uridine up to a concentration of 50 mM had no effect on the exchange of 10 mM 3-O-methylglucose. Adenosine, on the other hand, inhibited 3-O-methylglucose exchange in a concentration dependent manner, though not very effectively (IC50 approximately equal to 3 mM). Both uridine and 3-O-methylglucose exchange were inhibited in a concentration dependent manner by cytochalasin B, phloretin and dipyridamole, but cytochalasin B and phloretin were 100-times more effective in inhibiting 3-O-methylglucose than uridine exchange, whereas the opposite was the case for the inhibition by dipyridamole.  相似文献   

11.
Many cell phenomena involve major morphological changes, particularly in mitosis and the process of cell migration. For cells or neuronal growth cones to migrate, they must extend the leading edge of the plasma membrane as a lamellipodium or filopodium. During extension of filopodia, membrane must move across the surface creating shear and flow. Intracellular biochemical processes driving extension must work against the membrane mechanical properties, but the forces required to extend growth cones have not been measured. In this paper, laser optical tweezers and a nanometer-level analysis system were used to measure the neuronal growth cone membrane mechanical properties through the extension of filopodia-like tethers with IgG-coated beads. Although the probability of a bead attaching to the membrane was constant irrespective of treatment; the probability of forming a tether with a constant force increased dramatically with cytochalasin B or D and dimethylsulfoxide (DMSO). These are treatments that alter the organization of the actin cytoskeleton. The force required to hold a tether at zero velocity (F0) was greater than forces generated by single molecular motors, kinesin and myosin; and F0 decreased with cytochalasin B or D and DMSO in correlation with the changes in the probability of tether formation. The force of the tether on the bead increased linearly with the velocity of tether elongation. From the dependency of tether force on velocity of tether formation, we calculated a parameter related to membrane viscosity, which decreased with cytochalasin B or D, ATP depletion, nocodazole, and DMSO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Cytochalasin inhibits the rate of elongation of actin filament fragments   总被引:41,自引:22,他引:19  
Submicromolar concentrations of cytochalasin inhibit the rate of assembly of highly purified dictyostelium discoideum actin, using a cytochalasin concentration range in which the final extent of assembly is minimally affected. Cytochalasin D is a more effective inhibitor than cytochalasin B, which is in keeping with the effects that have been reported on cell motility and with binding to a class of high-affinity binding sites from human erythrocyte membranes (Lin and Lin. 1978. J. Biol. CHem. 253:1415; Lin and Lin. 1979. Proc. Natl. Acad. Sci. U.S.A. 76:2345); 5x10(-7) M cytochalasin B lowers it to 70 percent of the control value, whereas 10(-7) M cytochalasin B lowers the rate to 25 percent. Fragments of F-actin were used to increase the rate of assembly fivefold by providing more filament ends on to which monomers could add. Under these conditions, cytochalasin has an even more dramatic effect on the assembly rate; the concentrations of cytochalasin B and cytochalasin D required for half-maximal inhibition are 2x10(-7) M and 10(-8) M, respectively. The assembly rate is most sensitive to cytochalasin when actin assembly is carried out in the absence of ATP (with 3 mM ADP present to stabilize the actin). In this case, the concentrations of cytochalasin B and cytochalasin D required for half-maximal inhibition are 4x10(-8) M and 1x10(-9) M, respectively. A scatchard plot has been obtained using [(3)H]cytochalasin B binding to F-actin in the absence of ATP. The K(d) from this plot (approximately 4x10(-8) M) agrees well with the concentration of cytochalasin B required for half-maximal inhibition of the rate of assembly under these conditions. The number of cytochalasin binding sites is roughly one per F-actin filament, suggesting that cytochalasin has a specific action on actin filament ends.  相似文献   

13.
To determine whether actin microfilament (MF) organization is correlated with differential elongation, primary roots of Zea mays cv Merit maintained vertically or reoriented horizontally for 15 to 120 min were stained with rhodamine phalloidin and examined with a confocal microscope. Root curvature was measured with a computer-controlled video digitizer. In vertical roots bundles of MFs in the elongation and maturation zone were oriented parallel to the longitudinal axis of cells. MFs in the vascular parenchyma cells were more abundant than in the cortex and epidermis. Epidermal and proendodermal cells in the meristematic region contained transverse cortical MFs. The organization of MFs of graviresponding roots was similar to that of vertical roots. Application of cytochalasin B or cytochalasin D resulted in extensive disruption of MFs in the cortex and epidermis, but only partially affected MFs in the stele. Despite the cytochalasin B-induced depolymerization of MFs, gravicurvature exceeded that of controls. In contrast, the auxin transport inhibitor N-1 naphthylphthalamic acid suppressed root curvature but had no observable effect on the integrity of the MFs. The data indicate that MFs may not be involved in the graviresponse of maize roots.  相似文献   

14.
The concentration dependences of the activities of cytochalasin B, D, E, and H in capping and cleaving actin filaments have been assayed using fluorescence photobleaching recovery. Filament capping was detected by the increase in mobile G-actin. Cytochalasin D (CD) showed the strongest filament capping activity, with an apparent dissociation constant from filament ends of 50 nM. The order of capping activity was CD greater than CH greater than CE much greater than CB. Filament cleavage was detected by the increase in the diffusion coefficients of actin filaments. By this criterion the order of filament cleavage activity was CD, CE greater than CH much greater than CB. Cytochalasin B shows some activity in cleavage of filaments over a concentration range (0-100 microM) at which it shows no appreciable capping activity. This activity, together with results from other groups, is interpreted to mean that CB binds to protomers within the filament, but not to the barbed end. The reversal of activities for CH and CE, combined with the activity profile of CB, constitute the strongest evidence to date that there is more than one cytochalasin binding site on the actin molecule.  相似文献   

15.
Over a concentration range of o-5-10 mug/cm-3, cytochalasin B caused a biphasic change in the electrophoretic mobility of disaggregated neural retina cells. An initial rise in anodal mobility at low concentrations of the drug was transformed into a reduction in the mobility below that of the control at a concentration of 10 mug/cm-3. The effect of cytochalasin B was found to be reversible by washing treated cells in cytochalasin B-free media. This was investigated at a concentration of cytochalasin at which the greatest difference existed between the mobilities of the control and experimental cell suspensions. Reaggregation of cell dispersions failed to show any significant difference in the rate of aggregation between cytochalasin B-treated cells and the control. Scanning electron microscopy of cells fixed while in suspension also showed little significant change in the surface morphology upon application of cytochalasin B. In high concentrations of the drug cells appeared somewhat smoother in outline, but no correlation was found between changes in surface morphology and the variations in cell electrophoretic mobility. It is concluded that the observed changes in electrophoretic mobility may be attributed to a binding of cytochalasin B to the cell membrane. This lends support to the hypothesis that the primary site of action of cytochalasin B may be the plasma membrane.  相似文献   

16.
The cytoskeleton and cell volume regulation   总被引:8,自引:0,他引:8  
Although the precise mechanisms have yet to be elucidated, early events in osmotic signal transduction may involve the clustering of cell surface receptors, initiating downstream signaling events such as assembly of focal adhesion complexes, and activation of, e.g. Rho family GTPases, phospholipases, lipid kinases, and tyrosine- and serine/threonine protein kinases. In the present paper, we briefly review recent evidence regarding the possible relation between such signaling events, the F-actin cytoskeleton, and volume-regulatory membrane transporters, focusing primarily on our own work in Ehrlich ascites tumer cells (EATC). In EATC, cell shrinkage is associated with an increase, and cell swelling with a decrease in F-actin content, respectively. The role of the F-actin cytoskeleton in cell volume regulation in various cell types has largely been investigated using cytochalasins to disrupt F-actin and highly varying effects have been reported. Findings in EATC show that the effect of cytochalasin treatment cannot always be assumed to be F-actin depolymerization, and that, moreover, there is no well-defined correlation between effects of cytochalasins on F-actin content and their effects on F-actin organization and cell morphology. At a concentration verified to depolymerize F-actin, cytochalasin B (CB), but not cytochalasin D (CD), inhibited the regulatory volume decrease (RVD) and regulatory volume increase (RVI) processes in EATC. This suggests that the effect of CB is related to an effect other than F-actin depolymerization, possibly its F-actin severing activity.  相似文献   

17.
We have previously demonstrated that lipopolysaccharide (LPS) induces production of macrophage inflammatory protein-2 (MIP-2), a C-X-C chemokine for neutrophil recruitment and activation, in primary cultured rat lung alveolar epithelial cells. We have also demonstrated that LPS depolymerizes microfilaments in rat alveolar epithelial cells. To determine whether the polymerization status of microfilaments affects LPS-induced MIP-2 production, we treated rat alveolar epithelial cells with cytochalasin D (CytoD), a microfilament-disrupting agent, before and during LPS stimulation. A lower concentration (0.1 microM) of CytoD inhibited LPS-induced MIP-2 production without affecting microfilament polymerization. In contrast, LPS-induced MIP-2 production was enhanced by a higher concentration (10 microM) of CytoD, which disrupted the filamentous structure of actin. Jasplakinolide (1 nM to 1 microM), a polymerizing agent for microfilaments, decreased LPS-induced MIP-2 secretion. Jasplakinolide (1 microM) also blocked LPS-induced depolymerization of microfilaments. These results suggest that, in alveolar epithelial cells, LPS-induced MIP-2 production is at least partially regulated by microfilament depolymerization.  相似文献   

18.
Three antipeptide antibodies were prepared by immunizing rabbits with synthesized short peptides corresponding to residues 215-226, 466-479, and 478-492 predicted from the cDNA of both the human hepatoma HepG2 and rat brain glucose transporters. All three antibodies were found to precipitate quantitatively the [3H]cytochalasin B photoaffinity-labeled human erythrocyte glucose transporter. Each antibody also recognized the rat brain protein of Mr 45,000 on immunoblots, and a similar molecular weight protein was labeled with [3H]cytochalasin B in a D-glucose-inhibitable manner, suggesting that this protein is glucose transporter. However, only up to 30% of the labeled rat brain glucose transporters were precipitated, even by repeated rounds of immunoprecipitation. In addition, these antibodies were observed to be unable to immunoprecipitate significantly the [3H]cytochalasin B-labeled rat adipocyte glucose transporter. Further, one-dimensional peptide maps of [3H]cytochalasin B-labeled human erythrocyte and adipocyte glucose transporters generated distinct tryptic fragments. Although Mr 45,000 protein in rat adipocyte low density microsomes was detected on immunoblots and its amount was decreased in insulin-treated cells, the rat adipocyte low density microsomes were much less reactive on immunoblots than the rat brain membranes in spite of the fact that the rat adipocyte low density microsomes contained more [3H]cytochalasin B-labeled glucose transporters. In addition, the ratio of cytochalasin B-labeled glucose transporter per unit HepG2-type glucose transporter mRNA was more than 10-fold higher in rat adipocyte than in rat brain. These results indicate that virtually all the human erythrocyte glucose transporters are of the HepG2 type, whereas this type of glucose transporter constitutes only approximately 30 and 3% of all the glucose transporters present in rat brain and rat adipocyte, respectively; and the rest, of similar molecular weight, is expressed by a different gene.  相似文献   

19.
The secretion of progesterone and 20 alpha-hydroxypregn-4-en-3-one (20 alpha-dihydroprogesterone) by granulosa cells from 30-day-old rats pretreated with PMSG (4 i.u.; i.p.) was significantly increased in a time- and concentration-dependent manner by FSH or cytochalasin B. Whereas FSH markedly stimulated progestagen secretion during 3 h of incubation, a significant enhancement of the steroidogenic response was not noted until 12 h of exposure to the inhibitor in vitro. Although cytochalasin B also enhanced the submaximal stimulation of progestagen production by FSH (15 ng/ml), it was ineffective in the presence of maximal stimulatory concentration of the gonadotrophin (150 ng/nl). With increasing concentrations of cytochalasin B, the ability of FSH to further stimulate progestagen secretion was progressively reduced. Granulosa cells cultured in medium alone contained a prominent cytoplasmic array of microfilaments which was markedly reduced by FSH or cytochalasin B. FSH and, to a greater extent, cytochalasin B elicited concentration-dependent reductions in the mean area occupied by the cells on the culture surface, the contour index (a size-independent representation of cell profile irregularity) and cell perimeter, indicating that the cells underwent less spreading and were more spherical and regular in outline in the presence of either agent. The FSH-induced reductions in the three shape-related parameters were augmented by cytochalasin B although the influence of the FSH on the mean area and perimeter was progressively reduced in the presence of higher concentrations of cytochalasin B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Low concentrations (greater than or equal to 10(-7) M) of cytochalasin B reversibly inhibit the temperature-dependent gelation of actin by an actin-binding protein. The cytochalasin B concentrations which maximally inhibit actin gel formation are 10-fold lower than the concentrations which maximally impair phagocytosis by intact macrophages. Cytochalasin B also prevents the polymerization of monomeric actin in sucrose extracts of macrophages in the absence but not the presence of 0.1 M CKl. 10(-6) M cytochalasin B dissolves macrophage extract gels and gels comprised of purified actin and actin-binding protein by dissociating actin-binding protein from actin filaments. This concentration of cytochalasin B, however, does not depolymerize the actin filatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号