首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a novel plasmonic lens design consisting of an annular slit and concentric grooves. The simulation results show that under radially polarized illumination, a super-resolution long depth of focus (DOF) spot can be achieved in optical meso-field due to the constructive interference of scattered light by the concentric grooves. We also analyze the influence of depth-tuned annular grooves on focusing performance, including focal length, DOF, and full-width half-maximum. Moreover, focusing efficiency can be enhanced (~350 %) by introducing a circular metallic grating which surrounds the annular slit. This plasmonic lens has potential applications in nano-imaging and nano-photolithography.  相似文献   

2.
In this paper, we study the nanoscale-focusing effect in the far field for a spiral plasmonic lens with a concentric annular groove by using finite-difference time domain simulation. The simulation result demonstrates that a left-hand spiral plasmonic lens can concentrate an incident right-hand circular polarization light into a focal spot at the exit surface. And this spot can be focused into far field due to constructive interference of the scattered light by the annular groove. The focal length and the focal depth can be adjusted by changing the groove radius and number of grooves within a certain range. These properties make it possible to probe the signal of spiral plasmonic lens in far field by using conventional optical devices.  相似文献   

3.
Cheng  Lin  Cao  Pengfei  Li  Yuee  Kong  Weijie  Zhao  Xining  Zhang  Xiaoping 《Plasmonics (Norwell, Mass.)》2012,7(1):175-184
We design a new nanofocusing lens for far-field practical applications. The constructively interference of cylindrical surface plasmon launched by the subwavelength metallic structure can form a subdiffraction-limited focus, which is modulated by the dielectric grating from the near field to the far field. The principle of designing such a far-field nanofocusing lens is elucidated in details. The numerical simulations demonstrated that nanoscale focal spot (0.12λ 2) can be realized with 3.6λ in depth of focus and 4.5λ in focal length by reasonably designing parameters of the grating. The focusing efficiency can be 7.335, which is much higher than that of plasmonic microzone plate-like lenses. A blocking chip can enhance the focusing efficiency further as the reflected waves at the entrance would be recollected at the focus. By controlling the number of the grooves in the grating, the focal length can be tuned easily. This design method paved the road for utilizing the plasmonic lens in high-density optical storage, nanolithography, superresolution optical microscopic imaging, optical measurement, and sensing.  相似文献   

4.
An Integrated Multistage Nanofocusing System   总被引:1,自引:0,他引:1  
We demonstrate an integrated multistage nanofocusing system which combines a conventional objective, a surface plasmonic lens, and a center-positioned rounded-tip cone nanoparticle. The surface plasmonic lens, fabricated on the cover glass which has been mounted on the biological microscopic objective, is composed of several concentric annular slits for exciting propagating surface plasmonic wave. The rounded-tip cone nanoparticle is for further generating non-propagating localized surface plasmonic wave. It is revealed that the enhancement of the nanoscale optical field can be improved by carefully choosing the appropriate numerical aperture of the objective to match the specific nanostructure of the surface plasmonic lens and choosing the relatively big cone angle of the nanoparticle. The investigation shows that a highly confined electric field as small as 20 nm and an enhancement factor of 5 orders of magnitude can be achieved through this multistage nanofocusing system when the system is illuminated with a uniform radially polarized beam.  相似文献   

5.
We present theoretical studies of three regions for plasmonic focusing, which are surface plasmon-dominating, Fresnel, and Fraunhoffer regions. The boundaries of the three regions are defined and the physical behaviors of plasmonic lenses in terms of focal length and focus size in these regions are investigated. A plasmonic lens that renders a subdiffraction-limit focus in the Fresnel region is presented and the lens performance with respect to the design parameters is studied by using finite-difference time-domain simulations. This work can serve as a basis for understanding plasmonic-focusing phenomenon and designing plasmonic lenses for various applications.  相似文献   

6.
A compact plasmonic lens is proposed in this paper. This plasmonic lens consists of rectangular holes etched on the silver film and arranged on one straight line and possesses the characteristics of short focus length, ultrathin thickness, and strong focus ability. The theoretical design for the plasmonic lens abides by the constructive interference theorem, and the surface plasmon polaritons excited by the holes with linearly polarized light illumination focuses effectively. The plasmonic lenses with single and double focus spots are provided, and the simulation experiment gives the powerful verification. The distinct structure feature and the excellent focusing characteristic of this plasmonic lens are benefit for its applications in optical integration.  相似文献   

7.
In this paper, we investigate the focusing properties of a plasmonic lens with multiple-turn spiral nano-structures, and analyze its field enhancement effect based on the phase matching theory and finite-difference time-domain simulation. The simulation result demonstrates that a left-hand spiral plasmonic lens can concentrate an incident right-hand circular polarization light into a focal spot with a high focal depth. The intensity of the focal spot could be controlled by altering the number of turns, the radius and the width of the spiral slot. And the focal spot is smaller and has a higher intensity compared to the incident linearly polarized light. This design can also eliminate the requirement of centering the incident beam to the plasmonic lens, making it possible to be used in plasmonic lens array, optical data storage, detection, and other applications.  相似文献   

8.
A multiple-wavelength focusing and demultiplexing plasmonic lens based on asymmetric nanoslit arrays is designed. The nanoslit arrays are perforated in a gold film and act as metal–insulator–metal plasmonic waveguides. By manipulating the widths of the slit arrays, the plasmonic lens can concentrate two incident plane wave beams to two separated focal points corresponding to their wavelengths. The full wave simulation is performed to verify the designed lens. This work provides a way to design more compact and integrated wavelength-division multiplexing plasmonic devices for nanophotonic communication and spectral imaging.  相似文献   

9.
We design and fabricate a nonplanar two-stage surface plasmonic lens composed of concentric circular slits for exciting propagating surface plasmonic wave and a center-positioned cone-like nanoparticle for generating localized surface plasmonic waves. The numerical investigation based on the finite difference in time domain method is performed. It is found that, when a radially polarized beam illumination is applied, a highly confined electric field with full width half maximum of as small as 6 nm and the transmission enhancement factor of six orders higher than the incident beam is achievable. The optimization design is conducted through comparison of different conic angles and different materials of the cone-like nanoparticles.  相似文献   

10.
A plasmonic lens with variant periods was investigated for optical behavior at near-field by means of numerical computational method. To study influence of incident light on different polarization modes, we considered linear polarization, circular polarization, elliptical polarization, radial polarization (RP), and azimuthally polarization in our computational analyses. A finite difference and time domain algorithm is employed in the numerical study. Our computational numerical calculation results demonstrate that focusing performance for the plasmonic lens illuminated under radial polarization is best in comparison to that of the illumination with the other four polarization states. The plasmonic lens with RP illumination can realize superfocusing with ultra-long depth of focus. It is possible to be used as an optical probe or a type of plasmonic lens for imaging with high resolution in the near future.  相似文献   

11.
A polarization-controlled tunable plasmonic lens which can generate different multi-focal combinations with exciting sources of left and right circular polarizations is proposed in this paper. Both position and intensity of each focal point can be adjusted by modulating the structure of the plasmonic lens. It is believed that the polarization-controlled tunable plasmonic multi-focal lens can be potentially used for optical switches and multi-channel couplers in future logic photonic and plasmonic systems.  相似文献   

12.
We report plasmonic lenses consisting of coupled nanoslits immersed in a high-index medium to obtain the robustly efficient superfocusing. Based on the geometrical optics and the wavefront reconstruction theory, an array of nanoslits perforated in a gold film and a series of spacings between adjacent nanoslits are optimally designed to realize the desired phase modulation for light focusing. The numerical results verify the design of each plasmonic lens in excellent agreement. For the given total phase difference of 2π, the immersion plasmonic lenses with smaller lens aperture can have much better focusing performance than the non-immersion one. A superfocusing spot of λ/4.39 is achieved using an oil immersion plasmonic lens with an aperture size of 4.97λ, resulting in a resolution improvement of 68.9 % compared with the non-immersion lens. Moreover, such superfocusing performance can be still well kept when the structural parameters of the lens, e.g., nanoslit width and metal film thickness, are deviated from the original design, making the final implementation of the superfocusing lenses much easier.  相似文献   

13.

Although spiral plasmonic lens has been proposed as circular polarization analyzer, there is no such plasmonic nanostructure available for linear polarization. In the current work, we have designed nano-corral slits (NCS) plasmonic lens, which focuses the x- and y-polarized light into spatially distinguished plasmonic fields. We have calculated analytically and numerically the electric field intensity and phase of the emission from nano-corral slits plasmonic lens with different pitch lengths under various polarizations of the illumination. It has been shown that one can control the wave front of the output beam of these plasmonic lenses by manipulating the illumination of both circular and linear polarization. Our theoretical study in correlation with FDTD simulation has shown that NCS plasmonic lens with pitch length equal to λspp produces scalar vortex beam having optical complex fields with helical wave front and optical singularity at the center under circular polarization of light. When NCS lens (pitch = λspp) is illuminated with linearly polarized light, it exhibits binary distribution of phase with same electric field intensity around the center. However, with pitch length of 0.5λspp, NCS shows linear dichroism under linearly polarized illumination unlike spiral plasmonic lens (SPL) eliminating the use of circularly polarized light. Optical complex fields produced by these NCS plasmonic lenses may find applications for faster quantum computing, data storage, and telecommunications.

  相似文献   

14.
Active plasmonic devices are mostly designed at visible frequencies. Here, we propose an active terahertz (THz) plasmonic lens tuned by an external magnetic field. Unlike other tunable devices where the tuning is achieved by changing the plasma frequency of materials, the proposed active lens is tuned by changing the cyclotron frequency through manipulating magnetoplasmons (MPs). We have theoretically investigated the dispersion relation of MPs of a semiconductor?Cinsulator?Csemiconductor structure in the Voigt configuration and systematically designed several lenses realized with a doped semiconductor slab perforated with sub-wavelength slits. It is shown through finite?Cdifference time?Cdomain simulations that THz wave propagating through the designed structure can be focused to a small size spot via the control of MPs. The tuning range of the focal length under the applied magnetic field (up to 1?T) is ??3??, about 50% of the original focal length. Various lenses, including one with two focal spots and a tunable lens for dipole source imaging, are realized for the proposed structure, demonstrating the flexibility of the design approach. The proposed tunable THz plasmonic lenses may find applications in THz science and technology such as THz imaging.  相似文献   

15.
This study investigates whether the resonant tunneling intensity of one groove of a metal film with periodic grooves on both surfaces can be enhanced by adjusting the relative permittivity of adjacent grooves of the emitting plane. As the relative permittivity of the side grooves of the emitting plane increases, the emission intensity of the center groove first increases but eventually saturates. This property is mainly attributable to concentration of incident intensity in the center groove of the incident plane. Larger numbers of lumped grooves or larger distances between two adjacent grooves increases the intensity of light entering the system, which ultimately increases the intensity of emitted light. This enhanced emission intensity achieved by resonant tunneling effects has potential applications in future plasmonic transistor designs.  相似文献   

16.
The three-dimensional organization of the eye lenses of the chicken, the canary, the song-thrush and the kestrel was studied using light and scanning electron microscopy. The lenses of birds are characterized by the presence of two distinct compartments: the annular pad and the main lens body, separated by a cavum lenticuli. The annular pad fibers had a hexagonal circumference all contained a round nucleus and except for the canary were smooth-surfaced and lacking anchoring devices. In the canary, however, the annular pad fibers were studded with edge protrusions and ball-and-socket junctions. The semicircular main lens body fibers of all four species were studded with ball-and-socket junctions and edge protrusions. In contrast with mammals these anchoring devices were present throughout the lens up to the embryonal nucleus. Superficially the main lens body fibers were extremely flat. Additionally membrane elevations and depressions and globular elements were found on these central fibers in three species, the kestrel being the exception. At the transition between annular pad and main lens body the fibers turned their course and the nuclei became oval and disappeared in the deeper aspect of the main lens body. The cavum lenticuli was filled with globules tied off from the annular pad fibers. It seems attractive to assume that the presence of a separated annular pad, a cavum lenticuli filled with globular elements, the extreme flatness of the superficial central fibers and the studding of these central fibers with anchoring devices up to the embryonal nucleus are morphological expressions of the mouldability of the bird's eye lenses and consequently would explain their efficient accommodative mechanism including formation of a lenticonus. The presence of nuclei in the annular pad fibers and their typical change at the transitional zone between annular pad and main lens body are suggestive for a two-phased differentiation in bird's lens fibers: differentiation of the germinative epithelial cells to annular pad fibers which migrate to the main lens body after which they differentiate further to main lens body fibers.  相似文献   

17.
In this paper, we consider a circular central aperture surrounded with annular depth-tuned grooves and investigate the beaming effect of the structure under illumination of a circularly polarized (CP) plane wave. As a CP plane wave is equivalent to the superposition of two linearly polarized plane waves (TM and TE) with a phase difference of π/2, the superposition of the electric field intensity, ( | Ex |2 + | Ey |2 ) \left( {{{\left| {E_x} \right|}^2} + {{\left| {E_y} \right|}^2}} \right) , is observed in the transmission field. In addition, two plasmonic modes are found at the resonant wavelengths λ 1 and λ 2 with each consisting of multiple wavelengths. At the wavelength λ 1 = 420 nm, the significant near-field collimation is formed along the direction z, having a long propagation distance up to 1.75 μm (≈4λ) away from the exit plane of the new plasmonic lens.  相似文献   

18.
A super lens system is proposed to achieve subdiffraction limit demagnification imaging. The super lens system consists of a hyperlens with planar input and output surfaces, a metal superlens, and a plasmonic reflector. By employing the hyperlens to transform evanescent waves into propagating waves and employing the metal superlens and the plasmonic reflector to amplify evanescent waves, the super lens system can produce a subdiffraction limit image with relatively high electric field intensity. The reduction factor of the super lens system depends on the geometric parameters of the hyperlens. Simulation results show that an image with a half-pitch resolution of about one tenth the operating wavelength and a reduction factor of about 2.2 can be produced by the super lens system. The proposed super lens system has potential applications in nanolithography.  相似文献   

19.

Various photonic integrated components have been implemented by ultra-thin silicon-on-insulator (SOI) waveguides; therefore, it is desirable to couple ultra-thin SOI waveguides to plasmonic waveguides. In this paper, we present an ultra-thin SOI waveguide to a metal-dielectric-metal plasmonic waveguide based on a lens-funnel structure consisting of truncated Luneburg lens and metallic parabolic funnel. The lens is implemented by varying the guiding layer thickness. The effect of different parameters of the coupler’s geometry is studied using the finite-difference time-domain method. The 1.13-μm-long coupler improves the average coupling efficiency in the C-band from 66.4 to 82.1%. The numerical simulations indicate that the coupling efficiency is higher than 69% in the entire O, E, S, C, L, and U bands of optical communication.

  相似文献   

20.
In this paper, we discussed the influence of a plasmonic lens with V-shaped metallic subwavelength slits and variant periods on transmission properties. In order to analyze the influence, a finite-difference time-domain numerical algorithm was adopted for computational numerical simulation of the plasmonic structures. The structures are flanked with the penetrated slits through a metal (Ag) film which is coated on a quartz substrate. Our simulation results demonstrated that different cone angles originated from the V-shaped slits generate different influences on the beam propagation. The width variation affects the intensity significantly. The cone angles formed by the V-shaped slits can change the focusing performance. These results are very encouraging for future study of the plasmonic lens-based applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号