首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of intracellular injection of La3+ and Mn2+ on the electrical coupling of canine Purkinje cells investigated. It was found that La3+ causes cell decoupling in about 100 sec, increased the input resistance of the injected cell too. Mn2+ injection reduced drastically the coupling coefficient but did not abolish cell communication. Intracellular injection of La3+ or Mn2+ also caused shortening of the action potential and hyperpolarized the the heart cells. La3+ seems to be as effective as Ca or even stronger than Ca in suppressing intercellular communication in heart fibres.  相似文献   

2.
The influence of intracellular injection of cAMP on the electrical coupling of canine Purkinje cells was investigated. It was found that the nucleotide enhanced reversibly the cell-to-cell communication through an increase in junctional conductance. Dibutyryl cAMP (5 X 10(-4) M) plus theophylline (0.4 mM) decreased appreciably the intracellular longitudinal resistance (ri). The interactions of cAMP and Ca on the electrical coupling were also investigated. The nucleotide and Ca have opposite effects on the electrical coupling. In the presence of high [Ca2+]o solutions (6 mM), the intracellular injection of cAMP causes a transient increase in the coupling coefficient followed by an appreciable decrease in cell-to-cell coupling. This reduction in intracellular communication was reversed by injecting EGTA into the same cell. The results of this study support the view that cAMP is a modulator of junctional conductance in cardiac muscle and that the compound interacts with Ca in the control of intracellular communication.  相似文献   

3.
The effects of electrical stimulation, muscarinic and serotonergic agonists, and caffeine on [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) content, intracellular free Ca2+ concentration ([Ca2+]i), and release of [3H]norepinephrine ([3H]NE) were studied in cultured sympathetic neurons. Neuronal cell body [Ca2+]i was unaffected by muscarinic or serotonergic receptor stimulation, which significantly increased [3H]Ins(1,4,5)P3 content. Stimulation at 2 Hz and caffeine had no effect on [3H]Ins(1,4,5)P3, but caused greater than two-fold increase in [Ca2+]i. Only 2-Hz stimulation released [3H]NE. Caffeine had no effect on the release. When [Ca2+]i was measured in growth cones, only electrical stimulation produced an increase in [Ca2+]i. The other agents had no effect on Ca2+ at the terminal regions of the neurons. We conclude that Ins(1,4,5)P3-insensitive, but caffeine-sensitive Ca2+ stores in sympathetic neurons are located only in the cell body and are not coupled to [3H]NE release.  相似文献   

4.
Synthetic peptides homologous to the extracellular loops of the major vascular connexins represent a novel class of gap junction blockers that have been used to assess the role of direct cellular communication in arteries and veins. However, the specificity of action of such peptides on the coupling between smooth muscle cells (SMCs) has not yet been fully characterized. Isolated third-order rat mesenteric arteries were therefore studied with respect to isometric tension (myography), intracellular Ca2+ concentration ([Ca2+]i) (Ca2+ -sensitive dyes), membrane potential, and input resistance (sharp intracellular glass electrodes). Confocal imaging was used for visualization of [Ca2+]i events in individual SMCs in the arterial wall and membrane currents (patch clamp) measured in individual SMCs isolated from the same arteries. A triple peptide combination (37,43Gap 27 + 40Gap 27 + 43Gap 26) increased intercellular resistance (measured as input resistance) in intact arterial segments without affecting the membrane conductance of individual cells and also interrupted electrical coupling between pairs of rat aortic A7r5 myocytes. In intact arterial segments, the peptides desynchronized [Ca2+]i transients in individual SMCs and abolished vasomotion without suppressing Ca2+ transients in individual cells. They also depolarized SMCs, increased [Ca2+]i, and attenuated acetylcholine-induced, endothelium-dependent smooth muscle hyperpolarization. Experiments with endothelium-denuded arteries suggested that the depolarization produced by the peptides under basal conditions was in part secondary to electrical uncoupling of the endothelium from SMCs with loss of a tonic hyperpolarizing effect of the endothelium. Taken together, the results indicate that connexin-mimetic peptides block electrical signaling in rat mesenteric small arteries without exerting major nonjunctional effects.  相似文献   

5.
Bicarbonate is important for pHi control in cardiac cells. It is a major part of the intracellular buffer apparatus, it is a substrate for sarcolemmal acid-equivalent transporters that regulate intracellular pH, and it contributes to the pHo sensitivity of steady-state pHi, a phenomenon that may form part of a whole-body response to acid/base disturbances. Both bicarbonate and H+/OH- transporters participate in the sarcolemmal regulation of pHi, namely Na(+)-HCO3-cotransport (NBC), Cl(-)-HCO3- exchange (i.e., anion exchange, AE), Na(+)-H+ exchange (NHE), and Cl(-)-OH- exchange (CHE). These transporters are coupled functionally through changes of pHi, while pHi is linked to [Ca2+]i through secondary changes in [Na+] mediated by NBC and NHE. Via such coupling, decreases of pHo and pHi can ultimately lead to an elevation of [Ca2+]i, thereby influencing cardiac contractility and electrical rhythm. Bicarbonate is also an essential component of an intracellular carbonic buffer shuttle that diffusively couples cytoplasmic pH to the sarcolemma and minimises the formation of intracellular pH microdomains. The importance of bicarbonate is closely linked to the activity of the enzyme carbonic anhydrase (CA). Without CA activity, intracellular bicarbonate-dependent buffering, membrane bicarbonate transport, and the carbonic shuttle are severely compromised. There is a functional partnership between CA and HCO3- transport. Based on our observations on intracellular acid mobility, we propose that one physiological role for CA is to act as a pH-coupling protein, linking bulk pH to the allosteric H+ control sites on sarcolemmal acid/base transporters.  相似文献   

6.
The influence of cAMP on the electrical coupling of canine Purkinje fibers was investigated. It was found that the intracellular injection of the nucleotide enhances the cell-to-cell coupling appreciably. No change in the coupling coefficient (V2/V1) was found with the intracellular injection of 5-AMP. A slight decrease in input resistance (Vo/Io) was produced by cAMP injection and the time constant of the cell membrane (tau m) was also reduced. These findings indicate that the changes in intercellular coupling produced by cAMP were not related to an increase in resistance of the non-junctional membrane but to a decline in junctional resistance. The present results support the view that cAMP plays an important role in the modulation of junctional conductance in cardiac fibers.  相似文献   

7.
Y J Ou  Q X Shan  J P Bourreau 《Life sciences》1999,64(24):PL291-PL296
We have investigated the effects of bradykinin (BK) and ATP on Ca2+ transient induced by electrical-field stimulation in freshly isolated rabbit ventricular myocytes, in the presence or absence of rabbit aortic endothelial cells. BK and ATP induced an increase in intracellular Ca2+ concentration ([Ca2+]i) in the endothelial cells, but had no significant effect on Ca2+ transient in electrical-field stimulated ventricular myocytes. In the presence of cultured endothelial cells, the amplitude of Ca2+ transient induced by electrical stimulation in ventricular myocytes was decreased. BK and ATP further reduced the amplitude of Ca2+ transient induced by electrical stimulation in ventricular myocytes. These data show that BK and ATP have endothelium-dependent depressing effects on ventricular myocytes and indicate that substances released from endothelial cells in response to BK and ATP stimulation can modulate ventricular myocytes excitation-contraction coupling. However, identification of the cardioactive mediators produced by the endothelial cells requires further study.  相似文献   

8.
Glucose stimulation of insulin release involves metabolism of the sugar and elevation of cytoplasmic calcium (Ca2+i) in pancreatic B-cells. We compared the dynamic changes of metabolism (fluorescence of endogenous reduced pyridine nucleotides, NAD(P)H), membrane potential (intracellular microelectrodes), and Ca2+i (fura-2 technique), in intact mouse islets. Glucose (15 mM) sequentially triggered an increase in NAD(P)H fluorescence, a depolarization with electrical activity, and a rise in Ca2+i. The change in NAD(P)H was monophasic and regular, whereas the changes in membrane potential and Ca2+i were multiphasic, with steady-state regular oscillations of similar average frequencies (about 2.2/min). Digital image analysis revealed that Ca2+i oscillations were synchronous in all regions of the islets. Omission of extracellular Ca2+ abolished the rise in Ca2+i but not the increase in NAD(P)H. Both electrical and Ca2+i oscillations disappeared in low external Ca2+ (1 mM), and became larger but slower in high Ca2+ (10 mM). Sustained depolarization (by tolbutamide, arginine, or high K+) and hyperpolarization (by diazoxide) of B-cells caused sustained increases and decreases of Ca2+i, respectively. In conclusion, the changes in membrane potential induced by various secretagogues trigger synchronous changes in Ca2+i in all B-cells of the islets. The oscillatory pattern of the electrical and Ca2+i responses induced by glucose is not accompanied by and thus probably not due to similar oscillations of metabolism.  相似文献   

9.
Ion-sensitive microelectrodes and current-voltage analysis were used to study intracellular pH (pHi) regulation and its effects on ionic conductances in the isolated epithelium of frog skin. We show that pHi recovery after an acid load is dependent on the operation of an amiloride-sensitive Na+/H+ exchanger localized at the basolateral cell membranes. The antiporter is not quiescent at physiological pHi (7.1-7.4) and, thus, contributes to the maintenance of steady state pHi. Moreover, intracellular sodium ion activity is also controlled in part by Na+ uptake via the exchanger. Intracellular acidification decreased transepithelial Na+ transport rate, apical Na+ permeability (PNa) and Na+ and K+ conductances. The recovery of these transport parameters after the removal of the acid load was found to be dependent on pHi regulation via Na+/H+ exchange. Conversely, variations in Na+ transport were accompanied by changes in pHi. Inhibition of Na+/K+ ATPase by ouabain produced covariant decreases in pHi and PNa, whereas increases in Na+ transport, occurring spontaneously or after aldosterone treatment, were highly correlated with intracellular alkalinization. We conclude that cytoplasmic H+ activity is regulated by a basolateral Na+/H+ exchanger and that transcellular coupling of ion flows at opposing cell membranes can be modulated by the pHi-regulating mechanism.  相似文献   

10.
Electrophysiological properties of frog olfactory supporting cells   总被引:1,自引:0,他引:1  
Trotier  D 《Chemical senses》1998,23(3):363-369
Cells, identified as supporting cells by Lucifer Yellow injection, were recorded from slices of frog olfactory epithelium using patch-clamp recordings. Cell-attached single-channel recordings indicated that the intracellular potential (IP) was -68 +/- 7 mV (n = 22) with 4 mM K+ in the bath ([K+]o). IP was -67 +/- 4 mV (n = 32) in whole-cell conditions with 100 mM KCl inside the cell, suggesting a low membrane permeability for Cl-. IP depended on [K+]o in a manner described by the Goldman- Hodgkin-Katz equation with a permeability ratio pk+:PNa+ of 40. The input resistance was 32 +/- 14 M omega (n = 15), indicating a high membrane conductance at rest. Odorant stimulations evoked passive membrane depolarizations, probably reflecting an increase in [K+]o due to the neuronal activation. Whole-cell recordings with 100 mM CsCl instead of KCl in the pipette, together with the block of gap-junctions with octanol, indicated the existence of an electrical coupling between supporting cells. The electrical coupling between these glial-like cells could facilitate the clearance of K+ ions released by olfactory receptor neurons during odorant stimulation.   相似文献   

11.
12.
We showed that lipopolysaccharide (LPS) or hypoxia and reoxygenation (H/R) decreases electrical coupling between microvascular endothelial cells by targeting the gap junction protein connexin40 (Cx40), tyrosine kinase-, ERK1/2-, and PKA-dependently. Since LPS can compromise microvascular blood flow, resulting in micro-regional H/R, the concurrent LPS + H/R could reduce coupling to a much greater extent than LPS or H/R alone. We examined this possibility in a model of cultured microvascular endothelial cells (mouse skeletal muscle origin) in terms of electrical coupling and the phosphorylation status of Cx40. To assess coupling, we measured the spread of electrical current injected into the cell monolayer and computed the intercellular resistance as an inversed measure of coupling. In wild type cells, but not in Cx40 null cells, concurrent LPS + H/R synergistically increased resistance by approximately 270%, well above the level observed for LPS or H/R alone. Cx37 and Cx43 protein expression did not differ between Cx40 null and wild type cells. LPS + H/R increased resistance PKA- and PKC-dependently. By immunoprecipitating Cx40, we found that LPS + H/R reduced serine phosphorylation to a much greater degree than that observed for LPS or H/R alone. Further, PKA-specific, but not PKC-specific serine phosphorylation of Cx40 was also significantly reduced following LPS + H/R. This reduction was prevented by tyrosine kinase and MEK1/2 inhibition, by PKA activation, and mimicked in control cells by PKA inhibition. We conclude that LPS + H/R initiates tyrosine kinase- and ERK1/2-sensitive signaling that synergistically reduces inter-endothelial electrical coupling by dephosphorylating PKA-specific serine residues of Cx40.  相似文献   

13.
The apparent intracellular Mg2+ buffering, or muffling (sum of processes that damp changes in the free intracellular Mg2+ concentration, [Mg2+](i), e.g., buffering, extrusion, and sequestration), was investigated in Retzius neurons of the leech Hirudo medicinalis by iontophoretic injection of H+, OH-, or Mg2+. Simultaneously, changes in intracellular pH and the intracellular Mg2+, Na+, or K+ concentration were recorded with triple-barreled ion-selective microelectrodes. Cell volume changes were monitored measuring the tetramethylammonium (TMA) concentration in TMA-loaded neurons. Control measurements were carried out in electrolyte droplets (diameter 100-200 microm) placed on a silver wire under paraffin oil. Droplets with or without ATP, the presumed major intracellular Mg2+ buffer, were used to quantify the pH dependence of Mg2+ buffering and to determine the transport index of Mg2+ during iontophoretic injection. The observed pH dependence of [Mg2+](i) corresponded to what would be expected from Mg2+ buffering through ATP. The quantity of Mg2+ muffling, however, was considerably larger than what would be expected if ATP were the sole Mg2+ buffer. From the decrease in Mg2+ muffling in the nominal absence of extracellular Na+ it was estimated that almost 50% of the ATP-independent muffling is due to the action of Na+/Mg2+ antiport.  相似文献   

14.
Heterotrimeric guanine nucleotide-binding proteins (G-proteins) can be categorized into molecularly divergent groups by their differential sensitivity to pertussis toxin. Receptors specifically use either pertussis toxin-sensitive or-insensitive G-proteins to couple to specific effectors. Receptor stimulation of phospholipase C, however, is pertussis toxin sensitive in some systems and pertussis toxin insensitive in others. We studied the coupling of receptors to phospholipase C by expressing receptors from both systems into a single cell, the Xenopus oocyte. [Arg8]Vassopressin (AVP) receptors from liver and cholecystokinin-8(sulfated) (CCK) receptors from brain were expressed in oocytes by intracellular injection of RNA. Both receptors stimulated a Ca2+-dependent Cl- current which can also be evoked by intracellular injection of inositol 1,4,5-tris-phosphate. Hence, receptor stimulation of phospholipase C was measured as the evoked Ca2+-dependent Cl- current. The liver AVP receptor, which is known to stimulate phospholipase C in a pertussis toxin-insensitive manner (Lynch, C. J., Prpic, V., Blackmore, P. F., and Exton, J. H. (1986) Mol. Pharmacol. 29, 196-203), was found to stimulate phospholipase C through a pertussis toxin-sensitive pathway in the Xenopus oocyte. The CCK receptor from brain stimulated phospholipase C through a pertussis toxin-insensitive pathway. Both AVP and CCK stimulation of phospholipase C were attenuated by the intracellular injection of excess G-protein beta gamma subunits. Neither pertussis toxin treatment nor intracellular injection of beta gamma subunits affected any steps subsequent to inositol 1,4,5-tris-phosphate production. From these data we conclude that both the pertussis toxin-sensitive and -insensitive pathways for receptor coupling to phospholipase C are transduced by heterotrimeric G-proteins. We also find that there is a lack of coupling fidelity of receptors to G-proteins in stimulation of phospholipase C which can be influenced by the membrane environment.  相似文献   

15.
Angiotensin II, a potent vasoconstrictor peptide, increases free cytoplasmic Ca2+ concentration ([Ca2+]i) in vascular smooth muscle cells (VSMC) by release of nonmitochondrial Ca2+ stores and stimulates an amiloride-sensitive Na+ influx, presumably via Na+/H+ exchange. We recently have found that the angiotensin II-mediated change in VSMC intracellular pH has two components, an early rapid acidification phase and a slower recovery phase involving Na+-dependent alkalinization. In the present study, we show that the early acidification is not mediated via Na+/H+ exchange. Instead, we propose a mechanism which involves increases in [Ca2+]i and Ca2+ efflux with a subsequent rise in intracellular H+. Agonists, in addition to angiotensin II, which increase [Ca2+]i in cultured VSMC, including platelet-derived growth factor, vasopressin, and bradykinin, induce an acidification, while agonists which fail to raise [Ca2+]i do not. The time course and magnitude of agonist-stimulated 45Ca2+ efflux correlate with the acidification response. The angiotensin II concentration-response relationship for acidification and Ca2+ mobilization are similar. Furthermore, inhibition of changes in [Ca2+]i by treatment with phorbol ester, cyclic GMP, or quin2 loading prevent agonist-mediated acidification. The effects of altering extracellular [Ca2+] and [H+] on agonist-mediated intracellular acidification and H+ efflux suggest that the acidification is due to ATP-dependent unidirectional H+ influx, perhaps via the plasma membrane Ca2+-ATPase, and not to a Ca2+/H+ antiport. This agonist-mediated acidification represents a previously undescribed ionic event in VSMC activation which may be involved in excitation-response coupling.  相似文献   

16.
The effect of volume perturbation on the interaction of Na+ and H+ with the intracellular and extracellular faces of the Na+/H+ exchanger was studied in UMR-106 cells, a rat osteosarcoma cell line. Osmotic shrinkage of the cells stimulated the activity of the Na+/H+ exchanger. Kinetic analysis of this stimulation demonstrated that in hyperosmotically stressed cells, the apparent affinities for intracellular H+ and intracellular Na+ are modified in opposite directions. While there is an increased apparent affinity for protons from 0.275 +/- 0.03 to 0.107 +/- 0.025 microM in isotonic and hypertonic conditions, respectively, the apparent affinity for intracellular Na+ decreases from 83 +/- 9 to 126 +/- 6 mM under the same conditions. Osmotic swelling induced a decreased exchanger activity which appeared to involve reduction in Vmax only without changes in the apparent affinities of either H+i or Na+i. We conclude that: 1) osmotic shrinkage and swelling modify the kinetic behavior of the Na+/H+ exchanger in different modes; 2) in hyperosmotically stressed cells, the interactions of intracellular H+ and Na+ are modified in a selective mode. The described phenomenon may serve as a general mechanism for activation of the exchanger by various stimuli.  相似文献   

17.
A spontaneously occurring or electrically elicited hyperpolarizing activation (HA) in L cells was previously shown to be due to a specific increase in the membrane K+ permeability (Nelson et at. 1972. J. Gen. Physiol. 60:58--71). Intracellular injection of Ca++ elicits an identical hyperpolarizing response which suggests that the increased K+ permeability associated with the HA is mediated by an increase in cytoplasmic Ca++. In zero-Ca, EGTA-containing saline the proportion of cells in which HA's can be evoked decreases, but the amplitude of those HA's that are produced is comparable to that of HA's in normal Ca saline. Co++ does block the HA but only after a period of 2 h or longer; D-600 does not affect the HA. The observations, with others, suggest that the primary source of the Ca mediating the HA response is intracellular. In L cells the endoplasmic reticulum forms morphologically specialized appositions with the surface membrane which resemble structures at the triads of muscle that are thought to mediate coupling between surface membrane electrical activity and contraction via Ca release from the sarcoplasmic reticulum. The similar structures in L cells may mediate coupling between surface membrane electrical, mechanical, or chemical stimuli and the HA response via release of Ca from the endoplasmic reticulum. Surface-coupled release of Ca from intracellular stores might also regulate a number of other intracellular functions in nonmuscle cells.  相似文献   

18.
We have studied the activation of the Na+/H+ exchanger which leads to the intracellular alkalinization in cultured bovine aortic endothelial cells stimulated by extracellular ATP. The alkalinization induced by ATP was largely dependent on extracellular Ca2+ and the rate of alkalinization was decreased by about 60% in the absence of extracellular Ca2+. ATP caused a rapid and transient increase and a subsequent sustained increase of the intracellular Ca2+ concentration ([Ca2+]i) in the Ca2+ buffer, while only the rapid and transient increase of [Ca2+]i was observed in the absence of extracellular Ca2+. The Ca2+-depleted cells prepared by incubation in Ca2+-free buffer containing 0.1 mM EGTA showed only a slight increase of [Ca2+]i with no alkalinization on stimulation by ATP. The alkalinization was inhibited by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), an inhibitor of protein kinase C, but not by another isoquinoline analogue (HA 1004), which has a less inhibitory effect on the kinase. Phorbol 12-myristate 13-acetate also induced the alkalinization by the activation of the Na+/H+ exchanger. Neither dibutyryl cyclic AMP nor dibutyryl cyclic GMP affected the alkalinization induced by ATP. Treatment of the cells by pertussis and cholera toxins had no effect on the alkalinization. The results suggest that the increase in [Ca2+]i is essential for the ATP-induced activation of the Na+/H+ exchanger in cultured bovine aortic endothelial cells and a protein kinase C-dependent pathway is involved in the activation.  相似文献   

19.
Communication of electrical signals along the microvascular endothelium plays a key role in integrating microvascular function required for local regulation of blood flow. The aim of the present study was to examine the effect of a short-term hypoxia (0.1% O(2), 1 h) plus reoxygenation (H/R) on electrical coupling in cultured monolayers of microvascular endothelial cells (rat skeletal muscle origin). To assess coupling, we used a current injection technique and a Bessel function model to compute the intercellular resistance (an inverse measure of coupling) and cell membrane resistivity (a measure of resistance to current leakage across the cell membrane). H/R resulted in rapid (within 4 min after reoxygenation) and sustained (up to 100 min) reduction in intercellular coupling, but it did not alter membrane resistivity. H/R did not alter gap junction protein connexin 43 expression nor its tyrosine phosphorylation as determined by immunoblot and immunoprecipitation analyses. Inhibition of mitochondrial respiration (1 mM NaCN) did not mimic the effect of H/R. However, pre-treatment of monolayers with tyrphostin A48 (1.5 microM), PP2 (10 nM) (tyrosine kinase inhibitors), U 0126 (20 microM), and PD 98059 (5 microM) (MEK1/2 inhibitors) inhibited the H/R-induced reduction in coupling. These results indicate that endothelial cell coupling was reduced quickly after reoxygenation, via activation of a tyrosine and MAP kinase dependent pathway. We predict that a short-term H/R can rapidly compromise microvascular function in terms of reduced cellular communication along the vascular wall.  相似文献   

20.
Dopamine induces a decrease in voltage-dependent Ca2+ current in identified neurons of the snail H. aspersa. This effect is blocked by intracellular injection of activated B. pertussis toxin and of an affinity-purified antibody against the alpha subunit of bovine Go protein. The dopamine effect is mimicked by intracellular injection of mammalian alpha o. In snail nervous tissue, pertussis toxin ADP-ribosylates a single protein band on SDS gels, and this band is recognized in immunoblots by the anti-alpha o antibody. We propose that this is a 40 kd alpha subunit of a molluscan G protein immunologically related to alpha o and that it mediates the effect of dopamine on Ca2+ currents in identified snail neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号