首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new lumped model of flow driven by pumping without valves is presented, motivated by biomedical applications: the circulation of the human fetus before the development of the heart valves and mechanism of blood flow during the external cardiopulmonary resuscitation (CPR). The phenomenon of existence of a unidirectional net flow around a loop of tubing that consists of two different compliances is called valveless pumping. The lumped parameter model of valveless pumping in this paper is governed by the ordinary differential equations for pressure and flow, with time-dependent compliance, resistance, and inertia. This simple model can represent the essential features of valveless pumping we observed in earlier mathematical models and physical experiments of valveless pumping. We demonstrate that not only parameters of the driving function, such as frequency or amplitude, but also physical parameters, such as wall thickness and tube stiffness, are important in determining the direction and magnitude of a net flow. In this system, we report two new and interesting phenomena of valveless pumping: One is that the shifted peak frequency can be predicted by the pulsewave speed and the other is that time-dependent resistance is a crucial factor in generating valveless pumping. We also demonstrate that this lumped model can be extended to a one-dimensional flow model of valveless pumping and explain why a linear case, the case of the constant compliance, resistance, and inertia, generates almost zero net flow. This emphasizes that the nonlinearity of valveless pumping is also an important factor to generate a net flow in a closed loop model of valveless pumping.  相似文献   

2.
3.

Background  

In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level.  相似文献   

4.

Background  

Accurate protein loop structure models are important to understand functions of many proteins. Identifying the native or near-native models by distinguishing them from the misfolded ones is a critical step in protein loop structure prediction.  相似文献   

5.

Introduction

Synovial metaplasia around a prosthesis and in particular around silicone breast implants has been noted by various investigators, but has unknown clinical significance. We report on a patient where a large amount of synovial fluid mimicked rupture of an implant. We believe this to be an unusual clinical presentation of this phenomenon. Review of the English language literature failed to identify a comparable case.

Case presentation

A 25-year-old woman had undergone bilateral breast augmentation for cosmetic reasons. One implant was subsequently subjected to two attempts at expansion to correct asymmetry. The patient was later found to have a large quantity of viscous fluid around the port of that same prosthesis. Histological assessment of the implant had consequently confirmed capsular synovial metaplasia. This had initially caused the suspicion of a silicone 'bleed' from the implant and had resulted in an unnecessary explantation.

Conclusion

Capsular synovial metaplasia should be ruled out before the removal of breast implants where a leak is suspected. Manipulation and expansion of an implant may be risk factors for the development of synovial metaplasia.
  相似文献   

6.

Background  

Although the role of the osteoclast in bone resorption is becoming better understood, much remains to be learned about osteoclastogenesis and the exact mechanism of action of anti-resorbing agents such as 17β-estradiol. This study investigated bone and morphologic osteoclast alterations following long-term estrogen administration to the B6D2F1 mouse. B6D2F1 mice aged 4-5 weeks were exposed to high levels of estrogen via implanted silastic tubing for at least 12 weeks; controls received empty tubing. Femurs of control and treated mice were assessed with radiology, quantitative histomorphometry and transmission electron microscopy.  相似文献   

7.

Background  

The pressure drop - flow relations in myocardial bridges and the assessment of vascular heart disease via fractional flow reserve (FFR) have motivated many researchers the last decades. The aim of this study is to simulate several clinical conditions present in myocardial bridges to determine the flow reserve and consequently the clinical relevance of the disease. From a fluid mechanical point of view the pathophysiological situation in myocardial bridges involves fluid flow in a time dependent flow geometry, caused by contracting cardiac muscles overlying an intramural segment of the coronary artery. These flows mostly involve flow separation and secondary motions, which are difficult to calculate and analyse.  相似文献   

8.

Background  

Proteins of the tetraspanin family contain four transmembrane domains (TM1-4) linked by two extracellular loops and a short intracellular loop, and have short intracellular N- and C-termini. While structure and function analysis of the larger extracellular loop has been performed, the organization and role of transmembrane domains have not been systematically assessed.  相似文献   

9.

Background  

Cardiac tamponade is a condition whereby fluid accumulation in the pericardial sac surrounding the heart causes elevation and equilibration of pericardial and cardiac chamber pressures, reduced cardiac output, changes in hemodynamics, partial chamber collapse, pulsus paradoxus, and arterio-venous acid-base disparity. Our large-scale model of the human cardiovascular-respiratory system (H-CRS) is employed to study mechanisms underlying cardiac tamponade and pulsus paradoxus. The model integrates hemodynamics, whole-body gas exchange, and autonomic nervous system control to simulate pressure, volume, and blood flow.  相似文献   

10.
11.

Objective  

The aim of this study was to compare a theoretical neural net model with MEG data from epileptic patients and normal individuals.  相似文献   

12.

Background  

This simulation study investigated potential modulations of total peripheral resistance (TPR), due to distributed peripheral vascular activity, by means of a lumped model of the arterial tree and a non linear model of microcirculation, inclusive of local controls of blood flow and tissue-capillary fluid exchange.  相似文献   

13.

Purpose  

Coronary artery bypass graft (CABG) surgery represents the standard treatment of advanced coronary artery disease. Two major types of anastomosis exist to connect the graft to the coronary artery, i.e., by using an end-to-side or a side-to-side anastomosis. There is still controversy because of the differences in the patency rates of the two types of anastomosis. The purpose of this paper is to non-invasively quantify hemodynamic parameters, such as mass flow and wall shear stress (WSS), in end-to-side and side-to-side anastomoses of patients with CABG using computational fluid dynamics (CFD).  相似文献   

14.

Background

Many biological soft tissues are hydrated porous hyperelastic materials, which consist of a complex solid skeleton with fine voids and fluid filling these voids. Mechanical interactions between the solid and the fluid in hydrated porous tissues have been analyzed by finite element methods (FEMs) in which the mixture theory was introduced in various ways. Although most of the tissues are surrounded by deformable membranes that control transmembrane flows, the boundaries of the tissues have been treated as rigid and/or freely permeable in these studies. The purpose of this study was to develop a method for the analysis of hydrated porous hyperelastic tissues surrounded by deformable membranes that control transmembrane flows.

Results

For this, we developed a new nonlinear finite element formulation of the mixture theory, where the nodal unknowns were the pore water pressure and solid displacement. This method allows the control of the fluid flow rate across the membrane using Neumann boundary condition. Using the method, we conducted a compression test of the hydrated porous hyperelastic tissue, which was surrounded by a flaccid impermeable membrane, and a part of the top surface of this tissue was pushed by a platen. The simulation results showed a stress relaxation phenomenon, resulting from the interaction between the elastic deformation of the tissue, pore water pressure gradient, and the movement of fluid. The results also showed that the fluid trapped by the impermeable membrane led to the swelling of the tissue around the platen.

Conclusions

These facts suggest that our new method can be effectively used for the analysis of a large deformation of hydrated porous hyperelastic material surrounded by a deformable membrane that controls transmembrane flow, and further investigations may allow more realistic analyses of the biological soft tissues, such as brain edema, brain trauma, the flow of blood and lymph in capillaries and pitting edema.
  相似文献   

15.
Intermittent hemodialysis (IHD) and continuous renal replacement therapies (CRRT) are used as Acute Kidney Injury (AKI) therapy and have certain advantages and disadvantages. Extended daily dialysis (EDD) has emerged as an alternative to CRRT in the management of hemodynamically unstable AKI patients, mainly in developed countries.

Objectives

We hypothesized that EDD is a safe option for AKI treatment and aimed to describe metabolic and fluid control of AKI patients undergoing EDD and identify complications and risk factors associated with death.

Study Selection

This is an observational and retrospective study describing introduction of EDD at our institution. A total of 231 hemodynamically unstable AKI patients (noradrenalin dose between 0.3 and 1.0 ucg/kg/min) were assigned to 1367 EDD session. EDD consisted of 6–8 h of HD 6 days a week, with blood flow of 200 ml/min, dialysate flows of 300 ml/min.

Data Synthesis

Mean age was 60.6±15.8 years, 97.4% of patients were in the intensive care unit, and sepsis was the main etiology of AKI (76.2). BUN and creatinine levels stabilized after four sessions at around 38 and 2.4 mg/dl, respectively. Fluid balance decreased progressively and stabilized around zero after five sessions. Weekly delivered Kt/V was 5.94±0.7. Hypotension and filter clotting occurred in 47.5 and 12.4% of treatment session, respectively. Regarding AKI outcome, 22.5% of patients presented renal function recovery, 5.6% of patients remained on dialysis after 30 days, and 71.9% of patients died. Age and focus abdominal sepsis were identified as risk factors for death. Urine output and negative fluid balance were identified as protective factors.

Conclusions

EDD is effective for AKI patients, allowing adequate metabolic and fluid control. Age, focus abdominal sepsis, and lower urine output as well as positive fluid balance after two EDD sessions were associated significantly with death.  相似文献   

16.

Background  

Blunt trauma causes short-term compression of some or all parts of the chest, abdomen or pelvis and changes hemodynamics of the blood. Short-term compression caused by trauma also results in a short-term decrease in the diameter of blood vessels. It has been shown that with a sudden change in the diameter of a tube or in the direction of the flow, the slower-moving fluid near the wall stops or reverses direction, which is known as boundary layer separation (BLS). We hypothesized that a sudden change in the diameter of elastic vessel that results from compression may lead not only to BLS but also to other hemodynamic changes that can damage endothelium.  相似文献   

17.

Background  

The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation.  相似文献   

18.

Aims

To purify and primarily characterize an anti‐Alicyclobacillus bacteriocin produced by Bifidobacterium animalis subsp. animalis CICC 6165, suggested to be named bificin C6165.

Methods and Results

During purification of the bificin C6165, optimal recovery was achieved with ammonium sulfate precipitation followed by two chromatographic steps. Mass spectrometry analyses revealed a distinctive peak corresponding to a molecular mass of 3395·1 Da. This bacteriocin was heat stable, effective after refrigerated storage and freeze–thaw cycles. The primary mode of action of bificin C6165 is most probably due to pore formation, as indicated by the efflux of K+ from metabolically active cells of Alicyclobacillus acidoterrestris. In the presence of 10 mmol l?1 gadolinium, bificin C6165 did not affect cells of Alicyclobacillus acidoterrestris. This suggests that the mode of action of bificin C6165 relies on a net negatively charged cell surface.

Conclusions

Bificin C6165 is indeed a novel bacteriocin and it exhibited remarkable potency for Alicyclobacillus control.

Significance and Impact of the Study

Application of bacteriocins in preservation of fruit juices has seldom been studied. Bificin C6165 may be an alternative method to control juice spoilage by this Alicyclobacillus acidoterrestris and meet increasing consumer demand for nature and artificial chemical additive‐free food products.  相似文献   

19.

Background  

Amniocentesis is the accepted mode of attaining amniotic fluid to perform tests for fetal lung maturity. The purpose of this study was to validate a non-invasive fetal lung maturity test by counting lamellar bodies from a vaginal pool among women with preterm premature rupture of membranes.  相似文献   

20.

Background  

The simultaneously hermaphroditic pond snail, Lymnaea stagnalis, can mate in the male and female role, but within one copulation only one sexual role is performed at a time. Previous work has shown that male motivation is determined by the availability of seminal fluid in the prostate gland, which is detected via a nervous connection by the brain area controlling male behaviour. Based on this knowledge, patterns of sexual role alternations within mating pairs can be explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号