首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complete nucleotide sequence of an HLA-DP beta 1 gene and part of the adjacent DP alpha 1 gene, up to and including the signal sequence exon, were determined. The sequence of the DP beta 1 gene identified it as the DPw4 allele. The six exons of the DP beta 1 gene spanned over 11,000 bp of sequence. The arrangement of the gene was broadly analogous to genes of other class II beta chains. The beta 1 exon was flanked by introns of over 4 kb. Comparisons with published sequences of cDNA clones indicated that an alternative splice junction, at the 3' end of the gene, is used in at least one allele. Variation in choice of splice junction indicates an additional mechanism for allelic variation in class II genes. The sequence also indicated that the DP beta 1 and DP alpha 1 genes are separated by only 2 kb at their 5' ends. Comparison of the 5' ends of the DP alpha 1 and beta 1 genes with other class II sequences, including the DZ alpha gene, showed conservation of several blocks of sequences thought to be involved in control of expression. Some areas of the introns were partially conserved in the DQ beta gene, and several other intron sequences were homologous to sequences found in other unrelated genes.  相似文献   

2.
3.
Two sequences of major histocompatibility complex (MHC) regions in the domestic cat, 2.976 and 0.362 Mbps, which were separated by an ancient chromosome break (55-80 MYA) and followed by a chromosomal inversion were annotated in detail. Gene annotation of this MHC was completed and identified 183 possible coding regions, 147 human homologues, possible functional genes and 36 pseudo/unidentified genes) by GENSCAN and BLASTN, BLASTP RepeatMasker programs. The first region spans 2.976 Mbp sequence, which encodes six classical class II antigens (three DRA and three DRB antigens) lacking the functional DP, DQ regions, nine antigen processing molecules (DOA/DOB, DMA/DMB, TAPASIN, and LMP2/LMP7,TAP1/TAP2), 52 class III genes, nineteen class I genes/gene fragments (FLAI-A to FLAI-S). Three class I genes (FLAI-H, I-K, I-E) may encode functional classical class I antigens based on deduced amino acid sequence and promoter structure. The second region spans 0.362 Mbp sequence encoding no class I genes and 18 cross-species conserved genes, excluding class I, II and their functionally related/associated genes, namely framework genes, including three olfactory receptor genes. One previously identified feline endogenous retrovirus, a baboon retrovirus derived sequence (ECE1) and two new endogenous retrovirus sequences, similar to brown bat endogenous retrovirus (FERVmlu1, FERVmlu2) were found within a 140 Kbp interval in the middle of class I region. MHC SNPs were examined based on comparisons of this BAC sequence and MHC homozygous 1.9x WGS sequences and found that 11,654 SNPs in 2.84 Mbp (0.00411 SNP per bp), which is 2.4 times higher rate than average heterozygous region in the WGS (0.0017 SNP per bp genome), and slightly higher than the SNP rate observed in human MHC (0.00337 SNP per bp).  相似文献   

4.
The HLA-D region of the human major histocompatibility complex encodes the genes for the alpha and beta chains of the DP, DQ and DR class II antigens. A cDNA clone encoding a new class II beta chain (designated DO) was isolated from a library constructed from mRNA of a mutant B-cell line having a single HLA haplotype. Complete cDNA clones encoding the four isotypic beta chains of the DR1, DQw1, DPw2 and putative DO antigens were sequenced. The DO beta gene was mapped in the D region by hybridization with DNA of HLA-deletion mutants. DO beta mRNA expression is low in B-cell lines but remains in mutant lines which have lost expression of other class II genes. Unlike other class II genes DO beta is not induced by gamma-interferon in fibroblast lines. The DO beta gene is distinct from the DP beta, DQ beta and DR beta genes in its pattern of nucleotide divergence. The independent evolution and expression of DO beta suggest that it may be part of a functionally distinct class II molecule.  相似文献   

5.
Rabbit MHC. II. Sequence analysis of the R-DP alpha- and beta-genes   总被引:1,自引:0,他引:1  
Molecular genetics studies have recently revealed complexity in the MHC class II region that has not been detected by previous serologic and genetic studies. In humans, three subregions, DP, DQ, and DR, of the class II genes as well as the DZ alpha and DO beta genes, have been extensively characterized. Although homologs of these human genes were identified in many species, their expressibility has not been well defined in species other than the mouse. We have previously cloned the rabbit homologs of the HLA-DP alpha and beta genes whose protein products had never been detected. The sequences of rabbit DP alpha 1 and DP beta genes are reported herein and they indicate that the rabbit DP genes encode functional alpha- and beta-chains. Unfavorable nucleotides surrounding the first AUG codon may, however, reduce the translational efficiency of the R-DP beta mRNA and explain the difficulty in generating serologic reagents specific for rabbit DP molecules. A complex mutation in the beta 1 domain of the R-DP beta gene was similar to the one found in the H-2A beta 1 gene of five strains of mice. The origin of this mutation is discussed.  相似文献   

6.
To gain an understanding of the genomic structure and evolutionary history of the giant panda major histocompatibility complex (MHC) genes, we determined a 636,503-bp nucleotide sequence spanning the MHC class II region. Analysis revealed that the MHC class II region from this rare species contained 26 loci (17 predicted to be expressed), of which 10 are classical class II genes (1 DRA, 2 DRB, 2 DQA, 3 DQB, 1 DYB, 1 DPA, and 2 DPB) and 4 are non-classical class II genes (1 DOA, 1 DOB, 1 DMA, and 1 DMB). The presence of DYB, a gene specific to ruminants, prompted a comparison of the giant panda class II sequence with those of humans, cats, dogs, cattle, pigs, and mice. The results indicated that birth and death events within the DQ and DRB-DY regions led to major lineage differences, with absence of these regions in the cat and in humans and mice respectively. The phylogenetic trees constructed using all expressed alpha and beta genes from marsupials and placental mammals showed that: (1) because marsupials carry loci corresponding to DR, DP, DO and DM genes, those subregions most likely developed before the divergence of marsupials and placental mammals, approximately 150 million years ago (MYA); (2) conversely, the DQ and DY regions must have evolved later, but before the radiation of placental mammals (100 MYA). As a result, the typical genomic structure of MHC class II genes for the giant panda is similar to that of the other placental mammals and corresponds to BTNL2∼DR1∼DQ∼DR2∼DY∼DO_box∼DP∼COL11A2. Over the past 100 million years, there has been birth and death of mammalian DR, DQ, DY, and DP genes, an evolutionary process that has brought about the current species-specific genomic structure of the MHC class II region. Furthermore, facing certain similar pathogens, mammals have adopted intra-subregion (DR and DQ) and inter-subregion (between DQ and DP) convergent evolutionary strategies for their alpha and beta genes, respectively.  相似文献   

7.
8.
Sequence and functional analyses were undertaken on two cDNAs and a genomic clone encoding horse major histocompatibility complex (MHC) class I molecules. All of the clones were isolated from a single horse that is homozygous for all known horse MHC class I and class II antigens. The two cDNAs (clones 8-9 and 1-29) were isolated from a lymphocyte library and encode polymorphic MHC antigens from two loci. The genomic cosmid clone, isolated from a sperm library, contains the 8-9 gene. All three genes were expressed in mouse L-cells and were recognized by alloantisera and, for the cDNAs, by alloreactive cytotoxic T lymphocytes. A total of 3815 bp of the genomic clone were sequenced, extending from 429 bp upstream (5') of the leader peptide through the 3' untranslated region. Promoter region motifs and an intron-exon structure characteristic of MHC class I genes of other species were found. A subclone containing 407 bp of the promoter region was inserted into a chloramphenicol acetyl transferase reporter plasmid, tested in transient transfection assays, and found to have promoter activity in heterologous cells. This genomic clone will enable detailed studies of MHC class I gene regulation in horse trophoblasts, and in horse retroviral infections.  相似文献   

9.
10.
The human major histocompatibility complex contains the genes for at least three different types of class II antigens, DR, DC and SB (DR, DQ and DP). They are all composed of an alpha and a beta chain. We have cloned a chromosomal region of 70 kb containing the SB (DP) gene family in overlapping cosmid clones. This segment contains two alpha genes and two beta genes, located in the order SB alpha 1, SB beta 1, SB alpha 2 and SB beta 2. The orientation of the alpha genes is reversed compared with that of the beta genes. This organisation suggests that the SB region has arisen by duplication of a chromosomal segment encompassing one alpha and one beta gene. Partial nucleotide sequences of the SB alpha 1 and SB beta 1 exons demonstrate that the genes correspond to SB alpha and beta cDNA clones. Consequently these genes are expressed. In contrast nucleotide sequence determination of the SB alpha 2 gene shows that it is a pseudogene.  相似文献   

11.
The chimpanzee (Pan troglodytes) is an important model for studying the immune response to several human pathogens, but the study of correlates of immunity has been hindered by the fact that little is known about the epitope-binding specificity of chimpanzee (Patr) class I MHC. In the present study we have characterized the peptide binding specificity of several common Patr class I molecules. Using single amino acid substitution analogs and large peptide libraries, quantitative peptide binding motifs have been derived for Patr A*0101, A*0701, A*0901, B*0101, and B*2401. Each molecule was found to bind peptides using position 2 and the C terminus as main anchor contacts. On the other hand, each Patr molecule is associated with a unique binding specificity, and the range of specificities is similar to that seen amongst HLA alleles. A high degree of cross-reactivity was noted between Patr A*0701 and Patr A*0901, suggesting the existence of a Patr-specific supertype. Consistent with previous studies suggesting that some cross-reactivity may exist between HLA and Patr alleles, Patr A*0901 was found to have an appreciable degree of cross-reactivity with molecules of the HLA A24-supertype. Finally, utilizing motif scans and peptide binding and intracellular cytokine staining assays, 77 hepatitis B virus (HBV)-derived epitopes were identified in five chimpanzees that were recently convalescent from acute HBV infection. Because the Patr alleles studied herein were found to be very common in two different chimpanzee populations, the present data should facilitate the use of chimpanzees for immunological studies.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

12.
A genomic library was constructed from sperm DNA from an individual of the inbred chicken line G-B2, MHC haplotype B6. The library was screened with a chicken class II probe (beta 2 exon specific) and three MHC class II beta chain genomic clones were isolated. The restriction maps of the three clones showed that each of the three clones was unique. The position of the beta chain sequence was located in each of the three genomic clones by Southern blot hybridization. Subclones containing the beta chain gene were produced from each of the genomic clones and the orientation of the leader peptide, beta 1, beta 2, transmembrane, and cytoplasmic exons was determined by Southern blot hybridization and nucleotide sequencing. The complete nucleotide sequence of two of the three subclones was determined. Comparison of the nucleotide and predicted amino acid sequences of the two subclones with other class II beta chain sequences showed that the B6 chicken beta chain genes are evolutionarily related to the class II beta chain genes from chickens of other MHC haplotypes, and to class II beta chain genes from other species. Analysis of Southern blots of B6 chicken DNA, as well as the isolation of the three beta chain genes, suggests that chickens of the B6 haplotype possess at least three MHC class II beta chain genes.  相似文献   

13.
MHC class II molecules are composed of one α-chain and one β-chain whose membrane distal interface forms the peptide binding groove. Most of the existing knowledge on MHC class II molecules comes from the cis-encoded variants where the α- and β-chain are encoded on the same chromosome. However, trans-encoded class II MHC molecules, where the α- and β-chain are encoded on opposite chromosomes, can also be expressed. We have studied the trans-encoded class II HLA molecule DQ2.3 (DQA1*03:01/DQB1*02:01) that has received particular attention as it may explain the increased risk of certain individuals to type 1 diabetes. We report the x-ray crystal structure of this HLA molecule complexed with a gluten epitope at 3.05 Å resolution. The gluten epitope, which is the only known HLA-DQ2.3-restricted epitope, is preferentially recognized in the context of the DQ2.3 molecule by T-cell clones of a DQ8/DQ2.5 heterozygous celiac disease patient. This preferential recognition can be explained by improved HLA binding as the epitope combines the peptide-binding motif of DQ2.5 (negative charge at P4) and DQ8 (negative charge at P1). The analysis of the structure of DQ2.3 together with all other available DQ crystal structures and sequences led us to categorize DQA1 and DQB1 genes into two groups where any α-chain and β-chain belonging to the same group are expected to form a stable heterodimer.  相似文献   

14.
A method is described for scanning relatively large fragments of DNA for sequences which bind nuclear factors. This method was used to identify an octamer (ATTTGTAT) in the DQ beta gene upstream region which differs from the immunoglobulin gene octamer (ATTTGCAT) by only 1 bp. The DQ beta gene octamer binds two proteins, one (B2) appears to be B cell specific while the other (B1) is not. These factors are either similar or identical to factors which bind to the octamer motif in immunoglobulin genes. All other class II MHC genes for which sequence information is available contain an octamer motif in their upstream region. Thus, the possibility that these sequences regulate B cell specific expression of class II MHC genes requires careful evaluation.  相似文献   

15.
The polyclonal nature of T cells expanding in an ongoing immune response results in a range of disparate affinities and activation potential. Recently developed human class II tetramers provide a means to analyze this diversity by direct characterization of the trimolecular TCR-peptide-MHC interaction in live cells. Two HSV-2 VP16(369-379)-specific, DQA1*0102/DQB1*0602 (DQ0602)-restricted T cell clones were compared by means of T cell proliferation assay and HLA-DQ0602 tetramer staining. These two clones were obtained from the same subject, but show different TCR gene usage. Clone 48 was 10-fold more sensitive to VP16(369-379) peptide stimulation than clone 5 as assayed by proliferation assays, correlating with differences in MHC tetramer binding. Clone 48 gave positive staining with the DQ0602/VP16(369-379) tetramer at either 23 or 37 degrees C. Weak staining was also observed at 4 degrees C. Clone 5 showed weaker staining compared with clone 48 at 37 degrees C, and no staining was observed at 23 degrees C or on ice. Receptor internalization was not required for positive staining. Competitive binding indicates that the cell surface TCR of clone 48 has higher affinity for the DQ0602/VP16(369-379) complex than clone 5. The higher binding affinity of clone 48 for the peptide-MHC complex also correlates with a slower dissociation rate compared with clone 5.  相似文献   

16.
The genomic sequences within the alpha-block (approximately 288-310 kb) of the human and chimpanzee MHC class I region contains ten MHC class I genes and three MIC gene fragments grouped together within alternating duplicated genomic segments or duplicons. In this study, the chimpanzee and human genomic sequences were analyzed in order to determine whether the remnants of the ERVK9 and other retrotransposon sequences are useful genomic markers for reconstructing the evolutionary history of the duplicated MHC gene families within the alpha-block. A variety of genes, pseudogenes, autologous DNA transposons and retrotransposons such as Alu and ERVK9 were used to categorize the ten duplicons into four distinct structural groups. The phylogenetic relationship of the ten duplicons was examined by using the neighbour joining method to analyze transposon sequence topologies of selected Alu members, LTR16B and Charlie9. On the basis of these structural groups and the phylogeny of the duplicated transposon sequences, a duplication model was reconstructed involving four multipartite tandem duplication steps to explain the organization and evolution of the ten duplicons within the alpha-block of the chimpanzee and human. The phylogenetic analysis and inferred duplication history suggests that the Patr/HLA-F was the first MHC class I gene to have been fixed and not required as a precursor for further duplication within the alpha-block of the ancestral species.  相似文献   

17.
By cross-hybridization in low stringency conditions, using a probe derived from an HLA-DQ beta cDNA clone, we have isolated several chicken genomic DNA clones. These clones were mapped to the major histocompatibility complex (MHC) of the chick (B complex) by virtue of their ability to detect restriction enzyme length polymorphisms between congenic lines of chicken. Evidence was obtained for the presence of at least three B-L beta genes in the chicken genome. The B-L beta genes are transcribed specifically in tissues containing cells of the B lymphocyte and myeloid lineages and expressing the B-L antigens. Exons encoding the beta 1, beta 2 and transmembrane domains of a B-L beta chain have been identified with 63, 66 and 62% similarity with the HLA-DQ beta sequence. This first isolation of an MHC class II gene outside of the mammalian class provides insight into the evolution of MHC genes based on the comparison of avian and mammalian class II beta chain amino acid and nucleotide sequences.  相似文献   

18.
19.
A cDNA clone encoding the soluble guanylyl cyclase alpha2 subunit was isolated from medaka fish (Oryzias latipes) and designated as OlGCS-alpha2. The OlGCS-alpha2 cDNA was 3,192 bp in length and the open reading frame (ORF) encodes a protein of 805 amino acids. The deduced amino acid sequence has high similarity to that of the mammalian alpha2 subunit gene except for the N-terminal regulatory domain. The C-terminal 5 amino acids, "RETSL", which have been reported to interact with the post synaptic density protein (PSD)-95 were conserved. An RNase protection assay with adult fish organs showed that OlGCS-alpha2 was expressed mainly in the brain and testis. The complete nucleotide sequence (about 41 kbp) of the OlGCS-alpha2 genomic DNA clone isolated from a medaka fish BAC library indicated that the OlGCS-alpha2 gene consisted of 9 exons and 8 introns. The 5'-flanking region and larger introns, such as introns 1, 4, and 7, contained the several fragments conserved in the nucleotide sequences of Rex6 (non-long terminal repeat retrotransposon), MHC class I genomic region, and OlGC1, the medaka fish homolog of the mammalian guanylyl cyclase B gene. Linkage analysis on the medaka fish chromosome demonstrated that the OlGCS-alpha2 gene was mapped to LG13; this mapping position was different from those for the OlGCS-alpha1 and OlGCS-beta1 genes (LG1).  相似文献   

20.
The nucleotide sequence of a complete cDNA gene from a DP4-positive HLA-homozygous cell line, PGF, has been determined. This sequence is identical to the exon sequences in a genomic clone derived from another DP4-positive cell line, Priess. In contrast, our DP cDNA sequence shares only limited homology with partial cDNA sequences obtained from clones of three DP4-negative cell lines. On the basis of these results, we conclude that the phenotypic variation of DP alleles is directly attributable to the nucleotide sequence heterogeneity of DP-beta genes. That is, each phenotypic allelic form of DP antigen corresponds to a distinctly different DP-beta gene. Furthermore, this correspondence is found to be unaffected by the markers present at the DQ and DR loci, since the haplotypes of the PGF and Priess cell lines are, respectively, DR2,DQw1,DP4 and DR4,DQw3,DP4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号