首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
As part of a systematic study of the folding of protein structural families we compare the effect of mutation in two closely related fibronectin type III (fnIII) domains, the tenth fnIII domain of human fibronectin (FNfn10) and the third fnIII domain of human tenascin (TNfn3). This comparison of the two related proteins allows us to distinguish any anomalous response to mutation. Although they have very similar structures, the effect of mutation is very different. TNfn3 behaves like a "typical" protein, with changes in free energy correlated to the number of contacts lost on mutation. The loss of free energy upon mutation is significantly lower for FNfn10, particularly mutations of residues in the A, B and G strands. Remarkably, some of the residues involved are completely buried and closely packed in the core. In FNfn10 the regions of the protein that can accommodate mutation have previously been shown to be mobile. We propose that there is a "plasticity" in the peripheral regions of FNfn10 that allows it to rearrange to minimise the effect of mutations. This study emphasises the difficulties that might arise when making generalisations from a single member of a protein family.  相似文献   

2.
What are the selective pressures on protein sequences during evolution? Amino acid residues may be highly conserved for functional or structural (stability) reasons. Theoretical studies have proposed that residues involved in the folding nucleus may also be highly conserved. To test this we are using an experimental "fold approach" to the study of protein folding. This compares the folding and stability of a number of proteins that share the same fold, but have no common amino acid sequence or biological activity. The fold selected for this study is the immunoglobulin-like beta-sandwich fold, which is a fold that has no specifically conserved function. Four model proteins are used from two distinct superfamilies that share the immunoglobulin-like fold, the fibronectin type III and immunoglobulin superfamilies. Here, the fold approach and protein engineering are used to question the role of a highly conserved tyrosine in the "tyrosine corner" motif that is found ubiquitously and exclusively in Greek key proteins. In the four model beta-sandwich proteins characterised here, the tyrosine is the only residue that is absolutely conserved at equivalent sites. By mutating this position to phenylalanine, we show that the tyrosine hydroxyl is not required to nucleate folding in the immunoglobulin superfamily, whereas it is involved to some extent in early structure formation in the fibronectin type III superfamily. The tyrosine corner is important for stability, mutation to phenylalanine costs between 1.5 and 3 kcal mol(-1). We propose that the high level of conservation of the tyrosine is related to the structural restraints of the loop connecting the beta-sheets, representing an evolutionary "cul-de-sac".  相似文献   

3.
A number of β-sandwich immunoglobulin-like domains have been shown to fold using a set of structurally equivalent residues that form a folding nucleus deep within the core of the protein. Formation of this nucleus is sufficient to establish the complex Greek key topology of the native state. These nucleating residues are highly conserved within the immunoglobulin superfamily, but are less well conserved in the fibronectin type III (fnIII) superfamily, where the requirement is simply to have four interacting hydrophobic residues. However, there are rare examples where this nucleation pattern is absent. In this study, we have investigated the folding of a novel member of the fnIII superfamily whose nucleus appears to lack one of the four buried hydrophobic residues. We show that the folding mechanism is unaltered, but the folding nucleus has moved within the hydrophobic core.  相似文献   

4.
The folding of WW domains is rate limited by formation of a beta-hairpin comprising residues from strands 1 and 2. Residues in the turn of this hairpin have reported Phi-values for folding close to 1 and have been proposed to nucleate folding. High Phi-values do not necessarily imply that the energetics of formation are a driving force for initiating folding. We demonstrate by NMR studies and molecular dynamics simulations that the first turn of the hYAP, FBP28, and PIN1 WW domains is structurally dynamic and solvent exposed in the native and folding transition states. It is, therefore, unlikely that the formation of the beta-turn per se provides the energetic driving force for hairpin folding. It is more likely that the turn acts as an easily formed hinge that facilitates the formation of the hairpin; it is a nucleus as defined by the nucleation-condensation mechanism whereby a diffuse nucleus is stabilized by associated interactions.  相似文献   

5.
A crucial event in protein folding is the formation of a folding nucleus, which is a structured part of the protein chain in the transition state. We demonstrate a correlation between locations of residues involved in the folding nuclei and locations of predicted amyloidogenic regions. The average Phi-values are significantly greater inside amyloidogenic regions than outside them. We have found that fibril formation and normal folding involve many of the same key residues, giving an opportunity to outline the folding initiation site in protein chains. The search for folding initiation sites for apomyoglobin and ribonuclease. A coincides with the predictions made by other approaches.  相似文献   

6.
The folding pattern of the alpha-crystallin domain, a conserved protein module encoding the molecular determinants of structure and function in the small heat-shock protein superfamily, was determined in the context of the lens protein alphaA-crystallin by systematic application of site-directed spin labeling. The sequence-specific secondary structure was assigned primarily from nitroxide scanning experiments in which the solvent accessibility and mobility of a nitroxide probe were measured as a function of residue number. Seven beta-strands were identified and their orientation relative to the aqueous solvent determined, thus defining the residues lining the hydrophobic core. The pairwise packing of adjacent strands in the primary structure was deduced from patterns of proximities in nitroxide pairs with one member on the exposed surface of each strand. In addition to identifying supersecondary structures, these proximities revealed that the seven strands are arranged in two beta-sheets. The overall packing of the two sheets was determined by application of the general rules of protein structure and from proximities in nitroxide pairs designed to distinguish between known all beta-sheet folds. Our data are consistent with an immunoglobulin-like fold consisting of two aligned beta-sheets. Comparison of this folding pattern to that of the evolutionary distant alpha-crystallin domain in Methanococcus jannaschii heat-shock protein 16.5 reveals a conserved core structure with the differences sequestered at one edge of the beta-sandwich. A beta-strand deletion in alphaA-crystallin disrupts a subunit interface and allows for a different dimerization motif. Putative substrate binding regions appear to include a buried loop and a buried turn, suggesting that the chaperone function involves a disassembly of the oligomer.  相似文献   

7.
In the "fold approach" proteins with a similar fold but different sequences are compared in order to investigate the relationship between native state structure and folding behaviour. Here we compare the properties of the transition states for folding of TI I27, the 27th immunoglobulin domain from human cardiac titin, and that of TNfn3, the third fibronectin type III domain from human tenascin. Experimental phi-values were used as restraints in molecular dynamics simulations to determine the structures that make up the transition state ensembles (TSEs) for folding of the two proteins. The restrained simulations that we present allow a detailed structural comparison of the two TSEs to be made. Further calculations show explicitly that for both proteins the formation of the interactions involving the residues in the folding nucleus is sufficient for the establishment of the topology of the Ig-like fold. We found that, although the folding nuclei of the two proteins are similar, the packing of the folding nucleus of TI I27 is much tighter than that of TNfn3, reflecting the higher experimental phi-values and beta(T) (Tanford Beta) of TI I27. These results suggest that the folding nucleus can be significantly deformed to accommodate extensive sequence variation while conserving the same folding mechanism.  相似文献   

8.
Two homologous fibronectin type III (fnIII) domains, FNfn10 (the 10th fnIII domain of human fibronectin) and TNfn3 (the third fnIII domain of human tenascin), have essentially the same backbone structure, although they share only ∼ 24% sequence identity. While they share a similar folding mechanism with a common core of key residues in the folding transition state, they differ in many other physical properties. We use a chimeric protein, FNoTNc, to investigate the molecular basis for these differences. FNoTNc is a core-swapped protein, containing the “outside” (surface and loops) of FNfn10 and the hydrophobic core of TNfn3. Remarkably, FNoTNc retains the structure of the parent proteins despite the extent of redesign, allowing us to gain insight into which components of each parent protein are responsible for different aspects of its behaviour. Naively, one would expect properties that appear to depend principally on the core to be similar to TNfn3, for example, the response to mutations, folding kinetics and side-chain dynamics, while properties apparently determined by differences in the surface and loops, such as backbone dynamics, would be more like FNfn10. While this is broadly true, it is clear that there are also unexpected crosstalk effects between the core and the surface. For example, the anomalous response of FNfn10 to mutation is not solely a property of the core as we had previously suggested.  相似文献   

9.
We examined the co-operativity of ultra-fast folding of a protein and whether the Phi-value analysis of its transition state depended on the location of the optical probe. We incorporated in turn a tryptophan residue into each of the three helices of the B domain of Protein A. Each Trp mutant of the three-helix bundle protein was used as a pseudo-wild-type parent for Phi-analysis in which the intrinsic Trp fluorescence probed the formation of each helix during the transition state. Apart from local effects in the immediate vicinity of the probe, the three separate sets of Phi-values were in excellent agreement, demonstrating the overall co-operativity of folding and the robustness of the Phi-analysis. The transition state of folding of Protein A contains the second helix being well formed with many stabilizing tertiary hydrophobic interactions. In contrast, the first and the third helices are more poorly structured in the transition state. The mechanism of folding thus involves the concurrent formation of secondary and tertiary interactions, and is towards the nucleation-condensation extreme in the nucleation-condensation-framework continuum of mechanism, with helix 2 being the nucleus. We provide an error analysis of Phi-values derived purely from the kinetics of two-state chevron plots.  相似文献   

10.
To identify the contacts that stabilise the rate-limiting transition state for folding of FNfn10 (the tenth fnIII domain of human fibronectin), 42 mutants have been analysed at 29 positions across this domain. An anomalous response to mutation means that structure formation in the A, B and G strands cannot be evaluated by this method. In all the residues analysed, phi-values are fractional and no completely structured region is observed. The analysis reveals that hydrophobic residues from the central strands of the beta-sandwich form a large core of interactions in the transition state. Br?nsted analysis shows that the stabilisation energy from the amino acid side-chains in the transition state is approximately 40 % of that in the native state. The protein folds by a nucleation-condensation mechanism, and tertiary interactions within the core make up the folding nucleus. Local interactions, in turns and loops, are apparently much less significant. Comparison with an homologous domain from human tenascin (TNfn3), shows that FNfn10 has a more extended, structured transition state spanning three different "layers" of the beta-sandwich. The results support the hypothesis that interactions in the common structural core guide the folding of these domains.  相似文献   

11.
The extracellular matrix molecule tenascin has been implicated in neuron-glia recognition in the developing central and peripheral nervous system and in regeneration. In this study, its role in Bergmann glial process-mediated neuronal migration was assayed in vitro using tissue explants of the early postnatal mouse cerebellar cortex. Of the five mAbs reacting with nonoverlapping epitopes on tenascin, mAbs J1/tn1, J1/tn4, and J1/tn5, but not mAbs J1/tn2 and J1/tn3 inhibited granule cell migration. Localization of the immunoreactive domains by EM of rotary shadowed tenascin molecules revealed that the mAbs J1/tn4 and J1/tn5, like the previously described J1/tn1 antibody, bound between the third and fifth fibronectin type III homologous repeats and mAb J1/tn3 bound between the third and fifth EGF-like repeats. mAb J1/tn2 had previously been found to react between fibronectin type III homologous repeats 10 and 11 of the mouse molecule (Lochter, A., L. Vaughan, A. Kaplony, A. Prochiantz, M. Schachner, and A. Faissner. 1991. J. Cell Biol. 113:1159-1171). When postnatal granule cell neurons were cultured on tenascin adsorbed to polyornithine, both the percentage of neurite-bearing cells and the length of outgrowing neurites were increased when compared to neurons growing on polyornithine alone. This neurite outgrowth promoting effect of tenascin was abolished only by mAb J1/tn2 or tenascin added to the culture medium in soluble form. The other antibodies did not modify the stimulatory or inhibitory effects of the molecule. These observations indicate that tenascin influences neurite outgrowth and migration of cerebellar granule cells by different domains in the fibronectin type III homologous repeats.  相似文献   

12.
Titin I27 shows a high resistance to unfolding when subject to external force. To investigate the molecular basis of this mechanical stability, protein engineering Phi-value analysis has been combined with atomic force microscopy to investigate the structure of the barrier to forced unfolding. The results indicate that the transition state for forced unfolding is significantly structured, since highly destabilising mutations in the core do not affect the force required to unfold the protein. As has been shown before, mechanical strength lies in the region of the A' and G-strands but, contrary to previous suggestions, the results indicate clearly that side-chain interactions play a significant role in maintaining mechanical stability. Since Phi-values calculated from molecular dynamics simulations are the same as those determined experimentally, we can, with confidence, use the molecular dynamics simulations to analyse the structure of the transition state in detail, and are able to show loss of interactions between the A' and G-strands with associated A-B and E-F loops in the transition state. The key event is not a simple case of loss of hydrogen bonding interactions between the A' and G-strands alone. Comparison with Phi-values from traditional folding studies shows differences between the force and "no-force" transition states but, nevertheless, the region important for kinetic stability is the same in both cases. This explains the correspondence between hierarchy of kinetic stability (measured in stopped-flow denaturant studies) and mechanical strength in these titin domains.  相似文献   

13.
Our objective for this study was to determine the presence and distribution of tenascin in the human intervertebral disc. The tenascins are a family of extracellular matrix proteins with repeated structural domains homologous to epidermal growth factor, fibronectin type III and the fibrinogens. Little is known about the presence of this protein in the disc. Ten normal human discs donated from subjects newborn to 15 years old, 10 control discs from adult donors aged 24-41 years, and 11 surgical disc specimens from patients aged 26-76 years were examined for immunolocalization of tenascin. In young discs, tenascin was localized throughout the annulus; in the nucleus, localization was confined to pericellular matrix. In adult control and degenerating disc specimens, tenascin in the annulus was localized primarily in pericellular matrix regions encircling either single cells or clusters of disc cells; in rare instances localization was more diffuse in the intraterritorial matrix. In young, healthy disc, tenascin was abundant throughout the annulus. In contrast, degenerating discs in adults showed a localization restricted to the pericellular, and rarely, more restricted intraterritorial matrix. These observations indicate that changes in the amount and distribution of tenascin may have a role in disc aging and degeneration, possibly by modulating fibronectin-disc-cell interactions, and causing alterations in the shape of disc cells.  相似文献   

14.
In the chicken, three tenascin variants have been characterized that are generated by alternative splicing of 3 of its 11 fibronectin type III repeats. Using monoclonal antibodies that react with common regions versus extra repeats of tenascin, we could distinguish and separate tenascin variants and investigate their interaction with fibronectin using multiple experimental procedures. Interestingly, in all assays used the smallest tenascin variant bound more strongly to fibronectin than the larger ones. These biochemical data were paralleled by the observation that in chick embryo fibroblast cultures only the smallest form of tenascin could be detected in the fibronectin-rich extracellular matrix network laid down by the cells. Furthermore, each tissue present in adult chicken gizzard contained a distinct set of tenascin variants. Those tissues particularly rich in extracellular matrix, such as the tendon, contained the smallest tenascin only. Intermediate-sized tenascin was present in smooth muscle, whereas the largest form was exclusively detectable underneath the epithelial lining of the villi. Thus it appears that cell type-specific forms of tenascin exist that are appropriate for the functional requirements of the respective extracellular matrices.  相似文献   

15.
We have isolated cDNA clones for mouse tenascin and analyzed expression of tenascin mRNAs during embryonic development of the kidney and gut. The deduced amino acid sequence of the mouse tenascin cDNAs shows a modular structure of repeats similar to chicken and human tenascin. In mouse there are 14.5 cysteine-rich repeats with similarity to the EGF repeat, followed by several repeats with similarity to the type III repeat of fibronectin. A longer variant contains 13 fibronectin type III repeats, whereas a shorter splice variant of mouse tenascin lacks the 5 type III repeats that occur directly after the fifth repeat in the longer variant. Contrary to the chicken and human sequences, mouse tenascin does not contain an RGD sequence in the third type III repeat implicated in cell attachment, or in any other positions. In Northern hybridizations to RNA from primary embryonic fibroblasts, the cDNA clone M 20/1 detects two mRNAs with sizes close to 6 and 8 kb. This, and the other data presented here suggest that the two major mouse tenascin polypeptides arise through an alternative RNA splicing. The two major mRNAs are differentially expressed during development. The 8-kb mRNA is more prominent than the 6-kb mRNA throughout prenatal kidney development, but during postnatal development the ratio of the two mRNAs changes. A different expression pattern is seen in the developing gut where the 6-kb mRNA predominates during embryogenesis with the 8-kb mRNA appearing later. The mRNA data of the developing gut correspond with previous protein data, which showed that the shorter Mr 210,000 polypeptide predominates during earlier developmental stages and the larger Mr 260,000 polypeptide appears later in the embryonic gut (Aufderheide, E., and P. Ekblom. 1988. J. Cell Biol. 107:2341-2349).  相似文献   

16.
An analysis of the folding of the 94 residue tenth fibronectin type III (fnIII) domain of human fibronectin (FNfn10) is presented. Use of guanidine isothiocyanate as a denaturant allows us to obtain equilibrium and kinetic data across a broad range of denaturant concentrations that are unavailable in guanidine hydrochloride. Equilibrium unfolding experiments show that FNfn10 is significantly more stable than has been reported previously. Comparison of equilibrium and kinetic parameters reveals the presence of an intermediate that accumulates at low denaturant concentrations. This is the first demonstration of three-state folding kinetics for a fnIII domain. We have previously shown that a homologous domain from human tenascin (TNfn3) folds by a two-state mechanism, but this does not necessarily indicate that the two proteins fold by different folding pathways.  相似文献   

17.
Dynamic force spectroscopy is rapidly becoming a standard biophysical technique. Significant advances in the methods of analysis of force data have resulted in ever more complex systems being studied. The use of cloning systems to produce homologous tandem repeats rather than the use of endogenous multidomain proteins has facilitated these developments. What is poorly addressed are the physical properties of these constructed polyproteins. Are the properties of the individual domains in the construct independent of one another or attenuated by adjacent domains? We present data for a construct of eight fibronectin type III domains from the human form of tenascin that exhibits approximately 1 kcal mol(-1) increase in stability compared to the monomer. This effect is salt and pH dependent, suggesting that the stabilization results from electrostatic interactions, possibly involving charged residues at the interfaces of the domains. Kinetic analysis shows that this stabilization reflects a slower unfolding rate. Clearly, if domain-domain interactions affect the unfolding force, this will have implications for the comparison of absolute forces between types of domains. Mutants of the tenascin 8-mer construct exhibit the same change in stability as that observed for the corresponding mutation in the monomer. And when Phi-values are calculated for the 8-mer construct, the pattern is similar to that observed for the monomer. Therefore, mutational analyses to resolve mechanical unfolding pathways appear valid. Importantly, we show that interactions between the domains may be masked by changes in experimental conditions.  相似文献   

18.
Bacteriorhodopsin mutants containing deletions in loop B-C, delta Thr67-Glu74 or delta Gly65-Gln75 or a deletion in the loop E-F, delta Glu161-Ala168, were prepared. Following their expression in Escherichia coli, the mutant proteins were purified to homogeneity and refolded with retinal in detergent-phospholipid mixtures. The mutants containing deletions in the loop B-C were normal at 4 degrees C but showed the following changes at 20 degrees C. 1) The lambda max shifted from 540 to below 510 nm; 2) the rates of bleaching by hydroxylamine in the dark increased; and 3) the rate and steady state of proton pumping decreased. Deletion of the eight amino acids in loop E-F did not affect wild-type behavior. However, all the mutant proteins were more prone to thermal and sodium dodecyl sulfate denaturation than the wild-type bacteriorhodopsin. These observations show that the structures of the B-C and E-F loops are not essential for correct folding of bacteriorhodopsin, but they contribute to the stability of the folded protein.  相似文献   

19.
Comparison of the folding processes for homologue proteins can provide valuable information about details in the interactions leading to the formation of the folding transition state. Here the folding kinetics of 18 variants of yACBP and 3 variants of bACBP have been studied by Phi-value analysis. In combination with Phi-values from previous work, detailed insight into the transition states for folding of both yACBP and bACBP has been obtained. Of the 16 sequence positions that have been studied in both yACBP and bACBP, 5 (V12, I/L27, Y73, V77, and L80) have high Phi-values and appear to be important for the transition state formation in both homologues. Y31, A34, and A69 have high Phi-values only in yACBP, while F5, A9, and I74 have high Phi-values only in bACBP. Thus, additional interactions between helices A2 and A4 appear to be important for the transition state of yACBP, whereas additional interactions between helices A1 and A4 appear to be important for the transition state of bACBP. To examine whether these differences could be assigned to different packing of the residues in the native state, a solution structure of yACBP was determined by NMR. Small changes in the packing of the hydrophobic side-chains, which strengthen the interactions between helices A2 and A4, are observed in yACBP relative to bACBP. It is suggested that different structure elements serve as scaffolds for the folding of the 2 ACBP homologues.  相似文献   

20.
Cytotactin/tenascin is a multidomain extracellular matrix protein that inhibits both cell spreading and intracellular alkalinization. The protein has multiple different domains which are homologous to regions in epidermal growth factor, fibronectin, and fibrinogen. In previous studies, we produced nonoverlapping fusion proteins corresponding to these domains and examined their effects on cell attachment and spreading. Based on their ability either to promote or to inhibit cell attachment, two of these fusion proteins were shown to be adhesive and two were shown to be counteradhesive. To determine how the adhesive and counteradhesive activities of different cytotactin/tenascin domains alter intracellular pH (designated pHi), we have measured pHi in NIH3T3 and U251MG cells in the presence of the cytotactin/tenascin fusion proteins and intact cytototactin/tenascin, as well as fibronectin. Cells incubated in the presence of intact cytotactin/tenascin or of the counteradhesive fusion proteins had a pHi lower than control cells. In contrast, the presence of the adhesive fusion proteins or of fibronectin caused cells to have higher pHi values than control cells. When two fragments were simultaneously presented, one of which alone increased pHi and the other of which alone decreased pHi, the predominant effect was that of lowered pHi. Incubation with an RGD-containing peptide derived from the cytotactin/tenascin sequence inhibited alkalinization promoted by the adhesive fragment containing the second through sixth fibronectin type III repeats that was known to bind to integrins. Incubation of the cells with heparinase I or III inhibited the intracellular alkalinization of cells plated in the presence of the other adhesive fusion protein containing the fibrinogen domain, suggesting that heparan sulfate proteoglycans were involved in these pHi changes. The activity of protein kinase C appeared to be important for the changes in pHi mediated by all of the proteins. The protein kinase C inhibitor Calphostin C blocked the rise in pHi elicited by the adhesive fusion proteins and by fibronectin. Moreover, activation of protein kinase C by the addition of phorbol esters increased the pHi in cells plated on cytotactin/tenascin or counteradhesive fusion proteins and reversed their effects. The results of this study support the hypothesis that cytotactin/tenascin can bind to multiple cell surface receptors and thereby elicit different physiological responses. Decreases in pHi are correlated with the phenomenon of counteradhesion whereas the ability to increase pHi is associated with cell attachment via at least two different types of cell surface receptors. The data raise the possibility that binding of cytotactin/tenascin may influence primary cellular processes such as migration and proliferation through the differential regulation of pHi. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号