首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lima SQ  Miesenböck G 《Cell》2005,121(1):141-152
Optically gated ion channels were expressed in circumscribed groups of neurons in the Drosophila CNS so that broad illumination of flies evoked action potentials only in genetically designated target cells. Flies harboring the "phototriggers" in different sets of neurons responded to laser light with behaviors specific to the sites of phototrigger expression. Photostimulation of neurons in the giant fiber system elicited the characteristic escape behaviors of jumping, wing beating, and flight; photostimulation of dopaminergic neurons caused changes in locomotor activity and locomotor patterns. These responses reflected the direct optical activation of central neuronal targets rather than confounding visual input, as they persisted unabated in carriers of a mutation that eliminates phototransduction. Encodable phototriggers provide noninvasive control interfaces for studying the connectivity and dynamics of neural circuits, for assigning behavioral content to neurons and their activity patterns, and, potentially, for restoring information corrupted by injury or disease.  相似文献   

2.
3.
4.
By genetically targeting tumorigenesis to specific hypothalamic neurons in transgenic mice using the promoter region of the gonadotropin-releasing hormone (GnRH) gene to express the SV40 T-antigen oncogene, we have produced neuronal tumors and developed clonal, differentiated, neurosecretory cell lines. These cells extend neurites, express the endogenous mouse GnRH mRNA, release GnRH in response to depolarization, have regulatable fast Na+ channels found in neurons, and express neuronal, but not glial, cell markers. These immortalized cells will provide an invaluable model system for study of hypothalamic neurosecretory neurons that regulate reproduction. Significantly, their derivation demonstrates the feasibility of immortalizing differentiated neurons by targeting tumorigenesis in transgenic mice to specific neurons of the CNS.  相似文献   

5.
6.
  相似文献   

7.
Glutamate receptors mediate the majority of excitatory responses in the central nervous system (CNS). Neurons express multiple subtypes and subunits of glutamate receptors, which are differentially distributed at pre- and postsynaptic sites. This allows the cell to respond differentially depending on the subunit composition of receptors at the postsynaptic membrane. The process by which receptors are targeted selectively to the appropriate synapse is poorly understood. Evidence exists that targeting of glutamate receptors to the different neuronal compartments is regulated at multiple levels involving a general targeting step; a local step where receptor-containing organelles are moved to the synapse; and a step where the receptors are stabilized at the synapse, which may involve interaction with an anchoring protein.  相似文献   

8.
9.
We introduce an optical method to stimulate individual neurons in brain slices in any arbitrary spatiotemporal pattern, using two-photon uncaging of MNI-glutamate with beam multiplexing. This method has single-cell and three-dimensional precision. By sequentially stimulating up to a thousand potential presynaptic neurons, we generated detailed functional maps of inputs to a cell. We combined this approach with two-photon calcium imaging in an all-optical method to image and manipulate circuit activity.  相似文献   

10.
Parkinson disease (PD) is characterized by the specific degeneration of dopaminergic (DA) neurons in substantia nigra and has been linked to a variety of environmental and genetic factors. Rotenone, an environmental PD toxin, exhibited much greater toxicity to DA neurons in midbrain neuronal cultures than to non-DA neurons. The effect was significantly decreased by the microtubule-stabilizing drug taxol and mimicked by microtubule-depolymerizing agents such as colchicine or nocodazole. Microtubule depolymerization disrupted vesicular transport along microtubules and caused the accumulation of dopamine vesicles in the soma. This led to increased oxidative stress due to oxidation of cytosolic dopamine leaked from vesicles. Inhibition of dopamine metabolism significantly reduced rotenone toxicity. Thus, our results suggest that microtubule depolymerization induced by PD toxins such as rotenone plays a key role in the selective death of dopaminergic neurons.  相似文献   

11.
There has never been a wholesale way of identifying neurons that are monosynaptically connected either to some other cell group or, especially, to a single cell. The best available tools, transsynaptic tracers, are unable to distinguish weak direct connections from strong indirect ones. Furthermore, no tracer has proven potent enough to label any connected neurons whatsoever when starting from a single cell. Here we present a transsynaptic tracer that crosses only one synaptic step, unambiguously identifying cells directly presynaptic to the starting population. Based on rabies virus, it is genetically targetable, allows high-level expression of any gene of interest in the synaptically coupled neurons, and robustly labels connections made to single cells. This technology should enable a far more detailed understanding of neural connectivity than has previously been possible.  相似文献   

12.
Karpova AY  Tervo DG  Gray NW  Svoboda K 《Neuron》2005,48(5):727-735
Inducible and reversible silencing of selected neurons in vivo is critical to understanding the structure and dynamics of brain circuits. We have developed Molecules for Inactivation of Synaptic Transmission (MISTs) that can be genetically targeted to allow the reversible inactivation of neurotransmitter release. MISTs consist of modified presynaptic proteins that interfere with the synaptic vesicle cycle when crosslinked by small molecule "dimerizers." MISTs based on the vesicle proteins VAMP2/Synaptobrevin and Synaptophysin induced rapid ( approximately 10 min) and reversible block of synaptic transmission in cultured neurons and brain slices. In transgenic mice expressing MISTs selectively in Purkinje neurons, administration of dimerizer reduced learning and performance of the rotarod behavior. MISTs allow for specific, inducible, and reversible lesions in neuronal circuits and may provide treatment of disorders associated with neuronal hyperactivity.  相似文献   

13.
Neuroendocrine changes in male hamsters following photostimulation   总被引:1,自引:0,他引:1  
Transfer of gonadally regressed male golden hamsters from a short (5 L:19 D) to a stimulatory (14 L:10 D) photoperiod elicits, within 24 hr, significant changes in hypothalamic dopamine, serotonin, and possibly norepinephrine metabolism. Hypothalamic LHRH content was significantly elevated in short-photoperiod animals, but within 24 hr of transfer to a 14:10 photoperiod, LHRH declined to levels not different from those in hamsters maintained continuously in a long photoperiod. Plasma FSH levels were also significantly elevated within 24 hr of transfer, but increases in plasma LH were somewhat slower. Chronic treatment with the tyrosine hydroxylase inhibitor, alpha-methyl tyrosine (alpha MPT), which inhibits catecholamine synthesis, blocked the effect of a stimulatory photoperiod on plasma FSH levels, while treatment of 5:19 hamsters with the catecholamine precursor, L-dopa, mimicked the effects of photostimulation on plasma FSH levels. Testicular weights were not affected by alpha MPT or L-dopa treatment for 1 week. From these data, it appears that endocrine events associated with photoperiod-induced testicular recrudescence are under the control of hypothalamic neurotransmitters.  相似文献   

14.
The gastric mucosa, in particular submucosal blood vessels, are innervated by afferent neurons containing neuropeptides such as calcitonin gene-related peptide. Stimulation of sensory neurons innervating the gastric mucosa increases submucosal blood flow. Since sensory neurons supplying the stomach are of dual origin from nodose and dorsal root ganglia, we examined the effect of selective ablation of either the vagal or spinal sensory innervation to the upper gastrointestinal tract on the increase in gastric mucosal blood flow in response to acid back diffusion into the gastric mucosa. Perineural application of capsaicin to the celiac/superior mesenteric ganglia, but not to the vagus nerves, significantly inhibited by 53% the hyperemic response to acid back diffusion. Tissue levels of immunoreactive calcitonin gene-related peptide in the gastric corpus were significantly reduced (by 73%) by periceliac capsaicin treatment, but unaffected by perivagal capsaicin treatment. These data suggest that spinal capsaicin-sensitive afferents containing calcitonin gene-related peptide immunoreactivity are involved in mediating increases in gastric mucosal blood flow. This increase in gastric mucosal blood flow mediated by sensory neurons may act as a protective mechanism against mucosal injury, similar to responses seen in other tissues such as skin.  相似文献   

15.
Signaling cascades involving cyclic nucleotides play key roles in signal transduction in virtually all cell types. Elucidation of the spatiotemporal regulation of cyclic nucleotide signaling requires methods for tracking the dynamics of cyclic nucleotides and the activities of their regulators and effectors in the native biological context. Here we review a series of genetically encoded FRET-based probes for real-time monitoring of cyclic nucleotide signaling with a particular focus on their implementation in neurons. Current data indicate that neurons have a very active metabolism in cyclic nucleotide signaling, which is tightly regulated through a variety of homeostatic regulations.  相似文献   

16.
17.
We have investigated the NGF dependence of dorsal root ganglion (DRG) neurons in mammals using a paradigm of multiple in utero injections of a high titer anti-NGF antiserum. We have determined the specificity of our antiserum in relation to other members of the NGF neurotrophin family and found no cross-reactivity with brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). To identify various classes of DRG neurons, we have stained their characteristic central projections with Dil. We show here that the NGF dependence of DRG neurons is strikingly selective. Although a majority of DRG neurons are lost after NGF deprivation during embryonic life, these are almost exclusively small diameter neurons that project to laminae I and II of the dorsal horn and presumably subserve nociception and thermoreception. Larger neurons that project to more ventral spinal laminae and subserve other sensory modalities do not require NGF for survival. These NGF-independent DRG neurons likely require one of the more recently identified neurotrophins, BDNF or NT-3.  相似文献   

18.
The ability of a neurotropic virus, mouse hepatitis virus type 3 (MHV3), to invade the central nervous system (CNS) and to recognize cells selectively within the brain was investigated in vivo and in vitro. In vivo, MHV3 induced in C3H mice a genetically controlled infection of meningeal cells, ependymal cells, and neurons. In vitro, purified MHV3 bound to the surface of isolated ependymal cells and cultured cortical neurons but not to oligodendrocytes or cultured astrocytes. MHV3 replicated within cultured cortical neurons and neuroblastoma cells (NIE 115); infected cultured neurons nonetheless survived and matured normally for a 7-day period postinfection. On the other hand, MHV3 had a low affinity for cortical glial cells or glioma cells (C6 line), both of which appear to be morphologically unaltered by viral infection. Finally, MHV3 infected and disrupted cultured meningeal cells. This suggests that differences in the affinity of cells for MHV3 are determinants of the selective vulnerability of cellular subpopulations within the CNS. In vivo, a higher titer of virus was needed for CNS penetration in the genetically resistant (A/Jx) mice than in the susceptible (C57/BL6) mouse strain. However, in spite of viral invasion, no neuropathological lesions developed. In vitro viral binding to adult ependymal cells of susceptible and resistant strains of mice was identical. Genetic resistance to MHV3-CNS infection appeared to be mediated both by a peripheral mechanism limiting viral penetration into the CNS and by intra-CNS mechanisms, presumably at a stage after viral attachment to target cells.  相似文献   

19.
In stationary cultures of dissociated brain and spinal cord grown on microcarriers (MCs), the neuronal and ependymal cells attached to the MCs forming floating aggregates in which they grow in a three-dimensional pattern. The glial and meningeal elements on the contrary, tend to dissociate from the aggregates and adhere to the plastic dish where they divide to form a monolayer. This different behavior of CNS components is not observed in rotating cultures in which all CNS cells remain attached to the MCs and develop into mature floating structures. This cell separation in stationary MC-cultures which is documented here by SEM and immunocytochemistry, may be useful for analysis and evaluation of the metabolic biochemical events of each of the cellular components derived from the same culture.  相似文献   

20.
The finding of orexin/hypocretin deficiency in narcolepsy patients suggests that this hypothalamic neuropeptide plays a crucial role in regulating sleep/wakefulness states. However, very little is known about the synaptic input of orexin/hypocretin-producing neurons (orexin neurons). We applied a transgenic method to map upstream neuronal populations that have synaptic connections to orexin neurons and revealed that orexin neurons receive input from several brain areas. These include the amygdala, basal forebrain cholinergic neurons, GABAergic neurons in the preoptic area, and serotonergic neurons in the median/paramedian raphe nuclei. Monoamine-containing groups that are innervated by orexin neurons do not receive reciprocal connections, while cholinergic neurons in the basal forebrain have reciprocal connections, which might be important for consolidating wakefulness. Electrophysiological study showed that carbachol excites almost one-third of orexin neurons and inhibits a small population of orexin neurons. These neuroanatomical findings provide important insights into the neural pathways that regulate sleep/wakefulness states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号