首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A commercially available flow cytometer (Cytofluorograf) was used for the immunofluorescence (IF) analysis of spores of Bacillus anthracis, Bacillus cereus, and Bacillus subtilis, using fluorescein-labelled antispore conjugates. The cytometer was modified to allow analysis of known numbers of bacteria. In attempting to identify the region of the cytometer fluorescence histogram associated with the presence of stained spores, evidence was produced for signal components due to antibody bound to extracellular antigens. Under some reaction conditions these components were large enough partially or completely to obscure the fluorescence distribution imputed to the spores. The results support the hypothesis that the fluorescence histogram for a bacterial suspension can be modified by subtracting the histogram of the cell-free centrifugation supernatant to provide a fluorescence distribution more representative of the bacteria themselves. Spore and vegetative forms of B. anthracis could be differentiated in the flow IF assay by comparing the peak and area (integral) values of the photomultiplier output. The 90 degrees scatter histograms of the stained spores and their cell-free supernatants were so alike in shape that it was not possible to ascribe a unique peak to the spores themselves. Overall, these results confirm the considerable potential of flow cytometry for the rapid and quantitative IF assay of bacterial populations.  相似文献   

2.
Aims: The present work investigates the feasibility of using flow cytometry (FCM) combined with fluorescent‐labelled specific polyclonal antibodies for the detection and presumptive identification of Clostridium tyrobutyricum spores in bovine milk. Methods and Results: Two fluorescent molecules (fluorescein isothiocyanate and Alexa Fluor 488) were conjugated to antispores polyclonal antibodies. Side scatter and forward scatter profiles of the Cl. tyrobutyricum spores marked with fluorescent antibodies permitted the detection of spores and differentiated them from other related microbial species. The detection limit of this method was 103 spores per 100 ml of milk, and results could be achieved in 2 h. Conclusions: FCM combined with fluorochrome‐conjugated antibodies, especially Alexa Fluor, could be an efficacious means to detect and provide presumptive identification of Cl. tyrobutyricum spores, as well as differentiation from other Clostridium species that can also cause late blowing in cheese. Significance and Impact of the Study: This study describes the basis for the development of a method suitable for analysis of milk destined for cheese manufacture that would permit the detection of Cl. tyrobutyricum spores in a short period. This would enable the industry to use contaminated milk for dairy products other than cheese where Cl. tyrobutyricum does not cause a problem.  相似文献   

3.
Dual-parameter scatter-flow immunofluorescence analysis of Bacillus spores   总被引:1,自引:0,他引:1  
Using a commercial flow cytometer (Cyto-fluorograf), narrow-forward-angle (NFA) light-scatter signals were detected for spore preparations of Bacillus anthracis Vollum, B. anthracis Sterne, B. cereus NCTC 8035, and B. subtilis var niger. In the flow immunofluorescence (FIF) analysis of spores stained with fluorescein-conjugated hyperimmune antibody to B. anthracis Vollum spores, fluorescence histograms could be acquired by selecting on NFA scatter. Fluorescence data selected on ninety degree scatter were rather noisier. Fluorescence analysis by dual parameter NFA scatter-FIF techniques was shown to have several advantages over the subtraction FIF method reported earlier. The implication from FIF analysis of spore suspensions and corresponding cell-free supernatants that the peak in the fluorescence histogram was caused by signals from fluorescing spores, was confirmed by use of the cell sorter and subsequent microscopy of the sorted samples. Although a proportion of spore aggregates was present in samples sorted from the right-hand tail of the fluorescence histogram, it was demonstrated that the majority of the observed distribution of fluorescence was not due to the formation of aggregates but was rather an expression of variation in the degree of staining of individual spores.  相似文献   

4.
Aims:  Bacillus anthracis strains of various origins were analysed with the view to describe intrinsic and persistent structural components of the Bacillus collagen-like protein of anthracis glycoprotein associated anthrose containing tetrasaccharide in the exosporium.
Methods and Results:  The tetrasaccharide consists of three rhamnose residues and an unique monosaccharide – anthrose. As anthrose was not found in spores of related strains of bacteria, we envisioned the detection of B. anthracis spores based on antibodies against anthrose-containing polysaccharides. Carbohydrate–protein conjugates containing the synthetic tetrasaccharide, an anthrose–rhamnose disaccharide or anthrose alone were employed to immunize mice. All three formulations were immunogenic and elicited IgG responses with different fine specificities. All sera and monoclonal antibodies derived from tetrasaccharide immunized mice cross-reacted not only with spore lysates of a panel of virulent B. anthracis strains, but also with some of the B. cereus strains tested.
Conclusions:  Our results demonstrate that antibodies to synthetic carbohydrates are useful tools for epitope analyses of complex carbohydrate antigens and for the detection of particular target structures in biological specimens.
Significance and Impact of the Study:  Although not strictly specific for B. anthracis spores, antibodies against the tetrasaccharide may have potential as immuno-capturing components for a highly sensitive spore detection system.  相似文献   

5.
Since the anthrax spore bioterrorism attacks in America in 2001, the early detection of Bacillus anthracis spores and vegetative cells has gained significant interest. At present, many polyclonal antibody-based quartz crystal microbalance (QCM) sensors have been developed to detect B. anthracis simulates. To achieve a simultaneous rapid detection of B. anthracis spores and vegetative cells, this paper presents a biosensor that utilizes an anti-B. anthracis monoclonal antibody designated to 8G3 (mAb 8G3, IgG) functionalized QCM sensor. Having compared four kinds of antibody immobilizations on Au surface, an optimized mAb 8G3 was immobilized onto the Au electrode with protein A on a mixed self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid (11-MUA) and 6-mercaptohexan-1-ol (6-MHO) as adhesive layer. The detection of B. anthracis was investigated under three conditions: dip-and-dry, static addition and flow through procedure. The results indicated that the sensor yielded a distinct response to B. anthracis spores or vegetative cells but had no significant response to Bacillus thuringiensis species. The functionalized sensor recognized B. anthracis spores and vegetative cells specifically from its homophylic ones, and the limit of detection (LOD) reached 10(3)CFU or spores/ml of B. anthracis in less than 30 min. Cyclic voltammogram (CV) and scanning electronic microscopy (SEM) were performed to characterize the surface of the sensor in variable steps during the modification and after the detection. The mAb functionalized QCM biosensor will be helpful in the fabrication of a similar biosensor that may be available in anti-bioterrorism in the future.  相似文献   

6.
Bacillus anthracis is one of the most dangerous potential biological weapons, and it is essential to develop a rapid and simple method to detect B. anthracis spores in environmental samples. The immunoassay is a rapid and easy-to-use method for the detection of B. anthracis by means of antibodies directed against surface spore antigens. With this objective in view, we have produced a panel of monoclonal antibodies against B. anthracis and developed colorimetric and electrochemiluminescence (ECL) immunoassays. Using Meso Scale Discovery ECL technology, which is based on electrochemiluminescence (ECL) detection utilizing a sulfo-Tag label that emits light upon electrochemical stimulation (using a dedicated ECL plate reader, an electrical current is placed across the microplate with electrodes integrated into the bottom of the plate, resulting in a series of electrically induced reactions leading to a luminescent signal), a detection limit ranging between 0.3 × 10(3) and 10(3) CFU/ml (i.e., 30 to 100 spores per test), depending on the B. anthracis strain assayed, was achieved. In complex matrices (5 mg/ml of soil or simulated powder), the detection level (without any sample purification or concentration) was never altered more than 3-fold compared with the results obtained in phosphate-buffered saline.  相似文献   

7.
Detection of biological weapons is a primary concern in force protection, treaty verification, and safeguarding civilian populations against domestic terrorism. One great concern is the detection of Bacillus anthracis, the causative agent of anthrax. Therefore, there is a pressing need to develop novel methods for rapid, simple, and precise detection of B. anthracis. Here, we report that the C-terminal region of gamma-phage lysin protein (PlyG) binds specifically to the cell wall of B. anthracis and the recombinant protein corresponding to this region (positions, 156-233), PlyGB, is available as a bioprobe for detection of B. anthracis. Our detection method, based on a membrane direct blot assay using recombinant PlyGB, was more rapid and sensitive than the gamma-phage test and was simpler and more inexpensive than genetic methods such as PCR, or immunological methods using specific antibodies. Furthermore, its specificity was comparable to the gamma-phage test. PlyGB is applicable in conventional methods instead of antibodies and could be a potent tool for detection of B. anthracis.  相似文献   

8.
AIMS: To develop a rapid, specific and sensitive diagnostic test for the detection of the spores of Bacillus anthracis on commercial samples of animal fibres (e.g. wool and cashmere). METHODS AND RESULTS: Extraction of DNA from spores using a mechanical disruption method based on bead beating was evaluated but subsequently abandoned as it compromised the sensitivity of the overall protocol. A multiplex PCR and two nested amplification reactions designed for B. anthracis were developed during this study. CONCLUSIONS: A simple selective incubation step in combination with multiplex PCR was found to be more effective than generic DNA extraction coupled to a sensitive nested amplification reaction. SIGNIFICANCE AND IMPACT OF THE STUDY: The rapid diagnostic test could be applied to the analysis of commercial fibre samples for the detection of anthrax as required by health and safety legislation resulting in considerable savings in time and expense.  相似文献   

9.
There is a necessity for rapid immunodiagnostic techniques for the detection and identification of Bacillus anthracis in environmental specimens. The technology available for accomplishing this ranges in complexity from a simple dipstick type assay to complex biosensors. We have developed antigen capture dipstick assays for a series of infectious agents including an assay for B. anthracis protective antigen and one for B. anthracis spores. These immunochromatographic assays use colloidal gold to visualize the reaction and take approximately 15 min to perform. We will also describe our current effort in the development of two antigen detection biosensors and discuss the sensitivity and specificity of the assays in environmental specimens.  相似文献   

10.
Aim:  Combination of immunomagnetic separation (IMS) and lateral flow device (LFD) assays for the development of a sensitive, rapid, on-site methodology that enables concentration and detection of Bacillus anthracis spores in complex samples.
Methods and Results:  The data presents the development of an optimized, 30 min, IMS assay, with about 95% capture of B. anthracis spores from different dairy products ( n  = 38). No cross reactivity was detected with typical milk flora and some closely related Bacilli. To enable direct application of the IMS captured spores on the LFD, spores were eluted from the bead–spore complex utilizing 95% (v/v) formamide-10 mmol l−1 EDTA for 30 s in a microwave oven. Detached spores were analysed on LFD enabling detection within 10 min. The combined IMS–LFD methodology (40 min) demonstrates a 60-fold improvement in sensitivity, relative to samples that were applied directly on the LFD without the IMS concentrating step.
Conclusions:  The IMS–LFD method is a powerful platform, combining rapidity, specificity and efficiency for concentrating and detecting B. anthracis from water and milk contaminated samples.
Significant and Impact of the Study:  The combination of IMS and LFD enhances the sensitivity and flexibility of B. anthracis spore detection from complex samples. This method can potentially be extended to other toxins and micro-organisms in a variety of matrices.  相似文献   

11.
Using photogenerated glycan arrays, we characterized a large panel of synthetic carbohydrates for their antigenic reactivities with pathogen-specific antibodies. We discovered that rabbit IgG antibodies elicited by Bacillus anthracis spores specifically recognize a tetrasaccharide chain that decorates the outermost surfaces of the B. anthracis exosporium. Since this sugar moiety is highly specific for the spores of B. anthracis, it appears to be a key biomarker for detection of B. anthracis spores and development of novel vaccines that target anthrax spores.  相似文献   

12.
Piezoelectric-excited millimeter-sized cantilever (PEMC) sensors of 4mm(2) sensing area were immobilized with antibody specific to Bacillus anthracis (anti-BA) spores or bovine serum albumin (anti-BSA). Detection of pathogen (Bacillus anthracis (BA) at 300 spores/mL) and BSA (1 mg/mL) were investigated under both stagnant and flow conditions. Two flow cell designs were evaluated by characterizing flow-induced resonant frequency shifts. One of the flow cells labeled SFC-2 (hold-up volume of 0.3 mL), showed small fluctuations (+/-20 Hz) around a common resonant frequency response of 217 Hz in the flow rate range of 1-17 mL/min. The total resonant frequency change obtained for the binding of 300 spores/mL in 1h was 90+/-5 Hz (n=2), and 162+/-10 Hz (n=2) under stagnant and flow conditions, respectively. Binding of antibodies, anti-BA and anti-BSA, were more rapid under flow than under stagnant conditions. The sensor was repeatedly exposed to BSA with an intermediate release step. The first and second responses to BSA were nearly identical. The total resonant frequency response to BSA was 388+/-10 (n=2) Hz under flow conditions. Kinetic analysis is carried out to quantify the effect of flow rate on antibody immobilization and the two types of detection experiments.  相似文献   

13.
The use of Bacillus anthracis as a biological weapon in 2001 heightened awareness of the need for validated methods for the inactivation of B. anthracis spores. This study determined the gamma irradiation dose for inactivating virulent B. anthracis spores in suspension and its effects on real-time PCR and antigen detection assays. Strains representing eight genetic groups of B. anthracis were exposed to gamma radiation, and it was found that subjecting spores at a concentration of 10(7) CFU/ml to a dose of 2.5 x 10(6) rads resulted in a 6-log-unit reduction of spore viability. TaqMan real-time PCR analysis of untreated versus irradiated Ames strain (K1694) spores showed that treatment significantly enhanced the detection of B. anthracis chromosomal DNA targets but had no significant effect on the ability to detect targets on the pXO1 and pXO2 plasmids of B. anthracis. When analyzed by an enzyme-linked immunosorbent assay (ELISA), irradiation affected the detection of B. anthracis spores in a direct ELISA but had no effect on the limit of detection in a sandwich ELISA. The results of this study showed that gamma irradiation-inactivated spores can be tested by real-time PCR or sandwich ELISA without decreasing the sensitivity of either type of assay. Furthermore, the results suggest that clinical and public health laboratories which test specimens for B. anthracis could potentially incorporate gamma irradiation into sample processing protocols without compromising the sensitivity of the B. anthracis assays.  相似文献   

14.
Recent use of biological warfare (BW) agents has led to a growing interest in the rapid and sensitive detection of pathogens. Therefore, the development of field-usable detection devices for sensitive and selective detection of BW agents is an important issue. In this work, we report a portable biochip system based on complementary metal oxide semiconductor (CMOS) technology that has great potential as a device for single-bacteria detection. The possibility of single-bacteria detection is reported using an immunoassay coupled to laser-induced fluorescence (LIF) detection. Bacillus globigii spores, which are a surrogate species for B. anthracis spores, were used as the test sample. Enzymatic amplification following immunocomplex formation allowed remarkably sensitive detection of B. globigii spores, and could preclude a complicated optical and instrumental system usually required for high-sensitive detection. Atomic force microscopy (AFM) was employed to investigate whether B. globigii spores detected in the portable biochip system exist in single-cell or multicellular form. It was found that B. globigii spores mostly exist in multicellular form with a small minority of single-cell form. The results showed that the portable biochip system has great potential as a device for single-particle or possibly even single-organism detection.  相似文献   

15.
To establish the rapid detection method of airborne bacterial spores, we examined Bacillus anthracis spores by real-time PCR. One hundred liters of air were trapped on a filter of an air monitor device. After it was suspended in PBS, spores of B. anthracis were artificially added. The suspension was also heated at 95 degrees C for 15 min and used for real-time PCR using anthrax-specific primers. A single cell of B. anthracis was detected by real-time PCR within 1 h. Our results provide evidence that anthrax spores from the atmosphere can be detected rapidly, suggesting that real-time PCR provides a flexible and powerful tool to prevent epidemics.  相似文献   

16.
Anthrax is the widespread acute infection disease, affecting animals and humans, refers to the bioterrorist threat agents of category A, because of the high resistance of Bacillus anthracis spores to adverse environmental factors and the ease of receiving them. We obtain a representative panel of 20 monoclonal antibodies against the key component of pathogenic exotoxins, anthrax protective antigen. Quantitative sandwich-ELISA for protective antigen with antibody obtained was developed. Six pairs of monoclonal antibodies showed the detection limit up to 1 ng/ml concentration of the protective antigen in blood serum.  相似文献   

17.
Currently available detectors for spores of Bacillus anthracis, the causative agent of anthrax, are inadequate for frontline use and general monitoring. There is a critical need for simple, rugged, and inexpensive detectors capable of accurate and direct identification of B. anthracis spores. Necessary components in such detectors are stable ligands that bind tightly and specifically to target spores. By screening a phage display peptide library, we identified a family of peptides, with the consensus sequence TYPXPXR, that bind selectively to B. anthracis spores. We extended this work by identifying a peptide variant, ATYPLPIR, with enhanced ability to bind to B. anthracis spores and an additional peptide, SLLPGLP, that preferentially binds to spores of species phylogenetically similar to, but distinct from, B. anthracis. These two peptides were used in tandem in simple assays to rapidly and unambiguously identify B. anthracis spores. We envision that these peptides can be used as sensors in economical and portable B. anthracis spore detectors that are essentially free of false-positive signals due to other environmental Bacillus spores.  相似文献   

18.
We report here the adaptation of our electronic microchip technology towards the development of a new method for detecting and enumerating bacterial cells and spores. This new approach is based on the immuno-localization of bacterial spores captured on a membrane filter microchip placed within a flow cell. A combination of microfluidic, optical, and software components enables the integration of staining of the bacterial species with fully automated assays. The quantitation of the analyte signal is achieved through the measurement of a collective response or alternatively through the identification and counting of individual spores and particles. This new instrument displays outstanding analytical characteristics, and presents a limit of detection of approximately 500 spores when tested with Bacillus globigii (Bg), a commonly used simulant for Bacillus anthracis (Ba), with a total analysis time of only 5 min. Additionally, the system performed well when tested with real postal dust samples spiked with Bg in the presence of other common contaminants. This new approach is highly customizable towards a large number of relevant toxic chemicals, environmental factors, and analytes of relevance to clinical chemistry applications.  相似文献   

19.
A protocol to recover Bacillus anthracis spores from a steel surface using macrofoam swabs was evaluated for its accuracy, precision, reproducibility, and limit of detection. Macrofoam swabs recovered 31.7 to 49.1% of spores from 10-cm2 steel surfaces with a < or =32.7% coefficient of variation in sampling precision and reproducibility for inocula of > or =38 spores.  相似文献   

20.
AIMS: The Cepheid GeneXpert is a four-site, automated sample preparation and real-time PCR detection system. In this study, the capability of the GeneXpert to isolate and detect nucleic acid from Bacillus anthracis Ames spores was assessed. METHODS AND RESULTS: A four-plex, dried-down bead cartridge containing PCR reagents specific for the pXO1 and pXO2 plasmids as well as sample processing and inhibition controls was evaluated. For B. anthracis Ames spores harbouring pXO1 and pXO2, samples containing 68 CFU per ml (148 spores per ml) were positive in all four replicates. A limited cross-reactivity panel, which included closely related Bacillus species, was also tested to determine the specificity of the pXO1 and pXO2 assays. No cross-reactivity occurred. Further, B. anthracis Sterne spore samples were analysed to compare results when processed using the GeneXpert to those run directly on the Cepheid SmartCycler without sample processing. The GeneXpert detection capability was three logs lower than the SmartCycler indicating the benefit of incorporating a nucleic acid extraction procedure. CONCLUSIONS: This study demonstrates that the GeneXpert is a rapid and reliable system for simultaneously detecting the B. anthracis virulence plasmids pXO1 and pXO2. SIGNIFICANCE AND IMPACT OF THE STUDY: The GeneXpert is the only platform currently available that is capable of both nucleic acid purification and real-time PCR detection enclosed within a single system. Further, all sample manipulations are automated, thus reducing errors associated with manual processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号